What is the big difference between modular and object oriented programming? - oop

An object-oriented program usually contains different types of
objects, each corresponding to a particular kind of complex data to
manage, or perhaps to a real-world object or concept such as a bank
account, a hockey player, or a bulldozer.
Modular programming (also called "top-down design" and "stepwise
refinement") is a software design technique that emphasizes separating
the functionality of a program into independent, interchangeable
modules, such that each contains everything necessary to execute only
one aspect of the desired functionality.
Differences that I can think of are that you can have more than one objects on a class, where as in modular programming you are supposed to have only 1 module (1 object) for one specific thing.
Here is an example (the way I understand it)
Consider you have a program. A few input fields and a button. Then some calculations are made and the program outputs something.
This program can have 2 modules: The input/output one and the calculation one.
However I don't see why the program can't have a layout (a class containing all the objects that will be shown on the screen) and a logic part (which can be a class or a function depending on the depth of the calculations).
Is this example "correct" in temrs of both modular and object programming ? Can modular and oop be used together ? And what is the big difference between these two paradigms/programming styles?

Your modules can be implemented as classes, that is indeed correct. However, modules are meant to be logically separate pieces of the programs and as such it doesn't make sense to have them as classes, as you can have many different objects of a class. If I was to write a modular system and use classes for modules, I'd make them all singletons.
In your example, object-oriented programming you would have classes defining the input fields and buttons, or maybe a class that is used as a calculator. You could even go to greater depths and define a Calculator interface that could be implemented as SumCalculator, ProductCalculator etc, and maybe even throw in some factories so the user can choose between different calculations performed by your program. Yes, you could have singleton classes such as LayoutModule (which would keep track of objects of InputField and Button type) and LogicModule (which would keep track of the Calculator implementations).
Modular programming just implies you have these two (or more) modules, but says nothing of how they achieve what they achieve. The modules can use object-oriented approaches or not at all and use procedural C-style programming. The way you described modular programming via classes is just a way of separating modules. You can separate them as classes, or you can separate them as functions across multiple compilation units, for example. It's your choice.
Object-oriented programming implies that your program is, well, oriented towards objects. It says nothing about modules within your application but demands that logical pieces that represent some ideas within the application are modeled via classes and objects.
As such, the two approaches can be used together, and when you decide to be modular, the object-oriented choice usually imposes on you that these modules are defined via classes and their relationships.

Related

Abstraction as a definition

I am trying to understand the basic OOP concept called abstraction. When I say "understand", I mean not just to learn a definition, but really have a deep understanding.
On the internet, I have seen many definitions such as:
Hiding the low level implementation and providing high level specification
and
focusing on essential qualities rather than specific examples.
I understand that the iPhone button is a great example of abstraction, since I, as a user, don't have to know how the screen is displayed, all I have to know is to press the button.
What do you think of the following conclusion, when it comes to abstraction:
Abstraction takes many specific instances of objects and extracts their common information and functions by providing a single, generalised concept.
So based on this, a class is actually an abstraction of many instances, right?
I disagree with both of your examples. An iPhone button is not an abstraction of the screen, it is an interface to use the phone. A class is also not an abstraction of its instances.
An abstraction can be thought of treating a specific concept as a form of a more general concept.
To repeat an overused example: all vehicles can move. Cars rotate wheels, airplanes use jets, trains run on tracks.
Given a collection of vehicles, instead of being burdened with knowing the specifics of each vehicles' inner workings, and having to:
car.RotateWheel();
airplane.StartJet();
train.MoveOnTrack();
we could treat these objects as the more abstract vehicle, and tell them to
vehicle.Move();
In this case vehicle is an abstraction. It does not represent any specific object, but represents the common functionality of cars, airplanes and trains and allows us to interact with these specific objects without knowing anything about them except that they are a type of vehicle.
In the context of OOP, vehicle would most likely be a base class of the more specific types of vehicles.
IMHO there are actually 2 underlying concepts that needs to be understood here.
Abstraction: The idea of dealing only with "What" of something rather than "How" of something. For example: When you call an object method you only care about what the method does and not how it does what it does. There are layers of abstraction i.e the upper layer is only interested in what the below layer does and not how it does it. Another example: When you are writing assembly instruction you only care what a particular instruction does and not how the underlying circuit in the CPU execute the instruction.
Generalization: The idea of comparing a bunch of things (objects, functions, basically anything) and figure out the commonality between them and then extracting that commonality. A class with a bunch of properties is the generalization of the instances of the classes as all the instances have the same properties but different values for those properties.
The goal of object-oriented programming is to take the real-world thinking into software development as much as possible. That is, abstraction means what any dictionary may define.
For example, one of possible definitions of abstraction in Oxford Dictionary:
The quality of dealing with ideas rather than events.
WordReference.com's definition is even more eloquent:
the act of considering something as a general quality or characteristic, apart from concrete realities, specific objects, or actual instances.
In fact, WordReference.com's one is one of possible definitions of abstraction and you should be surprised because it's not a programming explanation of abstraction.
Perhaps you want a more programming alike definition of abstraction, and I'll try to provide a good summary:
Abstraction is the process of turning concrete realities into object representations which could be used as archetypes. Usually, in most OOP languages, archetypes are represented by types which in turn could be defined by classes, structures and interfaces. Types may abstract data or behaviors.
One good example of abstraction would be that a chair made of oak wood is still a chair. That's the way our mind works. You learn that certain forms are the most basic definition of many things. Your brain doesn't see all details of a given chair, but it sees that it fulfills the requirements to consider something a chair. Object-oriented programming and abstraction just mirrors this.

"Many functions operating upon few abstractions" principle vs OOP

The creator of the Clojure language claims that "open, and large, set of functions operate upon an open, and small, set of extensible abstractions is the key to algorithmic reuse and library interoperability". Obviously it contradicts the typical OOP approach where you create a lot of abstractions (classes) and a relatively small set of functions operating on them. Please suggest a book, a chapter in a book, an article, or your personal experience that elaborate on the topics:
motivating examples of problems that appear in OOP and how using "many functions upon few abstractions" would address them
how to effectively do MFUFA* design
how to refactor OOP code towards MFUFA
how OOP languages' syntax gets in the way of MFUFA
*MFUFA: "many functions upon few abstractions"
There are two main notions of "abstraction" in programming:
parameterisation ("polymorphism", genericity).
encapsulation (data hiding),
[Edit: These two are duals. The first is client-side abstraction, the second implementer-side abstraction (and in case you care about these things: in terms of formal logic or type theory, they correspond to universal and existential quantification, respectively).]
In OO, the class is the kitchen sink feature for achieving both kinds of abstraction.
Ad (1), for almost every "pattern" you need to define a custom class (or several). In functional programming on the other hand, you often have more lightweight and direct methods to achieve the same goals, in particular, functions and tuples. It is often pointed out that most of the "design patterns" from the GoF are redundant in FP, for example.
Ad (2), encapsulation is needed a little bit less often if you don't have mutable state lingering around everywhere that you need to keep in check. You still build ADTs in FP, but they tend to be simpler and more generic, and hence you need fewer of them.
When you write program in object-oriented style, you make emphasis on expressing domain area in terms of data types. And at first glance this looks like a good idea - if we work with users, why not to have a class User? And if users sell and buy cars, why not to have class Car? This way we can easily maintain data and control flow - it just reflects order of events in the real world. While this is quite convenient for domain objects, for many internal objects (i.e. objects that do not reflect anything from real world, but occur only in program logic) it is not so good. Maybe the best example is a number of collection types in Java. In Java (and many other OOP languages) there are both arrays, Lists. In JDBC there's ResultSet which is also kind of collection, but doesn't implement Collection interface. For input you will often use InputStream that provides interface for sequential access to the data - just like linked list! However it doesn't implement any kind of collection interface as well. Thus, if your code works with database and uses ResultSet it will be harder to refactor it for text files and InputStream.
MFUFA principle teaches us to pay less attention to type definition and more to common abstractions. For this reason Clojure introduces single abstraction for all mentioned types - sequence. Any iterable is automatically coerced to sequence, streams are just lazy lists and result set may be transformed to one of previous types easily.
Another example is using PersistentMap interface for structs and records. With such common interfaces it becomes very easy to create resusable subroutines and do not spend lots of time to refactoring.
To summarize and answer your questions:
One simple example of an issue that appears in OOP frequently: reading data from many different sources (e.g. DB, file, network, etc.) and processing it in the same way.
To make good MFUFA design try to make abstractions as common as possible and avoid ad-hoc implementations. E.g. avoid types a-la UserList - List<User> is good enough in most cases.
Follow suggestions from point 2. In addition, try to add as much interfaces to your data types (classes) as it possible. For example, if you really need to have UserList (e.g. when it should have a lot of additional functionality), add both List and Iterable interfaces to its definition.
OOP (at least in Java and C#) is not very well suited for this principle, because they try to encapsulate the whole object's behavior during initial design, so it becomes hard add more functions to them. In most cases you can extend class in question and put methods you need into new object, but 1) if somebody else implements their own derived class, it will not be compatible with yours; 2) sometimes classes are final or all fields are made private, so derived classes don't have access to them (e.g. to add new functions to class String one should implement additional classStringUtils). Nevertheless, rules I described above make it much easier to use MFUFA in OOP-code. And best example here is Clojure itself, which is gracefully implemented in OO-style but still follows MFUFA principle.
UPD. I remember another description of difference between object oriented and functional styles, that maybe summarizes better all I said above: designing program in OO style is thinking in terms of data types (nouns), while designing in functional style is thinking in terms of operations (verbs). You may forget that some nouns are similar (e.g. forget about inheritance), but you should always remember that many verbs in practice do the same thing (e.g. have same or similar interfaces).
A much earlier version of the quote:
"The simple structure and natural applicability of lists are reflected in functions that are amazingly nonidiosyncratic. In Pascal the plethora of declarable data structures induces a specialization within functions that inhibits and penalizes casual cooperation. It is better to have 100 functions operate on one data structure than to have 10 functions operate on 10 data structures."
...comes from the foreword to the famous SICP book. I believe this book has a lot of applicable material on this topic.
I think you're not getting that there's a difference between libraries and programmes.
OO libraries which work well usually generate a small number of abstractions, which programmes use to build the abstractions for their domain. Larger OO libraries (and programmes) use inheritance to create different versions of methods and introduce new methods.
So, yes, the same principle applies to OO libraries.

A precise explanation of encapsulation, data abstraction and data hiding

The object oriented concepts : encapsulation, data abstraction and data hiding are 3 different concepts, but very much related to each other. So i am having difficulty in understanding the concepts fully by reading the information from internet. The information available at one place contradicts with information at another place in the internet. Could someone guide me to a tutorial which clearly explains the 3 concepts and brings out the difference between the three?
First of all, don't be too ambitious ,as you said these 3 concepts are related (especially the first two) and could be used for one another in many contexts. Using them correctly is much more important than having a complete final definition.
"data hiding" is all about putting a wall between the client and (part of) the implementation. Some objects of a module can be internal to the module and invisible to its users. As such, this is a way, a method to avoid dependency. if I cannot know how one thing is implemented, its implementation can change.
"data abstraction" is regrouping different kind of data under the same abstraction. It is close to the idea of a protocol. You don't know how the object is implemented, but you know it respect a well-known protocol, i.e a set of method that works over different type of data. In python, file-like object are a good example. In Java, one uses interfaces. It is good because you have less to learn, and also because you can check some properties at the abstraction level, i.e for all kind of data regrouped under this abstraction.
"encapsulation" is about putting a shell around objects that simplify their usage. it is linked to the idea that objects in a code base can be regrouped in layers increasingly low-level. One object in a layer calls only those of layers beneath him. For example, if you want to draw a line on the screen, the line obkect may only encapsulate an openGL context, the pixel drawer, and other stuff. These lower-level objects are encapsulated by the line object. Note the encapsulation can be applied to the same object when it is part of different layers at the same time, not good but sometimes unavoidable. For example, the file-like object in python have high-level/encapsulating method (open, close, read) and low-levels ones (seek).
That's it. Obviously, the definition of each could be broader but these make the three concepts a bit more different.
The wrapping up of data and functions into a single unit (called
class) is known as encapsulation. Data encapsulation is the most
striking feature of a class. The data is not accessible to the
outside world, and only those functions, which are wrapped in
the class, can access it. These functions provide the interface
between the object’s data and the program. This insulation of
the data from direct access by the program is called data hiding
or information hiding.
Abstraction refers to the act of representing essential features
without including the background details or explanations.
Classes use the concept of abstraction and are defined as a list
of abstract attributes such as size, weight and cost, and
functions to operate on these attributes. They encapsulate all the
essential properties of the objects that are to be created. The
attributes are sometimes called data members because they hold
information. The functions that operate on these data are
sometimes called methods or member functions.
Since the classes use the concept of data abstraction, they are
known as Abstract Data Types (ADT

Object Oriented Programming beyond just methods?

I have a very limited understanding of OOP.
I've been programming in .Net for a year or so, but I'm completely self taught so some of the uses of the finer points of OOP are lost on me.
Encapsulation, inheritance, abstraction, etc. I know what they mean (superficially), but what are their uses?
I've only ever used OOP for putting reusable code into methods, but I know I am missing out on a lot of functionality.
Even classes -- I've only made an actual class two or three times. Rather, I typically just include all of my methods with the MainForm.
OOP is way too involved to explain in a StackOverflow answer, but the main thrust is as follows:
Procedural programming is about writing code that performs actions on data. Object-oriented programming is about creating data that performs actions on itself.
In procedural programming, you have functions and you have data. The data is structured but passive and you write functions that perform actions on the data and resources.
In object-oriented programming, data and resources are represented by objects that have properties and methods. Here, the data is no longer passive: method is a means of instructing the data or resource to perform some action on itself.
The reason that this distinction matters is that in procedural programming, any data can be inspected or modified in any arbitrary way by any part of the program. You have to watch out for unexpected interactions between different functions that touch the same data, and you have to modify a whole lot of code if you choose to change how the data is stored or organized.
But in object-oriented programming, when encapsulation is used properly, no code except that inside the object needs to know (and thus won't become dependent on) how the data object stores its properties or mutates itself. This helps greatly to modularize your code because each object now has a well-defined interface, and so long as it continues to support that interface and other objects and free functions use it through that interface, the internal workings can be modified without risk.
Additionally, the concepts of objects, along with the use of inheritance and composition, allow you to model your data structurally in your code. If you need to have data that represents an employee, you create an Employee class. If you need to work with a printer resource, you create a Printer class. If you need to draw pushbuttons on a dialog, you create a Button class. This way, not only do you achieve greater modularization, but your modules reflect a useful model of whatever real-world things your program is supposed to be working with.
You can try this: http://homepage.mac.com/s_lott/books/oodesign.html It might help you see how to design objects.
You must go though this I can't create a clear picture of implementing OOP concepts, though I understand most of the OOP concepts. Why?
I had same scenario and I too is a self taught. I followed those steps and now I started getting a knowledge of implementation of OOP. I make my code in a more modular way better structured.
OOP can be used to model things in the real world that your application deals with. For example, a video game will probably have classes for the player, the badguys, NPCs, weapons, ammo, etc... anything that the system wants to deal with as a distinct entity.
Some links I just found that are intros to OOD:
http://accu.informika.ru/acornsig/public/articles/ood_intro.html
http://www.fincher.org/tips/General/SoftwareEngineering/ObjectOrientedDesign.shtml
http://www.softwaredesign.com/objects.html
Keeping it very brief: instead of doing operations on data a bunch of different places, you ask the object to do its thing, without caring how it does it.
Polymorphism: different objects can do different things but give them the same name, so that you can just ask any object (of a particular supertype) to do its thing by asking any object of that type to do that named operation.
I learned OOP using Turbo Pascal and found it immediately useful when I tried to model physical objects. Typical examples include a Circle object with fields for location and radius and methods for drawing, checking if a point is inside or outside, and other actions. I guess, you start thinking of classes as objects, and methods as verbs and actions. Procedural programming is like writing a script. It is often linear and it follows step by step what needs to be done. In OOP world you build an available repetoire of actions and tasks (like lego pieces), and use them to do what you want to do.
Inheritance is used common code should/can be used on multiple objects. You can easily go the other way and create way too many classes for what you need. If I am dealing with shapes do I really need two different classes for rectangles and squares, or can I use a common class with different values (fields).
Mastery comes with experience and practice. Once you start scratching your head on how to solve particular problems (especially when it comes to making your code usable again in the future), slowly you will gain the confidence to start including more and more OOP features into your code.
Good luck.

What are the tell-tale signs of bad object oriented design? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
The community reviewed whether to reopen this question 1 year ago and left it closed:
Original close reason(s) were not resolved
Improve this question
When designing a new system or getting your head around someone else's code, what are some tell tale signs that something has gone wrong in the design phase? Are there clues to look for on class diagrams and inheritance hierarchies or even in the code itself that just scream for a design overhaul, particularly early in a project?
The things that mostly stick out for me are "code smells".
Mostly I'm sensitive to things that go against "good practice".
Things like:
Methods that do things other than what you'd think from the name (eg: FileExists() that silently deletes zero byte files)
A few extremely long methods (sign of an object wrapper around a procedure)
Repeated use of switch/case statements on the same enumerated member (sign of sub-classes needing extraction)
Lots of member variables that are used for processing, not to capture state (might indicate need to extract a method object)
A class that has lots of responsibilities (violation of Single Repsonsibility principle)
Long chains of member access (this.that is fine, this.that.theOther is fine, but my.very.long.chain.of.member.accesses.for.a.result is brittle)
Poor naming of classes
Use of too many design patterns in a small space
Working too hard (rewriting functions already present in the framework, or elsewhere in the same project)
Poor spelling (anywhere) and grammar (in comments), or comments that are simply misleading
I'd say the number one rule of poor OO design (and yes I've been guilty of it too many times!) is:
Classes that break the Single
Responsibility Principle (SRP) and
perform too many actions
Followed by:
Too much inheritance instead of
composition, i.e. Classes that
derive from a sub-type purely so
they get functionality for free.
Favour Composition over Inheritance.
Impossible to unit test properly.
Anti-patterns
Software design anti-patterns
Abstraction inversion : Not exposing implemented functionality required by users, so that they re-implement it using higher level functions
Ambiguous viewpoint: Presenting a model (usually OOAD) without specifying its viewpoint
Big ball of mud: A system with no recognizable structure
Blob: Generalization of God object from object-oriented design
Gas factory: An unnecessarily complex design
Input kludge: Failing to specify and implement handling of possibly invalid input
Interface bloat: Making an interface so powerful that it is extremely difficult to implement
Magic pushbutton: Coding implementation logic directly within interface code, without using abstraction.
Race hazard: Failing to see the consequence of different orders of events
Railroaded solution: A proposed solution that while poor, is the only one available due to poor foresight and inflexibility in other areas of the design
Re-coupling: Introducing unnecessary object dependency
Stovepipe system: A barely maintainable assemblage of ill-related components
Staralised schema: A database schema containing dual purpose tables for normalised and datamart use
Object-oriented design anti-patterns
Anemic Domain Model: The use of domain model without any business logic which is not OOP because each object should have both attributes and behaviors
BaseBean: Inheriting functionality from a utility class rather than delegating to it
Call super: Requiring subclasses to call a superclass's overridden method
Circle-ellipse problem: Subtyping variable-types on the basis of value-subtypes
Empty subclass failure: Creating a class that fails the "Empty Subclass Test" by behaving differently from a class derived from it without modifications
God object: Concentrating too many functions in a single part of the design (class)
Object cesspool: Reusing objects whose state does not conform to the (possibly implicit) contract for re-use
Object orgy: Failing to properly encapsulate objects permitting unrestricted access to their internals
Poltergeists: Objects whose sole purpose is to pass information to another object
Sequential coupling: A class that requires its methods to be called in a particular order
Singletonitis: The overuse of the singleton pattern
Yet Another Useless Layer: Adding unnecessary layers to a program, library or framework. This became popular after the first book on programming patterns.
Yo-yo problem: A structure (e.g., of inheritance) that is hard to understand due to excessive fragmentation
This question makes the assumption that object-oriented means good design. There are cases where another approach is much more appropriate.
One smell is objects having hard dependencies/references to other objects that aren't a part of their natural object hierarchy or domain related composition.
Example: Say you have a city simulation. If the a Person object has a NearestPostOffice property you are probably in trouble.
One thing I hate to see is a base class down-casting itself to a derived class. When you see this, you know you have problems.
Other examples might be:
Excessive use of switch statements
Derived classes that override everything
In my view, all OOP code degenerates to procedural code over a sufficiently long time span.
Granted, if you read my most recent question, you might understand why I am a little jaded.
The key problem with OOP is that it doesn't make it obvious that your object construction graph should be independent of your call graph.
Once you fix that problem, OOP actually starts to make sense. The problem is that very few teams are aware of this design pattern.
Here's a few:
Circular dependencies
You with property XYZ of a base class wasn't protected/private
You wish your language supported multiple inheritance
Within a long method, sections surrounded with #region / #endregion - in almost every case I've seen, that code could easily be extracted into a new method OR needed to be refactored in some way.
Overly-complicated inheritance trees, where the sub-classes do very different things and are only tangentially related to one another.
Violation of DRY - sub-classes that each override a base method in almost exactly the same way, with only a minor variation. An example: I recently worked on some code where the subclasses each overrode a base method and where the only difference was a type test ("x is ThisType" vs "x is ThatType"). I implemented a method in the base that took a generic type T, that it then used in the test. Each child could then call the base implementation, passing the type it wanted to test against. This trimmed about 30 lines of code from each of 8 different child classes.
Duplicate code = Code that does the same thing...I think in my experience this is the biggest mistake that can occur in OO design.
Objects are good create a gazillion of them is a bad OO design.
Having all you objects inherit some base utility class just so you can call your utility methods without having to type so much code.
Find a programmer who is experienced with the code base. Ask them to explain how something works.
If they say "this function calls that function", their code is procedural.
If they say "this class interacts with that class", their code is OO.
Following are most prominent features of a bad design:
Rigidity
Fragility
Immobility
Take a look at The Dependency Inversion Principle
When you don't just have a Money\Amount class but a TrainerPrice class, TablePrice class, AddTablePriceAction class and so on.
IDE Driven Development or Auto-Complete development. Combined with extreme strict typing is a perfect storm.
This is where you see what could be a lot of what could be variable values become class names and method names as well as the gratuitous use of classes in general. You'll also see things like all primitives becoming objects. All literals as classes. Function parameters as classes. Then conversion methods everywhere. You'll also see things like a class wrapping another delivering a subset of methods to another class inclusive of only the ones it needs at present.
This creates the possibility to generate an near infinite amount of code which is great if you have billable hours. When variables, contexts, properties and states get unrolled into hyper explicit and overly specific classes then this creates an exponential cataclysm as sooner or later those things multiply. Think of it like [a, b] x [x, y]. This can be further compounded by an attempt to create a full fluent interface as well as adhere to as many design patterns as possible.
OOP languages are not as polymorphic as some loosely typed languages. Loosely typed languages often offer runtime polymorphism in shallow syntax that static analysis can't handle.
In OOP you might see forms of repetition hard to automatically detect that could be turned into more dynamic code using maps. Although such languages are less dynamic you can achieve dynamic features with some extra-work.
The trade of here is that you save thousands (or millions) of lines of code while potentially loosing IDE features and static analysis. Performance can go either way. Run time polymorphism can often be converted to generated code. However in some cases the space is so huge that anything other than runtime polymorphism is impossible.
Problems are a lot more common with OOP languages lacking generics and when OOP programmers try to strictly type dynamic loosely typed language.
What happens without generics is where you should have A for X = [Q, W, E] and Y = [R, T, Y] you instead see [AQR, AQT, AQY, AWR, AWT, AWY, AER, AET, AEY]. This is often due to fear or using typeless or passing the type as a variable for loosing IDE support.
Traditionally loosely typed languages are made with a text editor rather than an IDE and the advantage lost through IDE support is often gained in other ways such as organising and structuring code such that it is navigable.
Often IDEs can be configured to understand your dynamic code (and link into it) but few properly support it in a convenient manner.
Hint: The context here is OOP gone horrifically wrong in PHP where people using simple OOP Java programming traditionally have tried to apply that to PHP which even with some OOP support is a fundamentally different type of language.
Designing against your platform to try to turn it into one your used to, designing to cater to an IDE or other tools, designing to cater to supporting Unit Tests, etc should all ring alarm bells because it's a significant deviation away from designing working software to solve a given category of problems or a given feature set.