Could it be beneficial to lazy instantiate members of a static class? - vb.net

So, I have a class with members whom I am using more or less as constants. I cannot assign them as constants since they are more complex than a simple primitive. Therefore, these 'quasi-constants' are used repeatedly in various places in my application. Admittedly, I will likely move these to a configuration file in the future and have them loaded dynamically.
However, for now I was curious - that though these are served from a static class, could I at all benefit from wrapping them with lazy instantiation? The reason that I ask is because I do not make use of every 'quasi-constant' and there is some overhead associated with constructing each one (albeit very little). I do not expect any real gain by doing this, as it's not a bottleneck or anything, but I am curious as to best practices. I do not know enough about the internals of static classes to answer this myself. I do know that accessing static members does not require an instance of the class - though at some point it must be constructing those members. So my question boils down to this: when are static members of a static class constructed? If they are constructed prior to use, then could I at all benefit by lazy instantiation? (instantiating them only when they are requested?)

when are static members of a static class constructed?
The static constructor and all initialization occurs before the first instance of that class is created or any static members are referenced.
Typically, the static constructor and all static members are initialized immediately before the first time you refer to the class, though technically it can happen at any point prior to the first usage.
If they are constructed prior to use, then could I at all benefit by lazy instantiation? (instantiating them only when they are requested?)
You may benefit from this, particularly if the values require significant initialization or large memory usage, and may not always be used. The Lazy(Of T) class makes this fairly simple to implement.

Related

Should ecapsulated objects be public or private?

I'm a little unclear as to how far to take the idea in making all members within a class private and make public methods to handle mutations. Primitive types are not the issue, it's encapsulated object that I am unclear about. The benefit of making object members private is the ability to hide methods that do not apply to the context of class being built. The downside is that you have to provide public methods to pass parameters to the underlying object (more methods, more work). On the otherside, if you want to have all methods and properties exposed for the underlying object, couldn't you just make the object public? What are the dangers in having objects exposed this way?
For example, I would find it useful to have everything from a vector, or Array List, exposed. The only downside I can think of is that public members could potentially assigned a type that its not via implicit casting (or something to that affect). Would a volitile designation reduce the potential for problems?
Just a side note: I understand that true enapsulation implies that members are private.
What are the dangers in having objects exposed this way?
Changing the type of those objects would require changing the interface to the class. With private objects + public getters/setters, you'd only have to modify the code in the getters and setters, assuming you want to keep the things being returned the same.
Note that this is why properties are useful in languages such as Python, which technically doesn't have private class members, only obscured ones at most.
The problem with making instance variables public is that you can never change your mind later, and make them private, without breaking existing code that relies on directly public access to those instance vars. Some examples:
You decide to later make your class thread-safe by synchronizing all access to instance vars, or maybe by using a ThreadLocal to create a new copy of the value for each thread. Can't do it if any thread can directly access the variables.
Using your example of a vector or array list - at some point, you realize that there is a security flaw in your code because those classes are mutable, so somebody else can replace the contents of the list. If this were only available via an accessor method, you could easily solve the problem by making an immutable copy of the list upon request, but you can't do that with a public variable.
You realize later that one of your instance vars is redundant and can be derived based on other variables. Once again, easy if you're using accessors, impossible with public variables.
I think that it boils down to a practical point - if you know that you're the only one who will be using this code, and it pains you to write accessors (every IDE will do it for you automatically), and you don't mind changing your own code later if you decide to break the API, then go for it. But if other people will be using your class, or if you would like to make it easier to refactor later for your own use, stick with accessors.
Object oriented design is just a guideline. Think about it from the perspective of the person who will be using your class. Balance OOD with making it intuitive and easy to use.
You could run into issues depending on the language you are using and how it treats return statements or assignment operators. In some cases it may give you a reference, or values in other cases.
For example, say you have a PrimeCalculator class that figures out prime numbers, then you have another class that does something with those prime numbers.
public PrimeCalculator calculatorObject = new PrimeCalculator();
Vector<int> primeNumbers = calculatorObject.PrimeNumbersVector;
/* do something complicated here */
primeNumbers.clear(); // free up some memory
When you use this stuff later, possibly in another class, you don't want the overhead of calculating the numbers again so you use the same calculatorObject.
Vector<int> primes = calculatorObject.PrimeNumbersVector;
int tenthPrime = primes.elementAt(9);
It may not exactly be clear at this point whether primes and primeNumbers reference the same Vector. If they do, trying to get the tenth prime from primes would throw an error.
You can do it this way if you're careful and understand what exactly is happening in your situation, but you have a smaller margin of error using functions to return a value rather than assigning the variable directly.
Well you can check the post :
first this
then this
This should solve your confusion . It solved mine ! Thanks to Nicol Bolas.
Also read the comments below the accepted answer (also notice the link given in the second last comment by me ( in the first post) )
Also visit the wikipedia post

When to use static classes and methods?

I have a general question...when should i be using static classes or static methods?..
I know the idea that static methods can be called without instantiating...and static classes should only be used for static methods?...but are there any performance concerns also with it...and when should they be preferred over instance methods and classes?..If someone could just briefly mention when i should opt for using them and when i should avoid them?
I think the following two links offer a clear answer for what you're looking for. Take a look at them:
For static classes:
When to Use Static Classes in C#
For static methods:
When is it appropriate to use static methods? ( Jon Skeet [the Guru] answered this one :o) )
One thing to keep in mind is the testing implications of static methods. A static method "seals" a lot of seams. Seams are where you can change behavior without changing your production code; examples are subclassing, or linking to a testing library. Since static methods are resolved at compile time and aren't dynamically bound you can't throw in a testing object and change the way a static method behaves. Testing that class is going to be a drag.
For things like mathematical functions you can be pretty sure a static method will be ok, but you almost certainly wouldn't want a static method that connects to a database. Think about how you'd test code that uses a static method you're thinking of making.
Here's a good link from the google testing blog:Static Methods are Death to Testability
I think a general rule of thumb could be that utility functions should be static. A typical example would be how in any oop language a Math class would contain static methods like sqrt(), since there is really no need to have something like a separate Math object.
As for static classes you should think of classes keeping a form of state, typically like session information, which is needed irrespective of the exact path travelled through your application, and of which you typically need exactly one. (think of your browser, probably always keeping exactly 1 cookie-jar like class)
Static variables are the less evil twin of global variables (they keep their value, but with their scope limited to a function), which are typically useful to either keep some form of state (e.g. caching of data) or to enumerate things that should be unique but whose numbering is not very important outside the scope of your function or application (say, numbering debugging or profiling cries from your own debug("..") or profile() functions)
Basically, only use any of them when you are very sure that doing things the "right" OOP-like way would lead to the creation of a monster.
As I understand it that's when there's no sense to create an object of a class to invoke an action or that class is common within the application. For example, in C#, Console class is sealed (so you can't create an object and inherit it, and there's really no sense to do it). But professionals will explain you better, however.

Don't static members make classes kind of (global) objects themselves?

Every time I come across an implementation of the singleton pattern or any static classes (i.e. classes with (almost) only static members) I wonder whether this isn't actually a hack and therefore heavy abuse of the principle of classes and instances just to design single objects instead of designing classes and creating a single instance. To me, it looks like static members of classes in general try to add some sort of characteristics to classes which they actually aren't supposed to have and which rather make them object themselves.
But is it really desirable to have single objects implemented like that?
Or do you see things completely differently and don't think that such static classes or singletons have anything in common with actual objects?
Static members are effectively just namespacing for globals, yes. Nothing wrong with that; namespacing is good, and globals are the cleanest way to accomplish some tasks.
Singletons can be somewhat more interesting (load on demand...) but they're a similar construct (yeah, you could think of a static member as an anonymous singleton managed by the compiler).
Like most things, these tools have their place, and only the ideologues worry about whether or not they "fit" with a particular ideology.
Depending on your language, classes are objects. In ruby and java, they're of class Class; in python, I don't remember (subclasses of type?).
In java, you can't avoid putting things on classes. This means you sometimes have to use classes like you would use namespaces and modules. A lot of the static methods on Math are a good example of this. I'd say that having these methods be static makes the best of a bad situation.
I think whether it's "dirty" to have static attributes depends very much on the context. What you really should look for is proper encapsulation: it's good if you can draw a curve through the conceptual space of your code and say "everything on this side doesn't need to know anything about things on that side, except for the interface across the curve.
You can view it from a performance and memory perspective. For example, in the following code:
public class StringUtils
{
public static boolean isEmpty(String value)
{
// some code
}
public static String reverseString(String value)
{
// some code
}
}
Do you really want to instantiate StringUtils objects all over the place just to call a method that doesn't store any member variables? In a simple program, it doesn't matter much. But once your program starts to get to a certain size and you call these methods thousands of times, well let's just the instantiations can add up. And why? To be a purist? It's not worth the cost. Just use the same instance.
Say I have an application which has a single configuration file. How would I create functions to operate on that file without the use of a "singleton" if my language does not support global functions outside of a class (like Java or C#)?
It seems to me the only real way to accomplish that is have a singleton class. Using the singleton pattern you also don't need to pass around a pointer to the object, since you can just use the static method to get it again.
I don't see how this is a violation of any OO principles. To do it a different way, like put the configuration functions in another class that doesn't deal with configuration (like a "utility" class) is more of a violation of OO principles.
Suppose that you have a multi-threaded application which requires a central data repository. The consumers and producers use or put data in the repository, including the external application object which accesses the repository through an interface.
If you made this repository a normal class object, you'd have the problem of initializing it and getting a pointer to every object that needed it. Not the toughest problem, but it can be very confusing with a lot of threads and objects.
On the other hand, if you do this:
public enum Data implements MyInterface{
INSTANCE;
private final Whatevertype secretstuff = new Whatevertype();
...etc...
public void PutThing( Sometype indata){ ... };
public Sometype GetThing( int somecode ){ ...};
...etc...
}
You (a) don't have to instantiate anything and (b) can access from anywhere with
Data.INSTANCE.GetThing(42);
etc. It's just like Highlander... THERE CAN ONLY BE ONE

Is a static class appropriate when state is immutable?

Let's say I have a simple class called WebsterDictionary that has a function that can take a word and return its definition. Perhaps there is another function that can take a definition and return a word. The class is used all the time by many clients.
To facilitate the lookups, the class contains a member variable that is an in-memory Dictionary which stores the words and their associated definitions. Assume the Dictionary can never change once it is initialized -- it's constant and would not vary across instances.
Is this a good candidate for static class? I've been reading that static classes should be stateless...but this class has state (the in-memory dictionary) right?
EDIT: Also, if this does become a static class, when do I initialize the Dictionary since there would no longer be a constructor? Do I do check to see if the reference to the Dictionary is null every time one of the static methods is called?
Thanks.
A static class is suitable when the functionality doesn't need to be replaceable (e.g. for tests). If you might want to use a stub or a mock, you should create an appropriate interface, and then implement it with a singleton.
To expand upon others' answers, a static class or singleton is useful when you need to have only one instance of a class. This is much easier to accomplish when the data is immutable. Thus, there is a possibility that a static class is what you want to use for this. But it's not necessarily the case that it's automatically what you want to use.
My advice is to ask yourself one question: will the world come crashing down if I instantiate more than one of these objects? If so, use a singleton or static class. Otherwise, use a regular class.
A static class might be what you want here (see other answers). But don't make the mistake of calling your dictionary "immutable".
Immutable does not mean "can never change at runtime" in the sense that you used the phrase, because your Dictionary actually does change at runtime; after you must create it you must also add the items. Even at this point you may intend that it never change again, but it is possible to change it. Your intent is not enforced anywhere.
A true immutable object cannot change after creation, no matter how much you try. Instead, when you need a variation of the object you must create a new instance with the desired attributes.
You can think of a static class in one sense as having exactly one instance. That's probably not the best choice for a pattern where you depend on creating new instances for each state change.
You could either go Singleton or a Static class. I would probably go with a Singleton but I think it's mostly a preference issue in this particular situation.
A static class is appropriate when only one "instance" should ever exist, in which case the Singleton pattern may or may not be more appropriate (depending on the details). For an immutable object that you'll need multiple instances of, of course a static class is inappropriate.
What you are looking for might be Singleton?
It is not necessary that static class need not have state (it can have static members as part of it, which can be part of its state).
It sounds very much like you're describing the Monostate pattern: you would like the same WebsterDictionary to be shared by everyone. It just so happens that the WebsterDictionary is also immutable, but that is an orthogonal concern: just make it impossible to update (for example, by using a read-only wrapper).
As you said the class is holding some form of global state, even if it is read only. Going the Singleton approach makes it really clear it is holding data.
If you use dependency injection you can have it inject singleton instances, instead of making all the classes have code that gets you the instance. This means the other classes won't be tied to the Singleton approach, and if you can more easily replace it when testing (combined with an interface to enable replace with test mocks).

Should protected attributes always be banned?

I seldom use inheritance, but when I do, I never use protected attributes because I think it breaks the encapsulation of the inherited classes.
Do you use protected attributes ? what do you use them for ?
In this interview on Design by Bill Venners, Joshua Bloch, the author of Effective Java says:
Trusting Subclasses
Bill Venners: Should I trust subclasses more intimately than
non-subclasses? For example, do I make
it easier for a subclass
implementation to break me than I
would for a non-subclass? In
particular, how do you feel about
protected data?
Josh Bloch: To write something that is both subclassable and robust
against a malicious subclass is
actually a pretty tough thing to do,
assuming you give the subclass access
to your internal data structures. If
the subclass does not have access to
anything that an ordinary user
doesn't, then it's harder for the
subclass to do damage. But unless you
make all your methods final, the
subclass can still break your
contracts by just doing the wrong
things in response to method
invocation. That's precisely why the
security critical classes like String
are final. Otherwise someone could
write a subclass that makes Strings
appear mutable, which would be
sufficient to break security. So you
must trust your subclasses. If you
don't trust them, then you can't allow
them, because subclasses can so easily
cause a class to violate its
contracts.
As far as protected data in general,
it's a necessary evil. It should be
kept to a minimum. Most protected data
and protected methods amount to
committing to an implementation
detail. A protected field is an
implementation detail that you are
making visible to subclasses. Even a
protected method is a piece of
internal structure that you are making
visible to subclasses.
The reason you make it visible is that
it's often necessary in order to allow
subclasses to do their job, or to do
it efficiently. But once you've done
it, you're committed to it. It is now
something that you are not allowed to
change, even if you later find a more
efficient implementation that no
longer involves the use of a
particular field or method.
So all other things being equal, you
shouldn't have any protected members
at all. But that said, if you have too
few, then your class may not be usable
as a super class, or at least not as
an efficient super class. Often you
find out after the fact. My philosophy
is to have as few protected members as
possible when you first write the
class. Then try to subclass it. You
may find out that without a particular
protected method, all subclasses will
have to do some bad thing.
As an example, if you look at
AbstractList, you'll find that there
is a protected method to delete a
range of the list in one shot
(removeRange). Why is that in there?
Because the normal idiom to remove a
range, based on the public API, is to
call subList to get a sub-List,
and then call clear on that
sub-List. Without this particular
protected method, however, the only
thing that clear could do is
repeatedly remove individual elements.
Think about it. If you have an array
representation, what will it do? It
will repeatedly collapse the array,
doing order N work N times. So it will
take a quadratic amount of work,
instead of the linear amount of work
that it should. By providing this
protected method, we allow any
implementation that can efficiently
delete an entire range to do so. And
any reasonable List implementation
can delete a range more efficiently
all at once.
That we would need this protected
method is something you would have to
be way smarter than me to know up
front. Basically, I implemented the
thing. Then, as we started to subclass
it, we realized that range delete was
quadratic. We couldn't afford that, so
I put in the protected method. I think
that's the best approach with
protected methods. Put in as few as
possible, and then add more as needed.
Protected methods represent
commitments to designs that you may
want to change. You can always add
protected methods, but you can't take
them out.
Bill Venners: And protected data?
Josh Bloch: The same thing, but even more. Protected data is even more
dangerous in terms of messing up your
data invariants. If you give someone
else access to some internal data,
they have free reign over it.
Short version: it breaks encapsulation but it's a necessary evil that should be kept to a minimum.
C#:
I use protected for abstract or virtual methods that I want base classes to override. I also make a method protected if it may be called by base classes, but I don't want it called outside the class hierarchy.
You may need them for static (or 'global') attribute you want your subclasses or classes from same package (if it is about java) to benefit from.
Those static final attributes representing some kind of 'constant value' have seldom a getter function, so a protected static final attribute might make sense in that case.
Scott Meyers says don't use protected attributes in Effective C++ (3rd ed.):
Item 22: Declare data members private.
The reason is the same you give: it breaks encapsulations. The consequence is that otherwise local changes to the layout of the class might break dependent types and result in changes in many other places.
I don't use protected attributes in Java because they are only package protected there. But in C++, I'll use them in abstract classes, allowing the inheriting class to inherit them directly.
There are never any good reasons to have protected attributes. A base class must be able to depend on state, which means restricting access to data through accessor methods. You can't give anyone access to your private data, even children.
I recently worked on a project were the "protected" member was a very good idea. The class hiearchy was something like:
[+] Base
|
+--[+] BaseMap
| |
| +--[+] Map
| |
| +--[+] HashMap
|
+--[+] // something else ?
The Base implemented a std::list but nothing else. The direct access to the list was forbidden to the user, but as the Base class was incomplete, it relied anyway on derived classes to implement the indirection to the list.
The indirection could come from at least two flavors: std::map and stdext::hash_map. Both maps will behave the same way but for the fact the hash_map needs the Key to be hashable (in VC2003, castable to size_t).
So BaseMap implemented a TMap as a templated type that was a map-like container.
Map and HashMap were two derived classes of BaseMap, one specializing BaseMap on std::map, and the other on stdext::hash_map.
So:
Base was not usable as such (no public accessors !) and only provided common features and code
BaseMap needed easy read/write to a std::list
Map and HashMap needed easy read/write access to the TMap defined in BaseMap.
For me, the only solution was to use protected for the std::list and the TMap member variables. There was no way I would put those "private" because I would anyway expose all or almost all of their features through read/write accessors anyway.
In the end, I guess that if you en up dividing your class into multiple objects, each derivation adding needed features to its mother class, and only the most derived class being really usable, then protected is the way to go. The fact the "protected member" was a class, and so, was almost impossible to "break", helped.
But otherwise, protected should be avoided as much as possible (i.e.: Use private by default, and public when you must expose the method).
The protected keyword is a conceptual error and language design botch, and several modern languages, such as Nim and Ceylon (see http://ceylon-lang.org/documentation/faq/language-design/#no_protected_modifier), that have been carefully designed rather than just copying common mistakes, don't have such a keyword.
It's not protected members that breaks encapsulation, it's exposing members that shouldn't be exposed that breaks encapsulation ... it doesn't matter whether they are protected or public. The problem with protected is that it is wrongheaded and misleading ... declaring members protected (rather than private) doesn't protect them, it does the opposite, exactly as public does. A protected member, being accessible outside the class, is exposed to the world and so its semantics must be maintained forever, just as is the case for public. The whole idea of "protected" is nonsense ... encapsulation is not security, and the keyword just furthers the confusion between the two. You can help a little by avoiding all uses of protected in your own classes -- if something is an internal part of the implementation, isn't part of the class's semantics, and may change in the future, then make it private or internal to your package, module, assembly, etc. If it is an unchangeable part of the class semantics, then make it public, and then you won't annoy users of your class who can see that there's a useful member in the documentation but can't use it, unless they are creating their own instances and can get at it by subclassing.
In general, no you really don't want to use protected data members. This is doubly true if your writing an API. Once someone inherits from your class you can never really do maintenance and not somehow break them in a weird and sometimes wild way.
I use them. In short, it's a good way, if you want to have some attributes shared. Granted, you could write set/get functions for them, but if there is no validation, then what's the point? It's also faster.
Consider this: you have a class which is your base class. It has quite a few attributes you wan't to use in the child objects. You could write a get/set function for each, or you can just set them.
My typical example is a file/stream handler. You want to access the handler (i.e. file descriptor), but you want to hide it from other classes. It's way easier than writing a set/get function for it.
I think protected attributes are a bad idea. I use CheckStyle to enforce that rule with my Java development teams.
In general, yes. A protected method is usually better.
In use, there is a level of simplicity given by using a protected final variable for an object that is shared by all the children of a class. I'd always advise against using it with primitives or collections since the contracts are impossible to define for those types.
Lately I've come to separate stuff you do with primitives and raw collections from stuff you do with well-formed classes. Primitives and collections should ALWAYS be private.
Also, I've started occasionally exposing public member variables when they are declaired final and are well-formed classes that are not too flexible (again, not primitives or collections).
This isn't some stupid shortcut, I thought it out pretty seriously and decided there is absolutely no difference between a public final variable exposing an object and a getter.
It depends on what you want. If you want a fast class then data should be protected and use protected and public methods.
Because I think you should assume that your users who derive from your class know your class quite well or at least they have read your manual at the function they going to override.
If your users mess with your class it is not your problem. Every malicious user can add the following lines when overriding one of your virtuals:
(C#)
static Random rnd=new Random();
//...
if (rnd.Next()%1000==0) throw new Exception("My base class sucks! HAHAHAHA! xD");
//...
You can't seal every class to prevent this.
Of course if you want a constraint on some of your fields then use accessor functions or properties or something you want and make that field private because there is no other solution...
But I personally don't like to stick to the oop principles at all costs. Especially making properties with the only purpose to make data members private.
(C#):
private _foo;
public foo
{
get {return _foo;}
set {_foo=value;}
}
This was my personal opinion.
But do what your boss require (if he wants private fields than do that.)
I use protected variables/attributes within base classes that I know I don't plan on changing into methods. That way, subclasses have full access to their inherited variables, and don't have the (artificially created) overhead of going through getters/setters to access them. An example is a class using an underlying I/O stream; there is little reason not to allow subclasses direct access to the underlying stream.
This is fine for member variables that are used in direct simple ways within the base class and all subclasses. But for a variable that has a more complicated use (e.g., accessing it causes side effects in other members within the class), a directly accessible variable is not appropriate. In this case, it can be made private and public/protected getters/setters can be provided instead. An example is an internal buffering mechanism provided by the base class, where accessing the buffers directly from a subclass would compromise the integrity of the algorithms used by the base class to manage them.
It's a design judgment decision, based on how simple the member variable is, and how it is expected to be so in future versions.
Encapsulation is great, but it can be taken too far. I've seen classes whose own private methods accessed its member variables using only getter/setter methods. This is overkill, since if a class can't trust its own private methods with its own private data, who can it trust?