I've been looking for a detailed description for how USB protocol and cabling works for a long time with no luck. I am looking for a detailed yet not overcomplicated explanation of how things work on the software and hardware side of USB. Links and explanations would be appreciated. I've really run out of ideas, so it would be great if you can help me out.
This is what I do know:
USB hardware carries 4 lines- 5V power, ground, and 2 full duplex lines.
When connecting, the device can ask for a specified amount of current.
The transfer speeds for USB are quite fast compared to traditional serial connections.
When connecting, a device will output descriptors to the host describing itself. These descriptors will also be used for data.
What I don't know:
How does a program in C/C++ write directly to a USB port? Does it write to an address in the port?
How do some devices describe themselves as HID?
How do drivers work?
Everything else...
Thank you!
Identification
Every device has a (unique) Vendor and Product ID. These are provided (sold) by usb.org to identify a device. You can use a library like libusbx to enumerate all connected devices and select the one with the Vendor and Product ID you are looking for.
HID Descriptors
The point of HID descriptors is actually to do away with drivers. HID descriptors are a universal way of describing your device so you don't need to waste time on a driver for every system/architecture/etc/. (Same concept as the JVM.)
Reports
You will use either the input, output, or feature reports to read or write to your device. You send a stream to your device on the input or feature report. This is typically 8 bytes I believe. Only one of which is a single character you wish to write. The HID descriptor contains all the information you need to put together a report. Although I'm struggling to find a related link to clarify this.
Potential Libraries
In an effort to be open-minded here are all the libraries I am familiar with and some info about them.
libusb-0.1
First off is libusb-0.1. This used to be the go to and was built in to many Linux kernels and Windows I believe. It is very easy to use and there is a lot of documentation. However, the owner never updated and it wasn't edited for many years. It supports only synchronous transfers. (If an error occurs, the program can wait infinitely while it expects a transfer.)
libusbx
Next is libusbx. This is what most people would suggest today and I agree. It was published by those frustrated by the owner of libusb-0.1. The code is much more lightweight, up-to-date, and importantly does not require root privileges like libusb-0.1 and libusb-1.0 (Discussed in a second). It supports synchronous or asynchronous transfers.
libusb-1.0
Then there is libusb-1.0. This was the first update to libusb-0.1 in some number of years. It is not compatible with libusb-0.1. This was published the same day as libusbx as a retaliation (I assume) and an attempt to rectify the lack of updated content and conserve a user-base. It supports synchronous or asynchronous transfers.
hid.h
Finally, there is the hid library. This was built on top of libusb as another layer of abstraction. But honestly, I think it's just really confusing and it just adds more overhead than necessary.
Some Good Resources
Understanding HID Descriptors
Control Message Transfer Documentation (Very Good Link IMO)
Rolling Your Own HID Descriptor
Good Visual of HID Reports for Transfers
Great List of bmRequestType constants (You will need this or similar)
A simple terminal app for speaking with DigiSpark using libusbx and libusb-0.1
I know this isn't exactly what you are looking for, but maybe it will get you started!
This website has a general overview of how USB devices work:
https://www.beyondlogic.org/usbnutshell/usb1.shtml
Particular sections give answers to things from the list of things you don't know yet about USB.
E.g. to find out how USB devices identify themselves, read about USB descriptors:
https://www.beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors
To learn how a C/C++ program can talk to a USB device, see examples on using the libusb library:
https://github.com/libusb/libusb/tree/master/examples
To learn how USB drivers work, see a tutorial from Bootlin:
https://bootlin.com/blog/usb-slides/
Related
I am a physicist, and I had a revelation a few weeks ago about how I might be able to use my personal computer to get much finer control over laboratory experiments than is typically the case. Before I ran off to try this out though, I wanted to check the feasibility with people who have more expertise than myself in such matters.
The idea is to use the i/o ports---VGA, ethernet, speaker jacks, etc.---on the computer to talk directly to the sensors and actuators in the experimental setup. E.g. cut open one side of an ethernet cable (with the other end attached to the computer) and send each line to a different device. I knew a postdoc who did something very similar using a BeagleBone. He wrote some assembly code that let him sync everything with the internal clock and used the GPIO pins to effectively give him a hybrid signal generator/scope that was completely programmable. It seems like the same thing should be possible with a laptop, and this would have the additional benefit that you can do data analysis from the same device.
The main potential difficulty that I foresee is that the hardware on a BeagleBone is designed with this sort of i/o in mind, whereas I expect the hardware on a laptop will probably be harder to control directly. I know for example (from some preliminary investigation, http://ask.metafilter.com/125812/Simple-USB-control-how-to-blink-an-LED-via-code) that USB ports will be difficult to access this way, and VGA is (according to VGA 15 pin port data read and write using Matlab) impossible. I haven't found anything about using other ports like ethernet or speaker jacks, though.
So the main question is: will this idea be feasible (without investing many months for each new variation of the hardware), and if so what type of i/o (ethernet, speaker jacks, etc.) is likely to be the best bet?
Auxiliary questions are:
Where can I find material to learn how I might go about executing this plan? I'm not even sure what keywords to plug in on Google.
Will the ease with which I can do this depend strongly on operating system or hardware brand?
The only cable I can think of for a pc that can get close to this would be a parallel printer cable which is pretty much gone away. It's a 25 wire cable that data is spread across so that it can send more data at the same time. I'm just not sure if you can target a specific line or if it's more of a left to right fill as data is sent.
To use one on a laptop today would definitely be difficult. You won't find any laptops with parallel ports. There are usb to parallel cables and serial to parallel cables but I would guess that the only control you would have it to the usb or serial interface and not the parallel.
As for Ethernet, you have 4 twisted pair with only 2 pair in use and 2 pair that are extra.
There's some hardware that available called Zwave that you might want to look into. Zwave will allow you to build a network of devices that communicate in a mesh. I'm not sure what kind of response time you need.
I actually just thought of something that might be a good solution. Check out security equipment. There's a lot of equipment available for pc's that monitor doors, windows, sensors, etc. That industry might what your looking for.
I think the easiest way would be to use the USB port as a Human Interface Device (HID) and using a custom built PIC program and a PIC that includes the USB functionality to encode the data to be sent to the computer and in that way be able to program it independently from the OS due to the fact that all mayor OS have the HID USB functionality.
Anyways if you used your MIC/VGA/HDMI whatever other port you still need a device to encode the data or transmit it, and another program inside the computer to decode that data being sent.
And remember that different hardware has different software (drivers) that might decode the raw data in other odd ways rendering your IO hardware dependent.
Hope this helps, but thats why the USB was invented in the first place to make it hardware and os independent.
In the days of parallel printers one used to be able to send a command on LPT1 and receive back standard info such as life count etc.
Now, with USB devices, have we lost that capability? Or is there still a way to read the info?
I assume your question is Windows centric. On some devices the manufacturer (like Epson and Star for example) provide utilities that let you access the device as a 'legacy serial' interface. It's still USB but the software gives you a virtual serial port you can talk to it with. I've been doing some digging trying to figure out what features are exposed by the low level drivers, but haven't had much luck there as Windows drivers really aren't my forte.
In the windows printers you get to select from a variety of ports. For parallel and serial you can open them as \.\LPT1 or \.\COM1 etc and get bi-directional behaviour that way. But for USB the ports are often USB001, and trying to open \.\USB001 for example doesn't seem to work. Such an approach might work, if you can figure out exactly what name to open. But that name will probably have a big ugly GUID in it if the information you see in winobj is anything to go by...
If you come up with any better answers please let me know!
As a hobby project to keep myself out of trouble, I'd like to build a little programmer timer device. It will basically accept a program which is a list of times and then count down from each time.
I'd like to use a C or Java micro controller. I have used BASIC in the past to make a little autonomous robot, so this time around I'd like something different.
What micro controller and display would you recommend? I am looking to keep it simple, so the program would be loaded into memory via computer (serial is ok, but USB would make it easier)
Just use a PIC like 16F84 or 16F877 for this. It is more than enough.
As LCD use a 16 x 2 LCD. It is easy to use + will give a nice look to your project.
LCD
The language is not a matter. You can use PIC C, Micro C or any thing you like. The LCD's interface is really easy to drive.
As other components you will just need the crystal and 2 capacitors as oscillator + pull up resister. The rest of the components depend on the input method that you are going to use to set the times.
If you are using a computer to load the list then you will need additional circuit to change the protocols. Use MAX 232 to do that. If you want to use USB, you need to go ahead and use a PIC with USB support. (18F series)
(source: sodoityourself.com)
This is a set of nice tutorials you can use. You can purchase the products from them as well. I purchased once from them.
I would go with the msp430. An ez430 is $20 and you can get them at digikey or from ti directly, then sets of 3 microcontroller boards for $10 after that. llvm and gcc (and binutils) compiler support. Super simple to program, extremely small and extremely low power.
There are many ways to do this, and a number of people have already given pretty good suggestions AVR or PIC are good starting points for a microcontroller to work with that doesn't require too much in the way of complicated setup (hardware & software) or expense (these micros are very cheap). Honestly I'm somewhat surprised that nobody has mentioned Arduino here yet, which happens to have the advantage of being pretty easy to get started with, provides a USB connection (USB->Serial, really), and if you don't like the board that the ATMega MCU is plugged into, you can later plug it in wherever you might want it. Also, while the provided programming environment provides some high level tools to easily protype things you're still free to tweak the registers on the device and write any C code you might want to run on it.
As for an LCD display to use, I would recommend looking for anything that's either based on an HD44780 or emulates the behavior of one. These will typically use a set of parallel lines for talking to the display, but there are tons code examples for interfacing with these. In Arduino's case, you can find examples for this type of display, and many others, on the Arduino Playground here: http://www.arduino.cc/playground/Code/LCD
As far as a clock is concerned, you can use the built-in clock that many 8-bit micros these days provide, although they're not always ideal in terms of precision. You can find an example for Arduino on doing this sort of thing here: http://www.arduino.cc/playground/Code/DateTime. If you want something that might be a little more precise you can get a DS1307 (Arduino example: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1191209057/0).
I don't necessarily mean to ram you towards an Arduino, since there are a huge number of ways to do this sort of thing. Lately I've been working with 32-bit ARM micros (don't do that route first, much steeper learning curve, but they have many benefits) and I might use something in that ecosystem these days, but the Arduino is easy to recommend because it's relatively inexpensive, there's a large community of people out there using it, and chances are you can find a code example for at least part of what you're trying to do. When you need something that has more horsepower, configuration options, or RAM, there are options out there.
Here are a few places where you can find some neat hardware (Arduino-related and otherwise) for projects like the one you're describing:
SparkFun Electronics
Adafruit Industries
DigiKey (this is a general electronics supplier, they have a bit of everything)
There are certainly tons more, though :-)
I agree with the other answers about using a PIC.
The PIC16F family does have C compilers available, though it is not ideally suited for C code. If performance is an issue, the 18F family would be better.
Note also that some PICs have internal RC oscillators. These aren't as precise as external crystals, but if that doesn't matter, then it's one less component (or three with its capacitors) to put on your board.
Microchip's ICD PIC programmer (for downloading and debugging your PIC software) plugs into the PC's USB port, and connects to the microcontroller via an RJ-11 connector.
Separately, if you want the software on the microcontroller to send data to the PC (e.g. to print messages in HyperTerminal), you can use a USB to RS232/TTL converter. One end goes into your PC's USB socket, and appears as a normal serial port; the other comes out to 5 V or 3.3 V signals that can be connected directly to your processor's UART, with no level-shifting required.
We've used TTL-232R-3V3 from FDTI Chip, which works perfectly for this kind of application.
There are several ways to do this, and there is a lot of information on the net. If you are going to use micro controllers then you might need to invest in some programming equipment for them. This won't cost you much though.
Simplest way is to use the sinus wave from the power grid. In Europe the AC power has a frequency of 50Hz, and you can use that as the basis for your clock signal.
I've used Atmel's ATtiny and ATmega, which are great for programming simple and advanced projects. You can program it with C or Assembly, there are lots of great projects for it on the net, and the programmers available are very cheap.
Here is a project I found by Googling AVR 7 segment clock.
A second vote for PIC. Also, I recommend the magazine Circuit Cellar Ink. Some technical bookstores carry it, or you can subscribe: http://www.circellar.com/
PIC series will be good, since you are creating a timer, I recommend C or Assembly (Assembly is good), and use MPLAB as the development environment. You can check how accurate your timer with 'Stopwatch' in MPLAB. Also PIC16F877 has built in Hardware Serial Port. Also PIC16F628 has a built in Hardware serial port. But PIC16F877 has more ports. For more accurate timers, using higher frequency oscillators is recommended.
I have been doing desktop programming for a while but want to get started with interfacing with hardware. Specifically, I would like to learn how to use serial ports to take an external event and alert my application (so for example, I can turn on a camera when motion is detected by an external sensor).
Please tell me how to get started, what type of sensors, what books (or online resources) are available. I tried Bing and Google but I need more pointers.
Serial interfaces are fairly simple to work with. But they do require some sort of a decoder on the other end (such as a UART.) Another option would be using the parellel port. The advantage of using a parallel port is you start with a break out of the I/O pins. You can typically control 8 devices with a very simple to build interface.
Most platforms gave a simple way to gain access to the LPT ports without too much effort and again they are very easy to interface.
Quick results for tutorials...
Parallel Port Programming
Parallel port output circuit
A tutorial on Parallel port interfacing
LPT Port Info...
Parallel Port (PC)
LapLink Cable
Printer Cable
IEEE 1284-B
IEEE 1284-C
Centronics (36 pin)
I would recommend you the book Linux Device Drivers 3rd Edition
Although I haven't programmed any hardware interface yet, I think this book will get you ready to start hacking.
There really aren't a lot of one-size-fits-all tips for this. You're going to need to look at the documentation for your device, it should specify the protocol of what it will send over the serial port and what commands you can send in return.
Make sure you understand things like what means to have a text encoding like ASCII or UTF8. Most any device that sends and expects text will use an ASCII encoding.
I'm not sure what OS or language you're using, but be aware that you're sending raw binary data through a serial port, so for example if you're using C# you would want to wrap your serial port data stream with a StreamWriter or StreamReader with the correct text encoding.
If you can find an old modem online or craigslist that might be a good start. The serial comms specs for those are pretty well documented.
After that I would just start investigating things that you are interested in - your interest in the project will drive the learning and progress more than anything IMO.
I think this site has some fun things to try:
http://blogs.msdn.com/coding4fun/
You should get a data acquisition hardware and interface with that.
http://www.dataq.com/products/hardware/
If you just want to learn how to use the serial port, get another PC with HyperTerminal (included free with Windows), and use it to send and receive data from your development machine over the serial port. This will give you very manual control over what's sent to your development box, so you can get some confidence that what you're reading and writing is correct. Once you've got the basics of serial I/O down, you can move on to your camera/motion sensor/etc.
You don't mention what OS or development environment you're using, but in VS 2005/.NET 2.0, there is actually a SerialPort class. If you're doing raw Windows API, MSDN has an article at http://msdn.microsoft.com/en-us/library/ms810467.aspx which covers the basics. If you're using another OS, sorry I'm not that familiar (I know, boo hiss on me).
The most important thing is just remember to set your communication parameters on both sides of the connection the same. There are four parameters that govern if both sides can understand each other : baud rate, bits-per-byte (usually 8), parity bits (even parity, odd parity, none, or always 1 or 0), and stop bits. HyperTerminal also lists a "Flow Control" option, I recommend setting it to "None" until you get comfortable. Xon/Xoff flow control is a fairly common way of making the other side pause while you process a bufferfull of data.
Buy a microcontroller and build a simple robot, cnc mill or something. Atmel AVR and/or PIC is the most common from what i understand.
Also gives a lot of electronics experience
I have been tasked to write a device driver for an embedded device which will communicate with the micro controller via the SPI interface. Eventually, the USB interface will be used to download updated code externally and used during the verification phase.
My question is, does anyone know of a good reference design or documentation or online tutorial which covers the implementation/design of the USB protocol stack/device driver within an embedded system? I am just starting out and reading through the 650 page USB v2.0 spec is a little daunting at the moment.
Just as a FYI, the micro controller that I am using is a Freescale 9S12.
Mark
Based upon goldenmean's (-AD) comments I wanted to add the following info:
1) The embedded device uses a custom executive and makes no use of a COTS or RTOS.
2) The device will use interrupts to indicate data is ready to be retrieved from the device.
3) I have read through some of the docs regarding Linux, but since I am not at all familiar with Linux it isn't very helpful at the moment (though I am hoping it will be very quickly).
4) The design approach, for now at least, it to write a device driver for the USB device then a USB protocol layer (I/O) would reside on top of the device driver to interpret the data. I would assume this would be the best approach, though I could be wrong.
Edit - A year later
I just wanted to share a few items before they vanish from my mind in case I never work on a USB device again. I ran into a few obstacles when developing code and getting it up and running for the first.
The first problem I ran into was that when the USB device was connected to the Host (Windows in my case) was the host issues a Reset request. The USB device would reset and clear the interrupt enable flags. I didn't read the literature enough to know this was happening, thus I was never receiving the Set-Up Request Interrupt. It took me quite a while to figure this out.
The second problem I ran into was not handling the Set-Up Request for Set_Configuration properly. I was handling it, but I was not processing the request correctly in that the USB device was not sending an ACK when this Set-Up Request came in. I eventually found this out by using a hardware USB protocol analyzer.
There were other issues that I ran into, but these were the two biggest ones that took me quite a while to figure out. The other issue I had to worry about is big-endian and little-endian, Freescale 9S12 vs USB data format (Intel), respectively.
I ended up building the USB device driver similar to UART device drivers I had done in the past. I have posted the code to this at the following URL.
http://lordhog.wordpress.com/2010/12/13/usb-drive
I tend to use structures a lot, so people may not like them since they are not as portal as using #defines (e.g., MAX3420_SETUP_DATA_AVAIL_INT_REQR 0x20), but I like them since it makes the code more readable for me. If anyone has questions regarding it please feel free to e-mail and I can try to give some insight to it. The book "USB Complete: The Developer's Guide" was helpful, so long as you knew what areas to concentrate on. This was a simple application and only used low-speed USB.
While writing a device driver for any interface (USB, Parallel port, etc...) the code needed to be developed would depend upon whether there is any Operating System(OS), RTOS running on that Processor/Micro controller.
e.g. if thats going to run say WinCE - It will have its own Driver development Kit , and steps to be followed in the device driver development. Same for any other OS like Linux, symbian.
If its going to be a plain firmware code(No OS) which is going to control the processor/microcontroller, then it's a different situation altogether.
So based on either of the above situation u are in, one needs to read & understand:-
1.) The Hardware Specification of the processor/micro controller development board - Register files, ports, memory layout, etc.
2.) USB spec
3.) Couple of pointers i found quickly. Google shud be ur friend!
http://www.lrr.in.tum.de/Par/arch/usb/usbdoc/ - Linux USB device driver
http://www.microsoft.com/technet/archive/wce/support/usbce.mspx
-AD
I've used an earlier edition of USB Complete by Jan Axelson. Indeed very complete.
From the editorial review:
Now in its fourth edition, this developer's guide to the Universal Serial Bus (USB) interface covers all aspects of project development, such as hardware design, device firmware, and host application software.
I'm curious, why did you pick the 9S12? I used it at a previous job, and was not pleased.
It had lousy gcc support so we used Metrowerks
which may have been okay for C, but often generated buggy C++
had a lousy IDE with binary project files!
The 9s12 was also slow, a lot of instructions executed in 5 cycles.
Not very power efficient, either.
no barrel shifter, made operations that are common in embedded code slow
not that cheap.
About the only thing I dislike more is an 8051. I'm using an ARM CortexM3 at my current job, it's better than a 9S12 in every way (faster clock, more work done per clock, less power consumption, cheaper, good gcc support, 32-bit vs. 16-bit).
I don't know which hardware you're planning to use but assuming that's flexible, STMicro offers a line of microcontrollers with USB/SPI support and a library of C-code that can be used with their parts. -- I've used their ARM7 series micros for years with great success.
Here is an excellent site maintained by Jonathan Valvano, a professor at the University of Texas. He teaches four courses over there (three undergraduate, one graduate), all are about using a 9S12 microcontroller. His site contains all the lecture notes, lab manuals, and more importantly, starter files, that he uses for all his classes.
The website looks like it's from the 90's, but just dig around a bit and you should find everything you need.
users.ece.utexas.edu/~valvano/
Consider AVR for your next MCU project because of it's wonderful LUFA and V-USB libraries.
I'm working on a project using the Atmel V71. The processor is very powerful and among lot's of high end connectivity offered on chip is a USB engine that will do device or host modes for 480 Mhz or 48Mhz (not USB 3.0). The tools are free and come with a number of host and device USB example projects with all the USB stack code right there. It supports 10 end points and all the transfers are done via DMA so you have most of the processor horsepower available for other tasks. The Atmel USB stack works without needing an RTOS