Get generic type using Mono embedded - mono

How to I create a generic List<String> object using mono embedded calls? I can get List's MonoClass:
MonoClass* list = mono_class_from_name(mscorlibimage,
"System.Collections.Generic", "List`1");
and I see in docs that there's
mono_class_from_generic_parameter(MonoGenericParam*...)
but I have no idea where and how to get the MonoGenericParam. Or perhaps I need to construct a valid name for mono_class_from_name? I think this can be a bit slower but I'd accept that for now. I tried
MonoClass* list = mono_class_from_name(mscorlib::get().image, "System.Collections.Generic", "List`1[System.String]");
but no luck.
UPDATE:
OK I found a way. Still I'd like to see if there's an official way of doing thing, as this hack looks too dirty to me.
Basically I searched mono sources for generic methods and found mono_class_bind_generic_parameters (see https://raw.github.com/mono/mono/master/mono/metadata/reflection.c). I had to link to libmono-2.0.a in addition to .so to use it. But it worked:
extern "C" MonoClass*
mono_class_bind_generic_parameters(MonoClass *klass,
int type_argc, MonoType **types, bool is_dynamic);
MonoClass* list = mono_class_from_name(mscorlib::get().image,
"System.Collections.Generic", "List`1");
MonoClass* strcls = mono_class_from_name(mscorlib::get().image, "System", "String");
printf("str class: %p\n", strcls);
MonoType* strtype = mono_class_get_type(strcls);
printf("str type: %p\n", strtype);
MonoType* types[1];
types[0] = strtype;
list = mono_class_bind_generic_parameters(list, 1, types, false);
printf("list[string] class: %p\n", list);
MonoObject* obj = mono_object_new(domain, list);
printf("list[string] created: %p\n", obj);
I suppose I can take sources (UPDATE: hardly so) of these methods and reimplement them (they parse metadata, etc) - if I don't want to link to .a - but I wonder if there's a simpler way. Mono docs just don't answer anything, as they use to.
UPDATE: found this thread: http://mono.1490590.n4.nabble.com/Embedded-API-Method-signature-not-found-with-generic-parameter-td4660157.html which seems to say that no embedded API exists for what I want (i.e. they do not bother to expose mono_class_bind_generic_parameters). Can someone prove that it's correct? With that method, by the way, I get MonoReflectionType* and no way to get back MonoType* from it - while it is as easy to as getting ->type from the structure - which is internal and access via functions to it is internal. Mono Embedded should be called "Mono Internal" instead.
UPDATE: another method is to hack mono_class_inflate_generic_type using copy of internal structures:
struct _MonoGenericInst {
uint32_t id; /* unique ID for debugging */
uint32_t type_argc : 22; /* number of type arguments */
uint32_t is_open : 1; /* if this is an open type */
MonoType *type_argv [1];
};
struct _MonoGenericContext {
/* The instantiation corresponding to the class generic parameters */
MonoGenericInst *class_inst;
/* The instantiation corresponding to the method generic parameters */
void *method_inst;
};
_MonoGenericInst clsctx;
clsctx.type_argc = 1;
clsctx.is_open = 0;
clsctx.type_argv[0] = mono_class_get_type(System::String::_SClass());
MonoGenericContext ctx;
ctx.method_inst = 0;
ctx.class_inst = &clsctx;
MonoType* lt = mono_class_inflate_generic_type(
mono_class_get_type(System::Collections::Generic::List<System::String>::_SClass()),
&ctx);
This doesn't require static link to .a but is even a worse hack. And mono_class_inflate_generic_type is marked as DEPRECATED - so, if this is deprecated, then which is the modern one?

In many cases a mono embedding conundrum can be resolved by using a managed helper method. This is the approach used here.
So we have:
A managed helper method that accepts a generic type definition and an array of generic parameter types.
A client method that accepts a generic type definition name (e.g.: System.Collections.Generic.List`1), an assembly image that contains the type (or use an Assembly Qualified name) and an object of the required generic parameter type. We retrieve the underlying monoType for the object.
Note that when passing type info into the managed layer it has to be an instance of MonoReflectionType as obtained from mono_type_get_object().
The managed helper method is trivial and does the actual instantiation:
public static object CreateInstanceOfGenericType(Type genericTypeDefinition, Type[] parms)
{
// construct type from definition
Type constructedType = genericTypeDefinition.MakeGenericType(parms);
// create instance of constructed type
object obj = Activator.CreateInstance(constructedType);
return obj;
}
The helper code is called, in this case, from Objective-C:
+ (id)createInstanceOfGenericTypeDefinition:(char *)genericTypeDefinitionName monoImage:(MonoImage *)monoImage itemObject:(id)itemObject
{
// get the contained item monoType
MonoType *monoType = [DBType monoTypeForMonoObject:[itemObject monoObject]];
MonoReflectionType *monoReflectionType = mono_type_get_object([DBManagedEnvironment currentDomain], monoType);
// build a System.Array of item types
DBManagedObject *argType = [[DBManagedObject alloc] initWithMonoObject:(MonoObject *)monoReflectionType];
NSArray *argTypes = #[argType];
DBSystem_Array *dbsAargTypes = [argTypes dbsArrayWithTypeName:#"System.Type"];
// get the generic type definition
//
// Retrieves a MonoType from given name. If the name is not fully qualified,
// it defaults to get the type from the image or, if image is NULL or loading
// from it fails, uses corlib.
// This is the embedded equivalent of System.Type.GetType();
MonoType *monoGenericTypeDefinition = mono_reflection_type_from_name(genericTypeDefinitionName, monoImage);
// create instance using helper method
MonoMethod *helperMethod = [DBManagedEnvironment dubrovnikMonoMethodWithName:"CreateInstanceOfGenericType" className:"Dubrovnik.FrameworkHelper.GenericHelper" argCount:2];
void *hargs [2];
hargs[0] = mono_type_get_object([DBManagedEnvironment currentDomain], monoGenericTypeDefinition);
hargs[1] = [dbsAargTypes monoArray]; // a monoArray *
MonoObject *monoException = NULL;
MonoObject *monoObject = mono_runtime_invoke(helperMethod, NULL, hargs, &monoException);
if (monoException) NSRaiseExceptionFromMonoException(monoException);
id object = [System_Object subclassObjectWithMonoObject:monoObject];
return object;
}
For the complete code see Dubrovnik on Github

Related

How to pass a reference to a void* from C++/CLI to a native C function

I'm trying to call a native Windows API from managed C++/CLI. One of the arguments is a void**. The idea is that the function will allocate a memory structure and return a void pointer to the caller, which should be passed back to the API on the next call. So I need to allocate storage for a pointer on the managed side and pass a reference to the C API. I can't figure out how to do this.
I've tried declaring a void * in the caller and passing a reference via various operators: &, internal_ptr<>, pin_ptr<>. I did the same with an IntPtr. I get errors saying the compiler can't convert this to a void**.
Here's one attempt using IntPtr and pin_ptr. I get the following compile error on line 28 (the line that declares the pin_ptr):
E0144 a value of type "interior_ptr<System::IntPtr>" cannot be used to initialize an entity of type "cli::pin_ptr<void *>"
#include <msclr\marshal.h>
using namespace msclr::interop;
using namespace System;
namespace CLRStorage
{
public ref class CompoundFile
{
private:
String ^ pathname;
IntPtr pRootStorage;
public:
CompoundFile CompoundFile::Create(String^ path)
{
STGOPTIONS stgOptions;
stgOptions.usVersion = 1;
stgOptions.reserved = 0;
stgOptions.ulSectorSize = 4096;
stgOptions.pwcsTemplateFile = NULL;
auto cf = gcnew CompoundFile();
cf->pathname = path;
marshal_context^ context = gcnew marshal_context();
pin_ptr<void*> ppRootStorage = &cf->pRootStorage;
StgCreateStorageEx(
context->marshal_as<WCHAR*>(path),
STGM_READWRITE & STGM_CREATE,
STGFMT_DOCFILE,
0,
&stgOptions,
NULL,
IID_IStorage,
ppRootStorage);
}
};
}
IntPtr can be converted to and from void*, but it isn't the same type.
Since the parameter is out-only, the simple solution is just to use a temporary:
void* pRootStorage;
StgCreateStorageEx(
context->marshal_as<WCHAR*>(path),
STGM_READWRITE & STGM_CREATE,
STGFMT_DOCFILE,
0,
&stgOptions,
NULL,
IID_IStorage,
&pRootStorage);
cf->pRootStorage = IntPtr(pRootStorage);
This will actually be a tiny bit faster as well, because no pinning is needed.
You also have a separate problem with bad member function syntax. You want
static CompoundFile^ Create(String^ path)
instead of
CompoundFile CompoundFile::Create(String^ path)
and don't forget to
return cf;
Then, marshal_context is not a ref class, so this line is wrong:
marshal_context^ context = gcnew marshal_context();
Instead use
marshal_context context;
and since it is not a pointer,
context.marshal_as<WCHAR*>(path)

Intellisense JSDoc for Mixins and/or Factory Functions

My Problem
I'm currently using Visual Code Studio, the lastest version. I'm trying to get the intellisense to show up for the methods on the instance created by a factory function. The methods are going to be applied via object composition (so added directly as properties on the object).
so the function that acts as a constructore basically returns:
function makeWrappedObj() {
var obj = { /* random data */ }; // Then add methods to obj
Object.keys(methods).forEach(key => a[key] = methods[key]; );
return obj;
}
var methods = {
/**
* Yay documentation
* #returns {Object}
*/
method1: function() { return null; }
};
var instance = makeWrappedObj();
instance.method1( // What documentation to show up here
instance. // and here
Is the basic idea. Here's someone doing something similar. I'll address that in the third possible solution.
Solutions I've tried
1) #class on makeWrappedObj I think only works if you attach methods on to makeWrappedObj.prototype which is not what I'm doing so that doesn't work. Unless I'm misunderstanding something.
2) #namespace solution
/* #namespace ClassName */
/* #returns {ClassName}
function createWrappedObj() {
var obj = { /* random data */ }; // Then add methods to obj
Object.keys(methods).forEach(key => a[key] = methods[key]; );
return obj;
}
var methods = {
/**
* Currently the soultion I'm using
* #memberof ClassName
* #param {number} a
**/
method1: function (a) {}
};
var instance = makeWrapperObj();
instance.method1( // Only shows documentation here
So this sort of works. The two problems are that:
methods on instances only get documentation when you type out the full instance.method( and not in the instance. case--not really a big deal
if you have a method name that is the same as an in-built function, eg. toString, instance.toString( will block any documentation you have from showing and show the native toString default documentation instaed.
3) #typedef like the link above.
/** Can be placed anywhere
* #typedef {ClassName}
* #property {function} method1
* dunno how to document arguments with this method
* but it gets the intellisense menu to pop up for "instance." after dot
*/
/* #returns {ClassName} */
function createdWrappedObject() {
var obj = { /* random data */ }; // Then add methods to obj
Object.keys(methods).forEach(key => a[key] = methods[key]; );
return obj;
}
var methods = {
method1: function (a) {}
};
var instance = makeWrappedObj();
instance. // Yay
instance.method1( // Doesn't work
Has the benefit of showing up when one types instance. however has a few disadvantages
Do not know how to specify arguments passed to method1. Maybe it's not possible.
#typedef requires all documentations to be specified in its own comment block. So I have to be redundant between specific documentation on the methods and the typedef
loses the docummentation once you write out the entire method up until the open paren. Sort of workable...
Note: I am willing to just assign all the methods manually one by one instead of doing a foreach on all the keys of the methods mixin.
Also I do not know how to specify the parameters for a function passed as a. This should be possible since Array.map( specifies three arguments for its function call.
The goal is to get documentation when someone imports this as a library with require, or just includes it as a library in browser side script.

Accessing a C/C++ structure of callbacks through a DLL's exported function using JNA

I have a vendor supplied .DLL and an online API that I am using to interact with a piece of radio hardware; I am using JNA to access the exported functions through Java (because I don't know C/C++). I can call basic methods and use some API structures successfully, but I am having trouble with the callback structure. I've followed the TutorTutor guide here and also tried Mr. Wall's authoritative guide here, but I haven't been able to formulate the Java side syntax for callbacks set in a structure correctly.
I need to use this exported function:
BOOL __stdcall SetCallbacks(INT32 hDevice,
CONST G39DDC_CALLBACKS *Callbacks, DWORD_PTR UserData);
This function references the C/C++ Structure:
typedef struct{
G39DDC_IF_CALLBACK IFCallback;
//more omitted
} G39DDC_CALLBACKS;
...which according to the API has these Members (Note this is not an exported function):
VOID __stdcall IFCallback(CONST SHORT *Buffer, UINT32 NumberOfSamples,
UINT32 CenterFrequency, WORD Amplitude,
UINT32 ADCSampleRate, DWORD_PTR UserData);
//more omitted
I have a G39DDCAPI.java where I have loaded the DLL library and reproduced the API exported functions in Java, with the help of JNA. Simple calls to that work well.
I also have a G39DDC_CALLBACKS.java where I have implemented the above C/C++ structure in a format works for other API structures. This callback structure is where I am unsure of the syntax:
import java.util.Arrays;
import java.util.List;
import java.nio.ShortBuffer;
import com.sun.jna.Structure;
import com.sun.jna.platform.win32.BaseTSD.DWORD_PTR;
import com.sun.jna.win32.StdCallLibrary.StdCallCallback;
public class G39DDC_CALLBACKS extends Structure {
public G39DDC_IF_CALLBACK IFCallback;
//more omitted
protected List getFieldOrder() {
return Arrays.asList(new String[] {
"IFCallback","DDC1StreamCallback" //more omitted
});
}
public static interface G39DDC_IF_CALLBACK extends StdCallCallback{
public void invoke(ShortBuffer _Buffer,int NumberOfSamples,
int CenterFrequency, short Amplitude,
int ADCSampleRate, DWORD_PTR UserData);
}
}
Edit: I made my arguments more type safe as Technomage suggested. I am still getting a null pointer exception with several attempts to call the callback. Since I'm not sure of my syntax regarding the callback structure above, I can't pinpoint my problem in the main below. Right now the relevant section looks like this:
int NumberOfSamples=65536;//This is usually 65536.
ShortBuffer _Buffer = ShortBuffer.allocate(NumberOfSamples);
int CenterFrequency=10000000;//Specifies center frequency (in Hz) of the useful band
//in received 50 MHz wide snapshot.
short Amplitude=0;//The possible value is 0 to 32767.
int ADCSampleRate=100;//Specifies sample rate of the ADC in Hz.
DWORD_PTR UserData = null;
G39DDC_CALLBACKS callbackStruct= new G39DDC_CALLBACKS();
lib.SetCallbacks(hDevice,callbackStruct,UserData);
//hDevice is a handle for the hardware device used-- works in other uses
//lib is a reference to the library in G39DDCAPI.java-- works in other uses
//The UserData is a big unknown-- I don't know what to do with this variable
//as a DWORD_PTR
callbackStruct.IFCallback.invoke(_Buffer, NumberOfSamples, CenterFrequency,
Amplitude, ADCSampleRate, UserData);
EDIT NO 2:
I have one callback working somewhat, but I don't have control over the buffers. More frustratingly, a single call to invoke the method will result in several runs of the custom callback, usually with multiple output files (results vary drastically from run to run). I don't know if it is because I am not allocating memory correctly on the Java side, because I cannot free the memory on the C/C++ side, or because I have no cue on which to tell Java to access the buffer, etc. Relevant code looks like:
//before this, main method sets library, starts DDCs, initializes some variables...
//API call to start IF
System.out.print("Starting IF... "+lib.StartIF(hDevice, Period)+"\n")
G39DDC_CALLBACKS callbackStructure = new G39DDC_CALLBACKS();
callbackStructure.IFCallback = new G39DDC_IF_CALLBACK(){
#Override
public void invoke(Pointer _Buffer, int NumberOfSamples, int CenterFrequency,
short Amplitude, int ADCSampleRate, DWORD_PTR UserData ) {
//notification
System.out.println("Invoked IFCallback!!");
try {
//ready file and writers
File filePath = new File("/users/user/G39DDC_Scans/");
if (!filePath.exists()){
System.out.println("Making new directory...");
filePath.mkdir();
}
String filename="Scan_"+System.currentTimeMillis();
File fille= new File("/users/user/G39DDC_Scans/"+filename+".txt");
if (!fille.exists()) {
System.out.println("Making new file...");
fille.createNewFile();
}
FileWriter fw = new FileWriter(fille.getAbsoluteFile());
//callback body
short[] deBuff=new short[NumberOfSamples];
int offset=0;
int arraySize=NumberOfSamples;
deBuff=_Buffer.getShortArray(offset,arraySize);
for (int i=0; i<NumberOfSamples; i++){
String str=deBuff[i]+",";
fw.write(str);
}
fw.close();
} catch (IOException e1) {
System.out.println("IOException: "+e1);
}
}
};
lib.SetCallbacks(hDevice, callbackStructure,UserData);
System.out.println("Main, before callback invocation");
callbackStructure.IFCallback.invoke(s_Pointer, NumberOfSamples, CenterFrequency, Amplitude, ADCSampleRate, UserData);
System.out.println("Main, after callback invocation");
//suddenly having trouble stopping DDCs or powering off device; assume it has to do with dll using the functions above
//System.out.println("StopIF: " + lib.StopIF(hDevice));//API function returns boolean value
//System.out.println("StopDDC2: " + lib.StopDDC2( hDevice, Channel));
//System.out.println("StopDDC1: " + lib.StopDDC1( hDevice, Channel ));
//System.out.println("test_finishDevice: " + test_finishDevice( hDevice, lib));
System.out.println("Program Exit");
//END MAIN METHOD
You need to extend StdCallCallback, for one, otherwise you'll likely crash when the native code tries to call the Java code.
Any place you see a Windows type with _PTR, you should use a PointerType - the platform package with JNA includes definitions for DWORD_PTR and friends.
Finally, you can't have a primitive array argument in your G39DDC_IF_CALLBACK. You'll need to use Pointer or an NIO buffer; Pointer.getShortArray() may then be used to extract the short[] by providing the desired length of the array.
EDIT
Yes, you need to initialize your callback field in the callbacks structure before passing it into your native function, otherwise you're just passing a NULL pointer, which will cause complaints on the Java or native side or both.
This is what it takes to create a callback, using an anonymous instance of the declared callback function interface:
myStruct.callbackField = new MyCallback() {
public void invoke(int arg) {
// do your stuff here
}
};

Creating Lua globals in Objective C/C from userdata

I am working on a library to allow Lua (5.2) scripting of games in iOS 5.x. I have created a class and added bindings to allow it to be created and accessed form Lua. The C initializer method called from Lua is given below:
static int newGeminiObject(lua_State *L){
GeminiObject *go = [[GeminiObject alloc] initWithLuaState:L];
GeminiObject **lgo = (GeminiObject **)lua_newuserdata(L, sizeof(GeminiObject *));
*lgo = go;
luaL_getmetatable(L, GEMINI_OBJECT_LUA_KEY);
lua_setmetatable(L, -2);
lua_newtable(L);
lua_setuservalue(L, -2);
NSLog(#"New GeminiObject created");
// add this new object to the globall list of objects
[[Gemini shared].geminiObjects addObject:go];
return 1;
}
This assigns a metatable which is set up elsewhere to provide access to various methods. Additionally, it attaches a table as a uservalue to allow script code to assign attributes to the objects.
I can create these objects in Lua scripts with no problem:
require "gemini"
x = gemini.new()
x:addEventListener("touch", objectTouched)
Here objectTouched is a a Lua method defined elsewhere that handles a touch event. Here addEventListener binds it to touch events.
These objects work just fine. When I attempt to create one from C, however, I am running into problems. I can create the object, but trying to assign it to a global and then invoke it in a script fails.
The following C code runs
-(void) addRuntimeObject {
GeminiObject *rt = [[GeminiObject alloc] initWithLuaState:L];
GeminiObject **lruntime = (GeminiObject **)lua_newuserdata(L, sizeof(GeminiObject *));
*lruntime = rt;
// set the metatable - effectively declaring the type for this object
luaL_getmetatable(L, GEMINI_OBJECT_LUA_KEY);
lua_setmetatable(L, -2);
// add a table to hold anything the user wants to add
lua_newtable(L);
lua_setuservalue(L, -2);
// create an entry in the global table
lua_setglobal(L, "Runtime");
// empty the stack
lua_pop(L, lua_gettop(L));
}
This should define a global named "Runtime". Trying to access this variable from a script like this
Runtime:addEventListener("enterFrame", enterFrame)
Results in the following error:
attempt to index global 'Runtime' (a userdata value)
It is a userdata value, but this doesn't seem to matter when I create one in Lua directly. The metatable binding provides access to the methods and metamethods. Again, this works fine if the object is created from Lua, just not when it is created in C.
Any ideas as to what I'm doing wrong here, or what the correct way to make a global from userdata is?
EDIT
Based on comments below regarding confusion about GEMINI_OBJECT_LUA_KEY, I thought I would list the code that is actually used in the binding:
static const struct luaL_Reg geminiObjectLib_f [] = {
{"new", newGeminiObject},
{NULL, NULL}
};
static const struct luaL_Reg geminiObjectLib_m [] = {
{"addEventListener", addEventListener},
{"__gc", geminiObjectGC},
{"__index", l_irc_index},
{"__newindex", l_irc_newindex},
{NULL, NULL}
};
int luaopen_geminiObjectLib (lua_State *L){
// create the metatable and put it into the registry
luaL_newmetatable(L, GEMINI_OBJECT_LUA_KEY);
lua_pushvalue(L, -1); // duplicates the metatable
luaL_setfuncs(L, geminiObjectLib_m, 0);
// create a table/library to hold the functions
luaL_newlib(L, geminiObjectLib_f);
NSLog(#"gemini lib opened");
return 1;
}
This code registers the library of functions (not show here) that provide the methods and metamethods for the GeminiObjects. The call to luaL_newmetatable creates a new metatable and associates it in the registry with the key GEMINI_OBJECT_LUA_KEY. GEMINI_OBJECT_LUA_KEY is just a unique string defined in the header. luaL_setfuncs actually adds the function pointers to the metatable, making them available as methods of the objects.
In case anyone is still interested, I got the answer to my question from the kind folks on the Lua mailing list. The problem here is that the library binding function luaopen_geminiObjectLib is not called before my call to addRuntimeObject.
Since iOS does not support dynamic libraries, I had added my libraries in statically by adding pointers to them to the preloadedlibs array in linit.c of the Lua source. Unfortunately, libraries added this way are not loaded until require('libname') is executed in a Lua script. Since I was calling my addRuntimeObject method prior to executing the Lua script, the library was not yet loaded.
The solution is to add the pointer to luaopen_geminiObjectLib to the loadedlibs array in the same linit.c file. This causes the library to be loaded when Lua starts up with no need for scripts to require it.

How do I express a void method call as the result of DynamicMetaObject.BindInvokeMember?

I'm trying to give a short example of IDynamicMetaObjectProvider for the second edition of C# in Depth, and I'm running into issues.
I want to be able to express a void call, and I'm failing. I'm sure it's possible, because if I dynamically call a void method using the reflection binder, all is fine. Here's a short but complete example:
using System;
using System.Dynamic;
using System.Linq.Expressions;
class DynamicDemo : IDynamicMetaObjectProvider
{
public DynamicMetaObject GetMetaObject(Expression expression)
{
return new MetaDemo(expression, this);
}
public void TestMethod(string name)
{
Console.WriteLine(name);
}
}
class MetaDemo : DynamicMetaObject
{
internal MetaDemo(Expression expression, DynamicDemo demo)
: base(expression, BindingRestrictions.Empty, demo)
{
}
public override DynamicMetaObject BindInvokeMember
(InvokeMemberBinder binder, DynamicMetaObject[] args)
{
Expression self = this.Expression;
Expression target = Expression.Call
(Expression.Convert(self, typeof(DynamicDemo)),
typeof(DynamicDemo).GetMethod("TestMethod"),
Expression.Constant(binder.Name));
var restrictions = BindingRestrictions.GetTypeRestriction
(self, typeof(DynamicDemo));
return new DynamicMetaObject(target, restrictions);
}
}
class Test
{
public void Foo()
{
}
static void Main()
{
dynamic x = new Test();
x.Foo(); // Works fine!
x = new DynamicDemo();
x.Foo(); // Throws
}
}
This throws an exception:
Unhandled Exception:
System.InvalidCastException: The
result type 'System.Void' of the
dynamic binding produced by the object
with type 'DynamicDemo' for the binder
'Microsoft.CSharp.RuntimeBinder.CSharpInvokeMemberBinder'
is not compatible with the result type 'System.Object' expected by the
call site.
If I change the method to return object and return null, it works fine... but I don't want the result to be null, I want it to be void. That works fine for the reflection binder (see the first call in Main) but it fails for my dynamic object. I want it to work like the reflection binder - it's fine to call the method, so long as you don't try to use the result.
Have I missed a particular kind of expression I can use as the target?
This is similar to:
DLR return type
You do need to match the return type specified by the ReturnType property. For all of the standard binaries this is fixed to object for almost everything or void (for the deletion operations). If you know you're making a void call I'd suggest wrapping it in:
Expression.Block(
call,
Expression.Default(typeof(object))
);
The DLR used to be quite lax about what it would allow and it would provide some minimal amount of coercion automatically. We got rid of that because we didn't want to provide a set of convensions which may or may not have made sense for each language.
It sounds like you want to prevent:
dynamic x = obj.SomeMember();
There's no way to do that, there'll always be a value returned that the user can attempt to continue to interact with dynamically.
I don't like this, but it seems to work; the real problem seems to be the binder.ReturnType coming in oddly (and not being dropped ("pop") automatically), but:
if (target.Type != binder.ReturnType) {
if (target.Type == typeof(void)) {
target = Expression.Block(target, Expression.Default(binder.ReturnType));
} else if (binder.ReturnType == typeof(void)) {
target = Expression.Block(target, Expression.Empty());
} else {
target = Expression.Convert(target, binder.ReturnType);
}
}
return new DynamicMetaObject(target, restrictions);
Perhaps the callsite expects null to be returned but discards the result - This enum looks interesting, particularly the "ResultDiscarded" flag...
[Flags, EditorBrowsable(EditorBrowsableState.Never)]
public enum CSharpBinderFlags
{
BinaryOperationLogical = 8,
CheckedContext = 1,
ConvertArrayIndex = 0x20,
ConvertExplicit = 0x10,
InvokeSimpleName = 2,
InvokeSpecialName = 4,
None = 0,
ResultDiscarded = 0x100,
ResultIndexed = 0x40,
ValueFromCompoundAssignment = 0x80
}
Food for thought...
UPDATE:
More hints can be gleaned from Microsoft / CSharp / RuntimeBinder / DynamicMetaObjectProviderDebugView which is used (I presume) as a visualizer for debuggers. The method TryEvalMethodVarArgs examines the delegate and creates a binder with the result discarded flag (???)
Type delegateType = Expression.GetDelegateType(list.ToArray());
if (string.IsNullOrEmpty(name))
{
binder = new CSharpInvokeBinder(CSharpCallFlags.ResultDiscarded, AccessibilityContext, list2.ToArray());
}
else
{
binder = new CSharpInvokeMemberBinder(CSharpCallFlags.ResultDiscarded, name, AccessibilityContext, types, list2.ToArray());
}
CallSite site = CallSite.Create(delegateType, binder);
... I'm at the end of my Reflector-foo here, but the framing of this code seems a bit odd since the TryEvalMethodVarArgs method itself expects an object as a return type, and the final line returns the result of the dynamic invoke. I'm probably barking up the wrong [expression] tree.
-Oisin
The C# binder (in Microsoft.CSharp.dll) knows whether or not the result is used; as x0n (+1) says, it keeps track of it in a flag. Unfortunately, the flag is buried inside a CSharpInvokeMemberBinder instance, which is a private type.
It looks like the C# binding mechanism uses ICSharpInvokeOrInvokeMemberBinder.ResultDiscarded (a property on an internal interface) to read it out; CSharpInvokeMemberBinder implements the interface (and property). The job appears to be done in Microsoft.CSharp.RuntimeBinder.BinderHelper.ConvertResult(). That method has code that throws if the aforementioned ResultDiscarded property doesn't return true if the type of the expression is void.
So it doesn't look to me like there's an easy way to tease out the fact that the result of the expression is dropped from the C# binder, in Beta 2 at least.