monetdb in the cloud, scalability, amazon s3 - amazon-s3

i have recently discovered MonetDB and i am evaluating it for an internal project, so probably my questions are from a really newbie point of view. Maybe someone could point me to a site and/or document where i could find more info (i haven't found too much googling)
regarding scalability, correct me please if i am wrong, but what i understand is that if i need to scale, i would launch more server instances and discover them from the control node, is it right?
is there any limit on the number of servers?
the other point is about storage, is it possible to use amazon S3 to back MonetDB readonly instances?
update we would need to store a massive amount of Call Detail Records from different sources, on a read-only basis. We would aggregate/reduce that data for the day-to-day operation, accessing the bigger tables only when the full detail is required.
We would store the historical data as well to perform longer-term analysis. My concern is mostly about memory, disk storage wouldn't be the issue i think; if the hot dataset involved in a report/analysis eats up the whole memory space (fast response times needed, not sure about how memory swapping would impact), i would like to know if i can scale somehow instead of reingeneering the report/analysis process (maybe i am biased by the horizontal scaling thing :-) )
thanks!

You will find advantages of monetdb easily on net so let me highlight some disadvantages
1. In monetdb deleting rows does not free up the space
Solution: copy data in other table,drop existing table, and rename the other table
2. Joins are little slower
3. We can can not give table name as dynamic variable
Eg: if you have table name stored in one main table then you can't make a query like "for each (select tablename from mytable) select data from tablename)" the sql
You can't make functions with tablename as variable argument.
But it is still damn fast and can store large amount of data.

Related

Why Select SQL queries on tables with blobs are slow, even when the blob is not selected?

SELECT queries on tables with BLOBs are slow, even if I don't include the BLOB column. Can someone explain why, and maybe how to circumvent it? I am using SQL Server 2012, but maybe this is more of a conceptual problem that would be common for other distributions as well.
I found this post: SQL Server: select on a table that contains a blob, which shows the same problem, but the marked answer doesn't explain why is this happening, neither provides a good suggestion on how to solve the problem.
If you are asking for a way to solve the performance drag, there are a number of approaches that you can take. Adding indexes to your table should help massively provided you aren't simply selecting the entire recordset. Creating views over the table may also assist. It's also worth checking the levels of index fragmentation on the table as this can cause poor performance and could be addressed with a regular maintenance job. The suggestion of creating a linked table to store the blob data is also a genuinely good one.
However, if your question is asking why it's happening, this is because of the fundamentals of the way MS SQL Server functions. Essentially your database, and all databases on the server and split into pages, 8kb chunks of data with a 96-byte header. Each page representing what is possible in a single I/O operation. Pages are collected contained and grouped within Exents, 64kb collections of eight contiguous pages. SQL Server therefore uses sixteen Exents per megabyte of data. There are a few differing page types, a data page type for example won't contain what are termed "Large Objects". This include the data types text, image, varbinary(max), xml data, etc... These also are used to store variable length columns which exceed 8kb (and don't forget the 96 byte header).
At the end of each page will be a small amount of free space. Database operations obviously shift these pages around all the time and free space allocations can grow massively in a database dealing with large amounts of I/O and random record access / modification. This is why free space on a database can grow massively. There are tools available within the management suite to allow you to reduce or remove free space and basically this re-organizes pages and exents.
Now, I may be making a leap here but I'm guessing that the blobs you have in your table exceed 8kb. Bear in mind if they exceed 64kb they will not only span multiple pages but indeed span multiple exents. The net result of this will be that a "normal" table read will cause massive amounts of I/O requests. Even if you're not interested in the BLOB data, the server may have to read through the pages and exents to get the other table data. This will only be compounded as more transactions make pages and exents that make up a table to become non-contiguous.
Where "Large Objects" are used, SQL Server writes Row-Overflow values which include a 24bit pointer to where the data is actually stored. If you have several columns on your table which exceed the 8kb page size combined with blobs and impacted by random transactions, you will find that the majority of the work your server is doing is I/O operations to move pages in and out of memory, reading pointers, fetching associated row data, etc, etc... All of which represents serious overhead.
I got a suggestion then, have all the blobs in a separate table with an identity ID, then only save the identity ID in your main table
it could be because - maybe SQL cannot cache the table pages as easily, and you have to go to the disk more often. I'm no expert as to why though.
A lot of people frown at BLOBS/images in databases - In SQL 2012 there is some sort of compromise where you can configure the DB to keep objects in a file structure, not in the actual DB anymore - you might want to look for that

Why Spark SQL considers the support of indexes unimportant?

Quoting the Spark DataFrames, Datasets and SQL manual:
A handful of Hive optimizations are not yet included in Spark. Some of
these (such as indexes) are less important due to Spark SQL’s
in-memory computational model. Others are slotted for future releases
of Spark SQL.
Being new to Spark, I'm a bit baffled by this for two reasons:
Spark SQL is designed to process Big Data, and at least in my use
case the data size far exceeds the size of available memory.
Assuming this is not uncommon, what is meant by "Spark SQL’s
in-memory computational model"? Is Spark SQL recommended only for
cases where the data fits in memory?
Even assuming the data fits in memory, a full scan over a very large
dataset can take a long time. I read this argument against
indexing in in-memory database, but I was not convinced. The example
there discusses a scan of a 10,000,000 records table, but that's not
really big data. Scanning a table with billions of records can cause
simple queries of the "SELECT x WHERE y=z" type take forever instead
of returning immediately.
I understand that Indexes have disadvantages like slower INSERT/UPDATE, space requirements, etc. But in my use case, I first process and load a large batch of data into Spark SQL, and then explore this data as a whole, without further modifications. Spark SQL is useful for the initial distributed processing and loading of the data, but the lack of indexing makes interactive exploration slower and more cumbersome than I expected it to be.
I'm wondering then why the Spark SQL team considers indexes unimportant to a degree that it's off their road map. Is there a different usage pattern that can provide the benefits of indexing without resorting to implementing something equivalent independently?
Indexing input data
The fundamental reason why indexing over external data sources is not in the Spark scope is that Spark is not a data management system but a batch data processing engine. Since it doesn't own the data it is using it cannot reliably monitor changes and as a consequence cannot maintain indices.
If data source supports indexing it can be indirectly utilized by Spark through mechanisms like predicate pushdown.
Indexing Distributed Data Structures:
standard indexing techniques require persistent and well defined data distribution but data in Spark is typically ephemeral and its exact distribution is nondeterministic.
high level data layout achieved by proper partitioning combined with columnar storage and compression can provide very efficient distributed access without an overhead of creating, storing and maintaining indices.This is a common pattern used by different in-memory columnar systems.
That being said some forms of indexed structures do exist in Spark ecosystem. Most notably Databricks provides Data Skipping Index on its platform.
Other projects, like Succinct (mostly inactive today) take different approach and use advanced compression techniques with with random access support.
Of course this raises a question - if you require an efficient random access why not use a system which is design as a database from the beginning. There many choices out there, including at least a few maintained by the Apache Foundation. At the same time Spark as a project evolves, and the quote you used might not fully reflect future Spark directions.
In general, the utility of indexes is questionable at best. Instead, data partitioning is more important. They are very different things, and just because your database of choice supports indexes doesn't mean they make sense given what Spark is trying to do. And it has nothing to do with "in memory".
So what is an index, anyway?
Back in the days when permanent storage was crazy expensive (instead of essentially free) relational database systems were all about minimizing usage of permanent storage. The relational model, by necessity, split a record into multiple parts -- normalized the data -- and stored them in different locations. To read a customer record, maybe you read a customer table, a customerType table, take a couple of entries out of an address table, etc. If you had a solution that required you to read the entire table to find what you want, this is very costly, because you have to scan so many tables.
But this is not the only way to do things. If you didn't need to have fixed-width columns, you can store the entire set of data in one place. Instead of doing a full-table scan on a bunch of tables, you only need to do it on a single table. And that's not as bad as you think it is, especially if you can partition your data.
40 years later, the laws of physics have changed. Hard drive random read/write speeds and linear read/write speeds have drastically diverged. You can basically do 350 head movements a second per disk. (A little more or less, but that's a good average number.) On the other hand, a single disk drive can read about 100 MB per second. What does that mean?
Do the math and think about it -- it means if you are reading less than 300KB per disk head move, you are throttling the throughput of your drive.
Seriouusly. Think about that a second.
The goal of an index is to allow you to move your disk head to the precise location on disk you want and just read that record -- say just the address record joined as part of your customer record. And I say, that's useless.
If I were designing an index based on modern physics, it would only need to get me within 100KB or so of the target piece of data (assuming my data had been laid out in large chunks -- but we're talking theory here anyway). Based on the numbers above, any more precision than that is just a waste.
Now go back to your normalized table design. Say a customer record is really split across 6 rows held in 5 tables. 6 total disk head movements (I'll assume the index is cached in memory, so no disk movement). That means I can read 1.8 MB of linear / de-normalized customer records and be just as efficient.
And what about customer history? Suppose I wanted to not just see what the customer looks like today -- imagine I want the complete history, or a subset of the history? Multiply everything above by 10 or 20 and you get the picture.
What would be better than an index would be data partitioning -- making sure all of the customer records end up in one partition. That way with a single disk head move, I can read the entire customer history. One disk head move.
Tell me again why you want indexes.
Indexes vs ___ ?
Don't get me wrong -- there is value in "pre-cooking" your searches. But the laws of physics suggest a better way to do it than traditional indexes. Instead of storing the customer record in exactly one location, and creating a pointer to it -- an index -- why not store the record in multiple locations?
Remember, disk space is essentially free. Instead of trying to minimize the amount of storage we use -- an outdated artifact of the relational model -- just use your disk as your search cache.
If you think someone wants to see customers listed both by geography and by sales rep, then make multiple copies of your customer records stored in a way that optimized those searches. Like I said, use the disk like your in memory cache. Instead of building your in-memory cache by drawing together disparate pieces of persistent data, build your persistent data to mirror your in-memory cache so all you have to do is read it. In fact don't even bother trying to store it in memory -- just read it straight from disk every time you need it.
If you think that sounds crazy, consider this -- if you cache it in memory you're probably going to cache it twice. It's likely your OS / drive controller uses main memory as cache. Don't bother caching the data because someone else is already!
But I digress...
Long story short, Spark absolutely does support the right kind of indexing -- the ability to create complicated derived data from raw data to make future uses more efficient. It just doesn't do it the way you want it to.

What Database for extensive logfile analysis?

The task is to filter and analyze a huge amount of logfiles (around 8TB) from a finished research project. The idea is to fill a database with the data to be able to run different analysis tasks later.
The values are stored comma separated. In principle the values are tuples of up to 5 values:
id, timestamp, type, v1, v2, v3, v4, v5
In a first try using MySQL I used one table with one log entry per row. So there is no direct relation between the log values. The downside here is slow querying of subsets.
Because there is no relation I looked into alternatives like NoSQL databases, and column based tables like hbase or cassandra seemed to be a perfect fit for this kind of data. But these systems are made for huge distributed systems, which we not have. In our case the analysis will run on a single machine or perhaps some VMs.
Which kind of database would fit this task? Is it worth to setup a single machine instance with hadoop+hbase... or is this all a bit over-sized?
What database would you choose to do high-performance logfile analysis?
EDIT: Maybe out of my question it is not clear that we cannot spend money for cloud services or new hardware. The Question is if there are benefits in using noSQL approaches instead of mySQL (especially for this data). If there are none, or if they are so small that the effort of setting up a noSQL system is not worth the benefit we can use our ESXi infrastructure and MySQL.
EDIT2: I'm still having the Problem here. I did further experiments with MySQL and just inserted a quarter of all available data. The insert is now running for over 2 days and is not yet finished. Currently there are 2,147,483,647 rows in my single table db. With indeces this takes 211,2 GiB of disk space. And this is just a quarter of all logging data...
A query of the form
SELECT * FROM `table` WHERE `timestamp`>=1342105200000 AND `timestamp`<=1342126800000 AND `logid`=123456 AND `unit`="UNIT40";
takes 761 seconds to complete, in this case returning one row.
There is a combined index on timestamp, logid, unit.
So I think this is not the way to go, because later in analysis I will have to get all entries in a time range and compare the datapoints.
I read bout MongoDB and Redis, but the problem with them is, that they are in Memory databases.
In the later analyzing process there will a very small amount of concurrent database access. In fact the analyzing will be run from one single machine.
I do not need redundancy. I would be able to regenerate the database in case of a failure.
When the database is once completely written, there would also be no need to update or add further row.
What do you think about alternatives like Redis, MongoDB and so on. When I get this right, i would need RAM in the dimension of my data...
Is this task even somehow possible with a single node system or with maybe two nodes?
well i personally would prefer the faster solution, as you said you need a high-perfomance analysis. the problem is, if you have to setup a whole new system to do so and the performance-improvement would be minor in relation to the additional effort you'd need, then stay with SQL.
in our company, we have a quite small Database containing not even half a GB of Data on the VM. the problem now is, as soon as you use a VM, you will have major performance issues, when opening the Database on VM you can go for a coffee in the meantime ;)
But if the time until the Database is loaded to cache is not so important it doesn't matter. It all depends on how much faster you think the new System will be, and how much effort you will have to put in it, but as i said i'd prefer the faster solution if you have to go for "high-performance analysis"

Pros and Cons of using MongoDB instead of MS SQL Server [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 4 years ago.
Improve this question
I am new to NoSQL world and thinking of replacing my MS Sql Server database to MongoDB. My application (written in .Net C#) interacts with IP Cameras and records meta data for each image coming from Camera, into MS SQL Database. On average, i am inserting about 86400 records per day for each camera and in current database schema I have created separate table for separate Camera images, e.g. Camera_1_Images, Camera_2_Images ... Camera_N_Images. Single image record consists of simple metadata info. like AutoId, FilePath, CreationDate. To add more details to this, my application initiates separate process (.exe) for each camera and each process inserts 1 record per second in relative table in database.
I need suggestions from (MongoDB) experts on following concerns:
to tell if MongoDB is good for holding such data, which eventually will be queried against time ranges (e.g. retrieve all images of a particular camera between a specified hour)? Any suggestions about Document Based schema design for my case?
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
Should i consider Sharding/Replication for this scenario (while considering the performance in writing to synch replica sets)?
Are there any benefits of using multiple databases on same machine, so that one database will hold images of current day for all cameras, and the second one will be used to archive previous day images? I am thinking on this with respect to splitting reads and writes on separate databases. Because all read requests might be served by second database and writes to first one. Will it benefit or not? If yes then any idea to ensure that both databases are synced always.
Any other suggestions are welcomed please.
I am myself a starter on NoSQL databases. So I am answering this at the expense of potential down votes but it will be a great learning experience for me.
Before trying my best to answer your questions I should say that if MS
SQL Server is working well for you then stick with it. You have not
mentioned any valid reason WHY you want to use MongoDB except the fact
that you learnt about it as a document oriented db. Moreover I see
that you have almost the same set of meta-data you are capturing for
each camera i.e. your schema is dynamic.
to tell if MongoDB is good for holding such data, which eventually will be queried against time ranges (e.g. retrieve all images of a particular camera between a specified hour)? Any suggestions about Document Based schema design for my case?
MongoDB being a document oriented db, is good at querying within an aggregate (you call it document). Since you already are storing each camera's data in its own table, in MongoDB you will have a separate collection created for each camera. Here is how you perform date range queries.
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
All NoSQL data bases are built to scale-out on commodity hardware. But by the way you have asked the question, you might be thinking of improving performance by scaling-up. You can start with a reasonable machine and as the load increases, you can keep adding more servers (scaling-out). You no need to plan and buy a high end server.
Should i consider Sharding/Replication for this scenario (while considering the performance in writing to synch replica sets)?
MongoDB locks the entire db for a single write (but yields for other operations) and is meant for systems which have more reads than writes. So this depends upon how your system is. There are multiple ways of sharding and should be domain specific. A generic answer is not possible. However some examples can be given like sharding by geography, by branches etc.
Also read A plain english introduction to CAP Theorem
Updated with answer to the comment on sharding
According to their documentation, You should consider deploying a sharded cluster, if:
your data set approaches or exceeds the storage capacity of a single node in your system.
the size of your system’s active working set will soon exceed the capacity of the maximum amount of RAM for your system.
your system has a large amount of write activity, a single MongoDB instance cannot write data fast enough to meet demand, and all other
approaches have not reduced contention.
So based upon the last point yes. The auto-sharding feature is built to scale writes. In that case, you have a write lock per shard, not per database. But mine is a theoretical answer. I suggest you take consultation from 10gen.com group.
to tell if MongoDB is good for holding such data, which eventually
will be queried against time ranges (e.g. retrieve all images of a
particular camera between a specified hour)?
This quiestion is too subjective for me to answer. From personal experience with numerous SQL solutions (ironically not MS SQL) I would say they are both equally as good, if done right.
Also:
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
Depends on too many variables that only you know, however a small cluster of commodity hardware works quite well. I cannot really give a factual response to this question and it will come down to your testing.
As for a schema I would go for a document of the structure:
{
_id: {},
camera_name: "my awesome camera",
images: [
{
url: "http://I_like_S3_here.amazons3.com/my_image.png" ,
// All your other fields per image
}
]
}
This should be quite easy to mantain and update so long as you are not embedding much deeper since then it could become a bit of pain, however, that depends upon your queries.
Not only that but this should be good for sharding since you have all the data you need in one document, if you were to shard on _id you could probably get the perfect setup here.
Should i consider Sharding/Replication for this scenario (while considering the performance in writing to synch replica sets)?
Possibly, many people assume they need to shard when in reality they just need to be more intelligent in how they design the database. MongoDB is very free form so there are a lot of ways to do it wrong, but that being said, there are also a lot of ways of dong it right. I personally would keep sharding in mind. Replication can be very useful too.
Are there any benefits of using multiple databases on same machine, so that one database will hold images of current day for all cameras, and the second one will be used to archive previous day images?
Even though MongoDBs write lock is on DB level (currently) I would say: No. The right document structure and the right sharding/replication (if needed) should be able to handle this in a single document based collection(s) under a single DB. Not only that but you can direct writes and reads within a cluster to certain servers so as to create a concurrency situation between certain machines in your cluster. I would promote the correct usage of MongoDBs concurrency features over DB separation.
Edit
After reading the question again I omitted from my solution that you are inserting 80k+ images for each camera a day. As such instead of the embedded option I would actually make a row per image in a collection called images and then a camera collection and query the two like you would in SQL.
Sharding the images collection should be just as easy on camera_id.
Also make sure you take you working set into consideration with your server.
to tell if MongoDB is good for holding such data, which eventually
will be queried against time ranges (e.g. retrieve all images of a
particular camera between a specified hour)? Any suggestions about
Document Based schema design for my case?
MongoDB can do this. For better performance, you can set an index on your time field.
What should be the specs of server (CPU, RAM, Disk)? any suggestion?
I think RAM and Disk would be important.
If you don't want to do sharding to scale out, you should consider a larger size of disk so you can store all your data in it.
Your hot data should can fit into your RAM. If not, then you should consider a larger RAM because the performance of MongoDB mainly depends on RAM.
Should i consider Sharding/Replication for this scenario (while
considering the performance in writing to synch replica sets)?
I don't know many cameras do you have, even 1000 inserts/second with total 1000 cameras should still be easy to MongoDB. If you are concerning insert performance, I don't think you need to do sharding(Except the data size are too big that you have to separate them into several machines).
Another problem is the read frequency of your application. It it is very high, then you can consider sharding or replication here.
And you can use (timestamp + camera_id) as your sharding key if your query only on one camera in a time range.
Are there any benefits of using multiple databases on same machine, so
that one database will hold images of current day for all cameras, and
the second one will be used to archive previous day images?
You can separate the table into two collections(archive and current). And set index only on archive if you only query date on archive. Without the overhead of index creation, the current collection should benefit with insert.
And you can write a daily program to dump the current data into archive.

Database or other method of storing and dynamically accessing HUGE binary objects

I have some large (200 GB is normal) flat files of data that I would like to store in some kind of database so that it can be accessed quickly and in the intuitive way that the data is logically organized. Think of it as large sets of very long audio recordings, where each recording is the same length (samples) and can be thought of as a row. One of these files normally has about 100,000 recordings of 2,000,000 samples each in length.
It would be easy enough to store these recordings as rows of BLOB data in a relational database, but there are many instances where I want to load into memory only certain columns of the entire data set (say, samples 1,000-2,000). What's the most memory- and time-efficient way to do this?
Please don't hesitate to ask if you need more clarification on the particulars of my data in order to make a recommendation.
EDIT: To clarify the data dimensions... One file consists of: 100,000 rows (recordings) by 2,000,000 columns (samples). Most relational databases I've researched will allow a maximum of a few hundred to a couple thousand rows in a table. Then again, I don't know much about object-oriented databases, so I'm kind of wondering if something like that might help here. Of course, any good solution is very welcome. Thanks.
EDIT: To clarify the usage of the data... The data will be accessed only by a custom desktop/distributed-server application, which I will write. There is metadata (collection date, filters, sample rate, owner, etc.) for each data "set" (which I've referred to as a 200 GB file up to now). There is also metadata associated with each recording (which I had hoped would be a row in a table so I could just add columns for each piece of recording metadata). All of the metadata is consistent. I.e. if a particular piece of metadata exists for one recording, it also exists for all recordings in that file. The samples themselves do not have metadata. Each sample is 8 bits of plain-ol' binary data.
DB storage may not be ideal for large files. Yes, it can be done. Yes, it can work. But what about DB backups? The file contents likely will not change often - once they're added, they will remain the same.
My recommendation would be store the file on disk, but create a DB-based index. Most filesystems get cranky or slow when you have > 10k files in a folder/directory/etc. Your application can generate the filename and store metadata in the DB, then organize by the generated name on disk. Downsides are file contents may not be directly apparent from the name. However, you can easily backup changed files without specialized DB backup plugins and a sophisticated partitioning, incremental backup scheme. Also, seeks within the file become much simpler operations (skip ahead, rewind, etc.). There is generally better support for these operations in a file system than in a DB.
I wonder what makes you think that RDBMS would be limited to mere thousands of rows; there's no reason this would be the case.
Also, at least some databases (Oracle as an example) do allow direct access to parts of LOB data, without loading the full LOB, if you just know the offset and length you want to have. So, you could have a table with some searchable metadata and then the LOB column, and if needed, an additional metadata table containing metadata on the LOB contents so that you'd have some kind of keyword->(offset,length) relation available for partal loading of LOBs.
Somewhat echoing another post here, incremental backups (which you might wish to have here) are not quite feasible with databases (ok, can be possible, but at least in my experience tend to have a nasty price tag attached).
How big is each sample, and how big is each recording?
Are you saying each recording is 2,000,000 samples, or each file is? (it can be read either way)
If it is 2 million samples to make up 200 GB, then each sample is ~10 K, and each recording is 200K (to have 100,000 per file, which is 20 samples per recording)?
That seems like a very reasonable size to put in a row in a DB rather than a file on disk.
As for loading into memory only a certain range, if you have indexed the sample ids, then you could very quickly query for only the subset you want, loading only that range into memory from the DB query result.
I think that Microsoft SQL does what you need with the varbinary(MAX) field type WHEN used in conjnction with filestream storage.
Have a read on TechNet for more depth: (http://technet.microsoft.com/en-us/library/bb933993.aspx).
Basically, you can enter any descriptive fields normally into your database, but the actual BLOB is stored in NTFS, governed by the SQL engine and limited in size only by your NTFS file system.
Hope this helps - I know it raises all kinds of possibilities in my mind. ;-)