SQL table design: one or multiple line per entity? [duplicate] - sql

I was wondering if you have a website with a dozen different types of listings (Shops, Restaurants, Clubs, Hotels, Events) that require different fields, is there a benefit of creating a table with columns defined like so
Example Shop:
shop_id | name | X | Y | city | district | area | metro | station | address | phone | email | website | opening_hours
Or a more abstract approach similar to this:
object_id | name
---------------
1 | Messy Joe's
2 | Bate's Motel
type_id | name
---------------
1 | hotel
2 | restaurant
object_id | type_id
---------------
1 | 2
2 | 1
field_id | name | field_type
---------------
1 | address | text
2 | opening_hours | date
3 | speciality | text
type_id | field_id
---------------
1 | 1
1 | 2
2 | 1
2 | 3
object_id | field_id | value
1 | 1 | 1st street....
1 | 3 | English Cuisine
Of course it can be more abstract if value's are predefined (Example: specialties could have their own list)
If I take the abstract approach it can be very flexible, but queries will be more complex with a lot of joins.
But I don't know if this affects the performance, executing these 'more complex' queries.
I would be interested to know what are the up and downsides of both methods. I can just imagine for myself, but I don't have the experience to confirm this.

Certain issues need to be clarified and resolved before we can enter into a reasonable discussion.
Pre-requisite Resolution
Labels
In a profession that demands precision, it is important that we use precise labels, to avoid confusion, and so that we can communicate without having to use long-winded descriptions and qualifiers.
What you have posted as FixedTables, is Unnormalised. Fair enough, it may be an attempt at Third Normal form, but in fact it is a flat file, Unnormalised (not "denormalised). What you have posted as AbstractTables is, to be precise, Entity-Attribute-Value, which is almost, but not quite, Sixth Normal form, and is therefore more Normalised than 3NF. Assuming it is done correctly, of course.
The Unnormalised flat file is not "denormalised". It is chock full of duplication (nothing has been done to remove repeating groups and duplicate columns or to resolve dependencies) and Nulls, it is a performance hog in many ways, and prevents concurrency.
In order to be Denormalised, it has to first be Normalised, and then the Normalisation backed off a little for some good reason. Since it is not Normalised in the first place, it cannot be Denormalised. It is simply Unnormalised.
It cannot be said to be denormalised "for performance", because being a performance hog, it is the very antithesis of performance. Well, they need a justification for the lack of formalised design], and "for performance" is it. Even the smallest formal scrutiny exposed the misrepresentation (but very few people can provide, so it remains hidden, until they get an outsider to address, you guessed it, the massive performance problem).
Normalised structures perform far better than Unnormalised structures. More normalised structures (EAV/6NF) perform better than less normalised structures (3NF/5NF).
I am agreeing with the thrust of OMG Ponies, but not their labels and definitions
rather than saying 'don't "denormalise" unless you have to', I am saying, 'Normalise faithfully, period' and 'if there is a performance problem, you have not Normalised correctly'.
Wikipedia
The entries for Normal Forms and Normalisation offer definitions that are incorrect; they confuse the Normal Forms; they are lacking regarding the process of Normalisation; and they give equal weight to absurd or questionable NFs which have been debunked long ago. The result is, Wikipedia adds to an already confused and rarely understood subject. So don't waste your time.
However, in order to progress, without that reference posing a hindrance, let me say this.
The definition of 3NF is stable, and has not changed.
There is a lot of confusion of the NFs between 3NF and 5NF. The truth is that this is an area that progressed over the last 15 years; and many orgs, academics as well as vendors with their products with limitations, jumped to create a new "Normal Form" to validate their offerings. All serving commercial interests and academically unsound. 3NF in its original untampered state intended and guaranteed certain attributes.
The sum total is, 5NF is today, what 3NF was intended to be 15 years ago, and you can skip the commercial banter and the twelve or so "special" (commercial and pseudo-academic) NFs in-between, some of which are identified in Wikipedia, and even that in confusing terms.
Fifth Normal Form
Since you have been able to understand and implement the EAV in your post, you will have no problem understanding the following. Of course a true Relational Model is pre-requisite, strong keys, etc. Fifth Normal Form is, since we are skipping the Fourth:
Third Normal Form
which in simple definitive terms is, every non-key column in every table has a 1::1 relationship to the Primary Key of the table,
and to no other non-key columns
Zero data duplication (the result, if Normalisation is progressed diligently; not achieved by intelligence or experience alone, or by working toward it as a goal without the formal process)
no Update Anomalies (when you update a column somewhere, you do not have to update the same column located somewhere else; the column exists in one and only one place).
If you understand the above, 4NF, BCNF, and all the silly "NFs" can be dismissed, they are required for physicalised Record Filing Systems, as promoted by academics, quite foreign to the Relational Model (Codd).
Sixth Normal Form
The purpose is elimination of missing data (attribute columns), aka elimination of Nulls
This is the one true solution to the Null Problem (also called Handling Missing Values), and the result is a database without Nulls. (It can be done at 5NF with standards and Null substitutes but that is not optimal.) How you interpret and display the missing values is another story.
Technically, is not a true Normal Form, because it does not have 5NF as a pre-requisite, but it has a value
EAV vs Sixth Normal Form
All the databases I have written, except one, are pure 5NF. I have worked with (administered, fixed up, enhanced) a couple of EAV databases, and I have implemented many true 6NF databases. EAV is a loose implementation of 6NF, often done by people who do not have a good grasp on Normalisation and the NFs, but who can see the value in, and need the flexibility of, EAV. You are a perfect example.
The difference is this: because it is loose, and because implementers do not have a reference (6NF) to be faithful to, they only implement what they need, and they write it all in code; that ends up being an inconsistent model.
Whereas, a pure 6NF implementation does have a pure academic reference point, and thus it is usually tighter, and consistent. Typically this shows up in two visible elements:
6NF has a catalogue to contain metadata, and everything is defined in metadata, not code. EAV does not have one, everything is in code (implementers keep track of the objects and attributes). Obviously a catalogue eases the addition of columns, navigation, and allows utilities to be formed.
6NF when understood, provides the true solution to The Null Problem. EAV implementers, since they are absent the 6NF context, handle missing data in code, inconsistently, or worse, allow Nulls in the database. 6NF implementers disallow Nulls, and handle missing Data consistently and elegantly, without requiring code constructs (for Null handling; you still have to code for missing data of course).
Eg. For 6NF databases with a catalogue, I have a set of procs that will [re]generate the SQL required to perform all SELECTs, and I provide Views in 5NF for all users, so they do not need to know or understand the underlying 6NF structure. They are driven off the catalogue. Thus changes are easy and automated. EAV types do that manually, due to the absence of the catalogue.
Discussion
Now, we can start the discussion.
"Of course it can be more abstract if
value's are predefined (Example:
specialities could have their own
list)"
Sure. But do not get too "abstract". Maintain consistency and implement such lists in the same EAV (or 6NF) manner as other lists.
"If I take the abstract approach it
can be very flexible, but queries will
be more complex with a lot of joins.
But I don't know if this affects the
performance, executing these 'more
complex' queries."
Joins are pedestrian in relational databases. The problem is not the database, the problem is that SQL is cumbersome when handling joins, especially compound keys.
EAV and 6NF databases have more Joins, which just as pedestrian, no more, no less. If you have to code each SELECT manually, sure, the cumbersome gets really cumbersome.
The entire problem can be eliminated by (a) going with 6NF over EAV and (b) implementing a catalogue, from which you can (c) generate all the basic SQL. Eliminates an entire class of errors as well.
It is a common myth that Joins somehow have a cost. Totally false.
The join is implemented at compile time, there is nothing of substance to 'cost' CPU cycles.
The issue is the size of tables being joined, not the cost of the Join between those same tables.
Joining two tables with millions of rows each, on a correct PK⇢FK relation, each of which have the appropriate indices
(Unique on the parent [PK] side; Unique on the Child side [PK=parent FK + something]
is instantaneous
Where the Child index is not unique, but at least the leading columns are valid, it is slower; where there is no useful index, of course it is very slow.
None of it has to do with Join cost.
Where many rows are returned, the bottleneck will be the network and the disk layout; not the join processing.
Therefore you can get as "complex" as you like, there is no cost, SQL can handle it.
I would be interested to know what are
the up and downsides of both methods.
I can just imagine for myself, but I
don't have the experience to confirm
this.
5NF (or 3NF for those who have not made the progression) is the easiest and best, in terms of implementation; ease of use (developers as well as users); and maintenance.
The drawback is, every time you add a column, you have to change the database structure (table DDL). That is fine is some cases, but not in most cases, due to change control in place, quite onerous.
Second, you have to change existing code (code handling the new column does not count, because that is an imperative): where good standards are implemented, that is minimised; where they are absent, the scope is unpredictable.
EAV (which is what you have posted), allows columns to be added without DDL changes. That is the single reason people choose it. (code handling the new column does not count, because that is an imperative). If implemented well, it will not affect existing code; if not, it will.
But you need EAV-capable developers.
When EAV is implemented badly, it is abominable, a worse mess than 5NF done badly, but not any worse than Unnormalised which is what most databases out there are (misrepresented as "denormalised for performance").
Of course, it is even more important (than in 5NF/3NF) to hold a strong Transaction context, because the columns are far more distributed.
Likewise, it is essential to retain Declarative Referential Integrity: the messes I have seen were due in large part to the developers removing DRI because it became "too hard to maintain", the result was, as you can imagine, one mother of a data heap with duplicate 3NF/5NF rows and columns all over the place. And inconsistent Null handling.
There is no difference in performance, assuming that the server has been reasonably configured for the intended purpose. (Ok, there are specific optimisations that are possible only in 6NF, which are not possible in other NFs, but I think that is outside the scope of this thread.) And again, EAV done badly can cause unnecessary bottlenecks, no more so than Unnormalised.
Of course, if you go with EAV, I am recommending more formality; buy the full quid; go with 6NF; implement a catalogue; utilities to produce SQL; Views; handle Missing Data consistently; eliminate Nulls altogether. This reduces your vulnerability to the quality of your developers; they can forget about the EAV/6NF esoteric issues, use Views, and concentrate on the app logic.

In your question, you have presented at least two major issues at the same time. Those two issues are E-A-V and gen-spec.
First, let's talk about E-A-V. Your last table (object_id, field_id, value) is essentially an E-A-V. There is an upside to E-A-V and a downside to E-A-V. The upside is that the structure is so generic that it can accomodate almost any body of data describing almost any subject matter. That means that you can proceed to design and implementation with no data analysis and no understanding of the subject matter, and not worry about wrong assumptions. The down side is that at retrieval time, you have to do the data analysis that you skipped over before building the data base, in order to come up with queries that mean anything. This is much more serious than just retrieval efficiency. But you are also going to have terrible problems with retrieval efficiency. There are only two ways to learn about this pitfall: live through it or read about it from those who have. I recommend the reading.
Second, you have a gen-spec case. Your table (object_id, type_id) captures a gen-spec (generalization-specialization) pattern, along with the related tables. If I had to generalize between hotels and restaurants, I might call it something like "public accomodations" or "venues". But I'm not sure I understand your case, and you may be driving for something even more general than those two names suggest. After all, you've included "events" in your list, and an event is not a type of venue in my mind.
I've referred other people to readings on gen-spec and the relational model in previous responses.
When two tables are very similar, when should they be combined?
But I hesitate to send you off in the same direction, because it's not clear to me that you want to come up with a relational model of the data before building your database. A relational model of a body of data and an E-A-V model of the same data are almost totally at odds with each other. It seems to me you have to make that choice before you even explore how to express gen-spec in the relational model of data.

When you start to require a large number of different entities (or even before...), a nosql solution would be vastly simpler than either choice.
Just store each entity/record with the exact fields you require.
{
"id": 1,
"type":"Restaurant",
"name":"Messy Joe",
"address":"1 Main St.",
"tags":["asian","fusion","casual"]
}

The "abstract" approach is better known as "Normalization", looks like 3rd Normal Form (3NF).
The other one is called "Denormalized", and can be a valid performance option... when you've encountered speed issues using the Normalized approach, not before.

How do you have the listings represented in code? I'd guess Listing as a supertype, with Shop, Restuarant, etc. as subtypes?
Assuming so, this is a case of how to map subtypes to a relational database. There are generally three choices:
Option 1: single table per subtype,
with common attributes repeated in
each table (name, id, etc).
Option 2: single table for all objects (your single table approach)
Option 3: table for the supertype and one for each subtype
There's no universally correct solution. My preference is generally to start with option 3; it provides an intituitive structure to work with, is pretty well normalised and can easily be extended. It means a single join for retrieving each instance - but RDBMS are well optimised for doing joins so it doesn't really cause performance problems in practice.
Option 2 can be more performant for queries (no joins) but causes problems if other tables need to refer to all supertype instances (proliferation of foreign keys).
Option 1 appears at first sight to be the most performant, although 2 caveats: (1) It's not resilient to change. If you add a new subtype (and so different attributes) you'll need to change the table structure and migrate it. (2) It can be less efficient than it seems. Because the table population is sparse, some DBs don't store it particularly efficiently. As a consequence it can be less efficicent than option 1 - since the query engine can do joins faster than it can search bloated sparse table spaces.
Which to choose really comes down to knowing details of your problem. I'd suggest reading up a bit on the options: this article is a good place to start.
hth

Related

What is atomicity in dbms

I read something like below in 1NF form of DBMS.
There was a sentence as follows:
"Every column should be atomic."
Can anyone please explain it to me thoroughly with an example?
Re "atomic"
In Codd's original 1969 and 1970 papers he defined relations as having a value for every attribute in a row. The value could be anything, including a relation. This used no notion of "atomic". He explained that "atomic" meant not relation-valued (ie not table-valued):
So far, we have discussed examples of relations which are defined on
simple domains--domains whose elements are atomic (nondecomposable)
values. Nonatomic values can be discussed within the relational
framework. Thus, some domains may have relations as elements.
He used "simple", "atomic" and "nondecomposable" as informal expository notions. He understood that a relation has rows of which each column has an associated name and value; attributes are by definition "single-valued"; the value is of any type. The only structural property that matters relationally is being a relation. It is also just a value, but you can query it relationally. Then he used "nonsimple" etc meaning relation-valued.
By the time of Codd's 1990 book The Relational Model for Database Management: Version 2:
From a database perspective, data can be classified into two types:
atomic and compound. Atomic data cannot be decomposed into smaller
pieces by the DBMS (excluding certain special functions). Compound
data, consisting of structured combinations of atomic data, can be
decomposed by the DBMS.
In the relational model there is only one type of compound data: the
relation. The values in the domains on which each relation is defined
are required to be atomic with respect to the DBMS. A relational
database is a collection of relations of assorted degrees. All of the
query and manipulative operators are upon relations, and all of them
generate relations as results. Why focus on just one type of compound
data? The main reason is that any additional types of compound data
add complexity without adding power.
"In the relational model there is only one type of compound data: the relation."
Sadly, "atomic = non-relation" is not what you're going to hear. (Unfortunately Codd was not the clearest writer and his expository remarks get confused with his bottom line.) Virtually all presentations of the relational model get no further than what was for Codd merely a stepping stone. They promote an unhelpful confused fuzzy notion canonicalized/canonized as "atomic" determining "normalized". Sometimes they wrongly use it to define realtion. Whereas Codd used everyday "nonatomic" to introduce defining relational "nonatomic" as relation-valued and defined "normalized" as free of relation-valued domains.
(Neither is "not a repeating group" helpful as "atomic", defining it as not something that is not even a relational notion. And sure enough in 1970 Codd says "terms attribute and repeating group in present database terminology are roughly analogous to simple domain and nonsimple domain, respectively".)
Eg: This misinterpretation was promoted for a long time from early on by Chris Date, honourable early relational explicator and proselytizer, primarily in his seminal still-current book An Introduction to Database Systems. Which now (2004 8th edition) thankfully presents the helpful relationally-oriented extended notion of distinguishing relation, row and "scalar" (non-relation non-row) domains:
This definition merely states that all [relation variables] are in 1NF
Eg: Maiers' classic The Theory of Relational Databases (1983):
The definition of atomic is hazy; a value that is atomic in one application could be non-atomic in another. For a general guideline, a value is non-atomic if the application deals with only a part of the value.
Eg: The current Wikipedia article on First NF (Normal Form) section Atomicity actually quotes from the introductory parts above. And then ignores the precise meaning. (Then it says something unintelligible about when the nonatomic turtles should stop.):
Codd states that the "values in the domains on which each
relation is defined are required to be atomic with respect to the
DBMS." Codd defines an atomic value as one that "cannot be decomposed
into smaller pieces by the DBMS (excluding certain special functions)"
meaning a field should not be divided into parts with more than one
kind of data in it such that what one part means to the DBMS depends
on another part of the same field.
Re "normalized" and "1NF"
When Codd used "normalize" in 1970, he meant eliminate relation-valued ("non-simple") domains from a relational database:
For this reason (and others to be cited below) the possibility of
eliminating nonsimple domains appears worth investigating. There is,
in fact, a very simple elimination procedure, which we shall call
normalization.
Later the notion of "higher NFs" (involving FDs (functional dependencies) & then JDs (join dependencies)) arose and "normalize" took on a different meaning. Since Codd's original normalization paper, normalization theory has always given results relevant to all relations, not just those in Codd's 1NF. So one can "normalize" in the original sense of going from just relations to a "normalized" "1NF" without relation-valued columns. And one can "normalize" in the normalization-theory sense of going from a just-relations "1NF" to higher NFs while ignoring whether domains are relations. And "normalization" is commonly also used for the "hazy" notion of eliminating values with "parts". And "normalization" is also wrongly used for designing a relational version of a non-relational database (whether just relations and/or some other sense of "1NF").
Relational spirit is to eschew multiple columns with the same meaning or domains with interesting parts in favour of another base table. But we must always come to an informal ergonomic decision about when to stop representing parts and just treat a column as "atomic" (non-relation-valued) vs "nonatomic" (relation-valued).
Normalization in database management system
Atomicity and 1NF... that is not about atomic transactions, but about definition and column content.
"Atomic" means "cannot be divided or split in smaller parts". Applied to 1NF this means that a column should not contain more than one value. It should not compose or combine values that have a meaning of their own.
This tipically regards 2 very common mistakes made by database designers:
1. multiple values in one column (list columns)
columns that contain a list of values, tipically space or comma separated, like this blog post table:
id title date_posted content tags
1 new idea 2014-05-23 ... tag1,tag2,tag3
2 why this? 2014-05-24 ... tag2,tag5
3 towel day 2014-05-26 ... tag42
or this contacts table:
id room phones
4 432 111-111-111 222-222-222
5 456 999-999-999
6 512 888-888-8888 333-3333-3333
This type of denormalization is rare, as most database designers see this cannot be a good thing. But you do find tables like this. They usually come from modifications to the database, whereas it may seem simpler to widen a column and use it to stuff multiple values instead of adding a normalized related table (which often breaks existing applications).
2. complex multi-part columns
In this case one column contains different bits of information and could maybe be designed as a set of separate columns.
Typical example are fullname and address columns:
id fullname address
1 Mark Tomers 56 Tomato Road
2 Fred Askalong 3277 Hadley Drive
3 May Anne Brice 225 Century Avenue - apartment 43/a
These types of denormalizations are very common, as it is quite difficult to draw the line and what is atomic and what is not. Depending on the application, a multi-part column could very well be the best solution in some cases. It is less structured, but simpler.
Structuring an address in many atomic columns may mean having more complex code to handle results for output. Another complexity comes from the structure not being adeguate to fit all types of addresses. Using one single VARCHAR column does not pose this problem, but may pose others... typically about searching and sorting.
An extreme case of multi-part columns are dates and times. Most RDBMS provide date and time data types and provide functions to handle date and time algebra and the extraction of the various bits (month, hour, etc...). Few people would consider convenient to have separate year, mont, day columns in a relational database. But I've seen it... and with good reasons: the use case was birthdates for a justice department database. They had to handle many immigrants with few or no documents. Sometimes you just knew a person was born in a certain year, but you would not know the day or month or birth. You can't handle that type of info with a single date column.
"Every column should be atomic."
Chris Date says, "Please note very carefully that it is not just simple things like the integer 3 that are legitimate values. On the contrary, values can be arbitrarily complex; for example, a value might be a geometric point, or a polygon, or an X ray, or an XML document, or a fingerprint, or an array, or a stack, or a list, or a relation (and so on)."[1]
He also says, "A relvar is in 1NF if and only if, in every legal value of that relvar, every tuple contains exactly one value for each attribute."[2]
He generally discourages the use of the word atomic, because it has confusing connotations. Single value is probably a better term to use.
For example, a date like '2014-01-01' is a single value. It's not indivisible; on the contrary, it quite clearly is divisible. But the dbms does one of two things with single values that have parts. The dbms either returns those values as a whole, or the dbms provides functions to manipulate the parts. (Clients don't have to write code to manipulate the parts.)[3]
In the case of dates, SQL can
return dates as a whole (SELECT CURRENT_DATE),
return one or more parts of a date (EXTRACT(YEAR FROM CURRENT_DATE)),
add and subtract intervals (CURRENT_DATE + INTERVAL '1' DAY),
subtract one date from another (CURRENT_DATE - DATE '2014-01-01'),
and so on. In this (narrow) respect, SQL is quite relational.
An Introduction to Database Systems, 8th ed, p 113. Emphasis in the original.
Ibid, p 358.
In the case of a "user-defined" type, the "user" is presumed to be a database programmer, not a client of the database.
it means column should not contain multiple values(like comma seperated values).
plz see below link.
http://www.studytonight.com/dbms/database-normalization.php

single fixed table with multiple columns vs flexible abstract tables

I was wondering if you have a website with a dozen different types of listings (Shops, Restaurants, Clubs, Hotels, Events) that require different fields, is there a benefit of creating a table with columns defined like so
Example Shop:
shop_id | name | X | Y | city | district | area | metro | station | address | phone | email | website | opening_hours
Or a more abstract approach similar to this:
object_id | name
---------------
1 | Messy Joe's
2 | Bate's Motel
type_id | name
---------------
1 | hotel
2 | restaurant
object_id | type_id
---------------
1 | 2
2 | 1
field_id | name | field_type
---------------
1 | address | text
2 | opening_hours | date
3 | speciality | text
type_id | field_id
---------------
1 | 1
1 | 2
2 | 1
2 | 3
object_id | field_id | value
1 | 1 | 1st street....
1 | 3 | English Cuisine
Of course it can be more abstract if value's are predefined (Example: specialties could have their own list)
If I take the abstract approach it can be very flexible, but queries will be more complex with a lot of joins.
But I don't know if this affects the performance, executing these 'more complex' queries.
I would be interested to know what are the up and downsides of both methods. I can just imagine for myself, but I don't have the experience to confirm this.
Certain issues need to be clarified and resolved before we can enter into a reasonable discussion.
Pre-requisite Resolution
Labels
In a profession that demands precision, it is important that we use precise labels, to avoid confusion, and so that we can communicate without having to use long-winded descriptions and qualifiers.
What you have posted as FixedTables, is Unnormalised. Fair enough, it may be an attempt at Third Normal form, but in fact it is a flat file, Unnormalised (not "denormalised). What you have posted as AbstractTables is, to be precise, Entity-Attribute-Value, which is almost, but not quite, Sixth Normal form, and is therefore more Normalised than 3NF. Assuming it is done correctly, of course.
The Unnormalised flat file is not "denormalised". It is chock full of duplication (nothing has been done to remove repeating groups and duplicate columns or to resolve dependencies) and Nulls, it is a performance hog in many ways, and prevents concurrency.
In order to be Denormalised, it has to first be Normalised, and then the Normalisation backed off a little for some good reason. Since it is not Normalised in the first place, it cannot be Denormalised. It is simply Unnormalised.
It cannot be said to be denormalised "for performance", because being a performance hog, it is the very antithesis of performance. Well, they need a justification for the lack of formalised design], and "for performance" is it. Even the smallest formal scrutiny exposed the misrepresentation (but very few people can provide, so it remains hidden, until they get an outsider to address, you guessed it, the massive performance problem).
Normalised structures perform far better than Unnormalised structures. More normalised structures (EAV/6NF) perform better than less normalised structures (3NF/5NF).
I am agreeing with the thrust of OMG Ponies, but not their labels and definitions
rather than saying 'don't "denormalise" unless you have to', I am saying, 'Normalise faithfully, period' and 'if there is a performance problem, you have not Normalised correctly'.
Wikipedia
The entries for Normal Forms and Normalisation offer definitions that are incorrect; they confuse the Normal Forms; they are lacking regarding the process of Normalisation; and they give equal weight to absurd or questionable NFs which have been debunked long ago. The result is, Wikipedia adds to an already confused and rarely understood subject. So don't waste your time.
However, in order to progress, without that reference posing a hindrance, let me say this.
The definition of 3NF is stable, and has not changed.
There is a lot of confusion of the NFs between 3NF and 5NF. The truth is that this is an area that progressed over the last 15 years; and many orgs, academics as well as vendors with their products with limitations, jumped to create a new "Normal Form" to validate their offerings. All serving commercial interests and academically unsound. 3NF in its original untampered state intended and guaranteed certain attributes.
The sum total is, 5NF is today, what 3NF was intended to be 15 years ago, and you can skip the commercial banter and the twelve or so "special" (commercial and pseudo-academic) NFs in-between, some of which are identified in Wikipedia, and even that in confusing terms.
Fifth Normal Form
Since you have been able to understand and implement the EAV in your post, you will have no problem understanding the following. Of course a true Relational Model is pre-requisite, strong keys, etc. Fifth Normal Form is, since we are skipping the Fourth:
Third Normal Form
which in simple definitive terms is, every non-key column in every table has a 1::1 relationship to the Primary Key of the table,
and to no other non-key columns
Zero data duplication (the result, if Normalisation is progressed diligently; not achieved by intelligence or experience alone, or by working toward it as a goal without the formal process)
no Update Anomalies (when you update a column somewhere, you do not have to update the same column located somewhere else; the column exists in one and only one place).
If you understand the above, 4NF, BCNF, and all the silly "NFs" can be dismissed, they are required for physicalised Record Filing Systems, as promoted by academics, quite foreign to the Relational Model (Codd).
Sixth Normal Form
The purpose is elimination of missing data (attribute columns), aka elimination of Nulls
This is the one true solution to the Null Problem (also called Handling Missing Values), and the result is a database without Nulls. (It can be done at 5NF with standards and Null substitutes but that is not optimal.) How you interpret and display the missing values is another story.
Technically, is not a true Normal Form, because it does not have 5NF as a pre-requisite, but it has a value
EAV vs Sixth Normal Form
All the databases I have written, except one, are pure 5NF. I have worked with (administered, fixed up, enhanced) a couple of EAV databases, and I have implemented many true 6NF databases. EAV is a loose implementation of 6NF, often done by people who do not have a good grasp on Normalisation and the NFs, but who can see the value in, and need the flexibility of, EAV. You are a perfect example.
The difference is this: because it is loose, and because implementers do not have a reference (6NF) to be faithful to, they only implement what they need, and they write it all in code; that ends up being an inconsistent model.
Whereas, a pure 6NF implementation does have a pure academic reference point, and thus it is usually tighter, and consistent. Typically this shows up in two visible elements:
6NF has a catalogue to contain metadata, and everything is defined in metadata, not code. EAV does not have one, everything is in code (implementers keep track of the objects and attributes). Obviously a catalogue eases the addition of columns, navigation, and allows utilities to be formed.
6NF when understood, provides the true solution to The Null Problem. EAV implementers, since they are absent the 6NF context, handle missing data in code, inconsistently, or worse, allow Nulls in the database. 6NF implementers disallow Nulls, and handle missing Data consistently and elegantly, without requiring code constructs (for Null handling; you still have to code for missing data of course).
Eg. For 6NF databases with a catalogue, I have a set of procs that will [re]generate the SQL required to perform all SELECTs, and I provide Views in 5NF for all users, so they do not need to know or understand the underlying 6NF structure. They are driven off the catalogue. Thus changes are easy and automated. EAV types do that manually, due to the absence of the catalogue.
Discussion
Now, we can start the discussion.
"Of course it can be more abstract if
value's are predefined (Example:
specialities could have their own
list)"
Sure. But do not get too "abstract". Maintain consistency and implement such lists in the same EAV (or 6NF) manner as other lists.
"If I take the abstract approach it
can be very flexible, but queries will
be more complex with a lot of joins.
But I don't know if this affects the
performance, executing these 'more
complex' queries."
Joins are pedestrian in relational databases. The problem is not the database, the problem is that SQL is cumbersome when handling joins, especially compound keys.
EAV and 6NF databases have more Joins, which just as pedestrian, no more, no less. If you have to code each SELECT manually, sure, the cumbersome gets really cumbersome.
The entire problem can be eliminated by (a) going with 6NF over EAV and (b) implementing a catalogue, from which you can (c) generate all the basic SQL. Eliminates an entire class of errors as well.
It is a common myth that Joins somehow have a cost. Totally false.
The join is implemented at compile time, there is nothing of substance to 'cost' CPU cycles.
The issue is the size of tables being joined, not the cost of the Join between those same tables.
Joining two tables with millions of rows each, on a correct PK⇢FK relation, each of which have the appropriate indices
(Unique on the parent [PK] side; Unique on the Child side [PK=parent FK + something]
is instantaneous
Where the Child index is not unique, but at least the leading columns are valid, it is slower; where there is no useful index, of course it is very slow.
None of it has to do with Join cost.
Where many rows are returned, the bottleneck will be the network and the disk layout; not the join processing.
Therefore you can get as "complex" as you like, there is no cost, SQL can handle it.
I would be interested to know what are
the up and downsides of both methods.
I can just imagine for myself, but I
don't have the experience to confirm
this.
5NF (or 3NF for those who have not made the progression) is the easiest and best, in terms of implementation; ease of use (developers as well as users); and maintenance.
The drawback is, every time you add a column, you have to change the database structure (table DDL). That is fine is some cases, but not in most cases, due to change control in place, quite onerous.
Second, you have to change existing code (code handling the new column does not count, because that is an imperative): where good standards are implemented, that is minimised; where they are absent, the scope is unpredictable.
EAV (which is what you have posted), allows columns to be added without DDL changes. That is the single reason people choose it. (code handling the new column does not count, because that is an imperative). If implemented well, it will not affect existing code; if not, it will.
But you need EAV-capable developers.
When EAV is implemented badly, it is abominable, a worse mess than 5NF done badly, but not any worse than Unnormalised which is what most databases out there are (misrepresented as "denormalised for performance").
Of course, it is even more important (than in 5NF/3NF) to hold a strong Transaction context, because the columns are far more distributed.
Likewise, it is essential to retain Declarative Referential Integrity: the messes I have seen were due in large part to the developers removing DRI because it became "too hard to maintain", the result was, as you can imagine, one mother of a data heap with duplicate 3NF/5NF rows and columns all over the place. And inconsistent Null handling.
There is no difference in performance, assuming that the server has been reasonably configured for the intended purpose. (Ok, there are specific optimisations that are possible only in 6NF, which are not possible in other NFs, but I think that is outside the scope of this thread.) And again, EAV done badly can cause unnecessary bottlenecks, no more so than Unnormalised.
Of course, if you go with EAV, I am recommending more formality; buy the full quid; go with 6NF; implement a catalogue; utilities to produce SQL; Views; handle Missing Data consistently; eliminate Nulls altogether. This reduces your vulnerability to the quality of your developers; they can forget about the EAV/6NF esoteric issues, use Views, and concentrate on the app logic.
In your question, you have presented at least two major issues at the same time. Those two issues are E-A-V and gen-spec.
First, let's talk about E-A-V. Your last table (object_id, field_id, value) is essentially an E-A-V. There is an upside to E-A-V and a downside to E-A-V. The upside is that the structure is so generic that it can accomodate almost any body of data describing almost any subject matter. That means that you can proceed to design and implementation with no data analysis and no understanding of the subject matter, and not worry about wrong assumptions. The down side is that at retrieval time, you have to do the data analysis that you skipped over before building the data base, in order to come up with queries that mean anything. This is much more serious than just retrieval efficiency. But you are also going to have terrible problems with retrieval efficiency. There are only two ways to learn about this pitfall: live through it or read about it from those who have. I recommend the reading.
Second, you have a gen-spec case. Your table (object_id, type_id) captures a gen-spec (generalization-specialization) pattern, along with the related tables. If I had to generalize between hotels and restaurants, I might call it something like "public accomodations" or "venues". But I'm not sure I understand your case, and you may be driving for something even more general than those two names suggest. After all, you've included "events" in your list, and an event is not a type of venue in my mind.
I've referred other people to readings on gen-spec and the relational model in previous responses.
When two tables are very similar, when should they be combined?
But I hesitate to send you off in the same direction, because it's not clear to me that you want to come up with a relational model of the data before building your database. A relational model of a body of data and an E-A-V model of the same data are almost totally at odds with each other. It seems to me you have to make that choice before you even explore how to express gen-spec in the relational model of data.
When you start to require a large number of different entities (or even before...), a nosql solution would be vastly simpler than either choice.
Just store each entity/record with the exact fields you require.
{
"id": 1,
"type":"Restaurant",
"name":"Messy Joe",
"address":"1 Main St.",
"tags":["asian","fusion","casual"]
}
The "abstract" approach is better known as "Normalization", looks like 3rd Normal Form (3NF).
The other one is called "Denormalized", and can be a valid performance option... when you've encountered speed issues using the Normalized approach, not before.
How do you have the listings represented in code? I'd guess Listing as a supertype, with Shop, Restuarant, etc. as subtypes?
Assuming so, this is a case of how to map subtypes to a relational database. There are generally three choices:
Option 1: single table per subtype,
with common attributes repeated in
each table (name, id, etc).
Option 2: single table for all objects (your single table approach)
Option 3: table for the supertype and one for each subtype
There's no universally correct solution. My preference is generally to start with option 3; it provides an intituitive structure to work with, is pretty well normalised and can easily be extended. It means a single join for retrieving each instance - but RDBMS are well optimised for doing joins so it doesn't really cause performance problems in practice.
Option 2 can be more performant for queries (no joins) but causes problems if other tables need to refer to all supertype instances (proliferation of foreign keys).
Option 1 appears at first sight to be the most performant, although 2 caveats: (1) It's not resilient to change. If you add a new subtype (and so different attributes) you'll need to change the table structure and migrate it. (2) It can be less efficient than it seems. Because the table population is sparse, some DBs don't store it particularly efficiently. As a consequence it can be less efficicent than option 1 - since the query engine can do joins faster than it can search bloated sparse table spaces.
Which to choose really comes down to knowing details of your problem. I'd suggest reading up a bit on the options: this article is a good place to start.
hth

Best pattern for storing (product) attributes in SQL Server

We are starting a new project where we need to store product and many product attributes in a database. The technology stack is MS SQL 2008 and Entity Framework 4.0 / LINQ for data access.
The products (and Products Table) are pretty straightforward (a SKU, manufacturer, price, etc..). However there are also many attributes to store with each product (think industrial widgets). These may range from color to certification(s) to pipe size. Every product may have different attributes, and some may have multiples of the same attribute (Ex: Certifications).
The current proposal is that we will basically have a name/value pair table with a FK back to the product ID in each row.
An example of the attributes Table may look like this:
ProdID AttributeName AttributeValue
123 Color Blue
123 FittingSize 1.25
123 Certification AS1111
123 Certification EE2212
123 Certification FM.3
456 Pipe 11
678 Color Red
999 Certification AE1111
...
Note: Attribute name would likely come from a lookup table or enum.
So the main question here is: Is this the best pattern for doing something like this? How will the performance be? Queries will be based on a JOIN of the product and attributes table, and generally need many WHEREs to filter on specific attributes - the most common search will be to find a product based on a set of known/desired attributes.
If anyone has any suggestions or a better pattern for this type of data, please let me know.
Thanks!
-Ed
You are about to re-invent the dreaded EAV model, Entity-Attribute-Value. This is notorious for having problems in real-life, for various reasons, many covered by Dave's answer.
Luckly the SQL Customer Advisory Team (SQLCAT) has a whitepaper on the topic,
Best Practices for Semantic Data Modeling for Performance and Scalability. I highly recommend this paper. Unfortunately, it does not offer a panacea, a cookie cutter solution, since the problem has no solution. Instead, you'll learn how to find the balance between a fixed queryable schema and a flexible EAV structure, a balance that works for your specific case:
Semantic data models can be very
complex and until semantic databases
are commonly available, the challenge
remains to find the optimal balance
between the pure object model and the
pure relational model for each
application. The key to success is to
understand the issues, make the
necessary mitigations for those
issues, and then test, test, and test.
Scalability testing is a critical
success factor if you are going to
find that optimal design.
This is going to be problematic for a couple of reasons:
Your entity queries will be much harder to write. Transforming the results of those queries into something resembling a ViewModel when it comes time for presentation is going to be painful because it will involve a pivot for each product.
Understanding what your datatypes will be is going to be tough when it comes time to read certain types of data. Are you planning on storing this as strings? For example, DateTimes hold more data than the default .ToString() implementation writes to the string. You're also going to have issues if you try to store floating-point values.
Your objects' data integrity is at risk. There will be a temptation to put properties which should be just attributes of your main product tables in this "bucket o' data". Maybe the design will be semi-sane to begin with, but I guarantee you that after a certain amount of time, folks will start to just throw properties in the bag. It'll then be very tough to keep your objects' integrity with such a loosely defined structure.
Your indexes will most likely be suboptimal. Again think of a property which should be on your product table. Instead of being able to index on just one column, you will now be forced to make a potentially very large composite index on your "type" table.
Since you're apparently planning to throw out proper datatypes and use strings, the performance of range queries for numeric data will likely be poor.
Your table will get big, slowing backups and queries. Instead of an integer being 4 bytes, you're going to have to store far more for an integer of any size.
Better to normalize the table in a more "traditional" way using "IS-A" relationships. For example, you might have Pipes, which are a type of Product, but have a couple more attributes. You might have Stoves, which are a type of product, but have a couple more attributes still.
If you really have a generic database and all sorts of other properties which aren't going to be subject to data integrity rules, you very well may want to consider storing data in an XML column. It's hard to tell you what the correct design choice is unless I know a lot more about your business.
IMO this is a design antipattern. The siren song of this idea has lured many a developer onto the rocks of of an unmaintainable application.
I know it is an old one - however there might be other readers...
I have seen the balance EAV to attribute modeled approach. Well - it is still EAV. "EAV's are like drugs" is pretty much true. So what about thinking it through once more - and let's be aggressive really:
I still liked the supertype apporach, where a lot of tables use the same primary key from a key generator. Let's reuse this one. So what about creating a new table for each set of attributes - all having the primary from the same key generator? Eg. you would have a table with the fields "color,pipe", another table "fittingsize,pipe", and so on. The requirement "volatility of attributes" screams for a carefully(automatically) maintained data dictionary anyway.
This approach is fully normalized and can be fully automated. You can support checks if specific attribute sets materialized already as table by hashing attribute name clusters, eg. crc32(lower('color~fittingsize~pipe')) where the atribute names need to be sorted alphabetically. Of course this requires to have the hash in the data dictionary. Based on the data dictionary each object can be searched (using 'UNION'), especially if the data dictionary itself is a table. Having the data dictionary as table also allows you to use its primary (surrogate) key as basis for unique tablenames, to end up with tables like 'attributes1','attributes2',... Most databases nowadays support some billion tables - so we are sort of save on that end as well. You could even have a product catalouge with very common attributes, that reference the extended attribute tables.
An open issue are 1:n data sets. I am afraid you need to sort them out in separate tables. However this very much depends on your data presentation and querying strategy. Should they always be presented as comma seperated string attached to the product or do you want to eg. be able to query for all products of a certain Certification?
Before you flame this approach please consider this: It is meant for use cases where you have a very high volatility of attributes - in quantity and quality - only. Also it was preset, that you cannot know most of the attributes at the point in time when the solution is created. So do not discuss this in a context where you can model your attributes upfront which would enable you to balance trade offs much better.
In short, you cannot go all one route. If you use an EAV like your example you will have a myriad of problems like those outlined by the other posters not the least of which will be performance and data integrity. Let me reiterate, that using an EAV as the core of your solution will fail when you get to reporting and analysis. However, as you have also stated, you might have hundreds of attributes that change regularly.
The solution, IMO, is a hybrid. For common attributes, use columns/standard schema. For additional, arbitrary attributes, use an EAV. However, the rule with the EAV data is that you can never, ever, under any circumstances, write a query that includes a sort or filter on an attribute. I.e., you can never write Where AttributeName = 'Foo'. The EAV portion of the schema represents a bag of data that is merely there for tracking purposes. In fact, I have seen many people implement this solution by using Xml for the EAV portion. The moment someone does want to search, filter, sort or place an EAV value in a specific spot on a report, that attribute must be elevated to a top level column in the products table.
The key to this hybrid approach is discipline. It will seem simple enough to add a filter, sort or put an attribute in a specific spot somewhere on a report especially when you get pressure from management. You must resist this temptation. Once you go down the dark path... If you do not think that you can maintain that level of discipline in your development team, then I would not use an EAV. As I've mentioned before, EAV's are like drugs: in small quantities and used under the right circumstances they can be beneficial. Too much will kill you.
Rather than have a name-value table, create the usual Product table structure containing all the common attributes, and add an XML column for the attributes that vary by product.
I have used this structure before and it worked quite well.
As #Dave Markle mentions, the name-value approach can lead to a world of pain.

How do you know when an SQL database needs more normalization?

Is it when you're trying to get data and there is no apparent easy way of doing it?
When you find something should be a table on it's own?
What are the laws?
Check out Wikipedia. The article talks about database normalization and the different forms (first, second, third, etc.). Most times you should be aiming for at least third normal form. There are times when you want to relax the rules a bit (it may be too expensive to join multiple tables together so might want to de-normalize a bit) but for the most part third normal form is good.
When you notice you have to repeat the same data, or when you start using single fields as arrays.
While this is a somewhat snarky answer, when you discover that the data isn't sufficiently normalized. There are many resources on the web about the levels (or, more properly, "forms") of normalization, and they more completely describe the forms than I could here. First and second normal forms should be pretty much required. If you aren't at third (or, really, fourth) normal form, you need to have a strong justification as to why.
Check out the Wikipedia article on database normalization.
When you're starting to question whether an SQL database needs more normalization.
Whenever you have a relational database.... <grin/>
No, actually there are laws, check out this Wikipedia link.
they are called the five normal forms or something like that. Originally from the guy who invented relational databases in the 50s/60s, E. F. Codd.
"The key the whole key and nothing but the Key, so help me Codd"
This is a synopsis:
First normal form (1NF) Table
faithfully represents a relation and
has no repeating groups
Second normal form (2NF) No
non-prime attribute in the table is
functionally dependent on a part
(proper subset) of a candidate key
Third normal form (3NF) Every
non-prime attribute is
non-transitively dependent on every
key of the table Every non-trivial functional dependency in the table is a dependency on a superkey
Fourth normal form (4NF) Every
non-trivial multivalued dependency
in the table is a dependency on a
superkey
Fifth normal form (5NF) Every non-trivial join dependency in the table is implied by the superkeys of the table. Domain/key normal form (DKNF) Ronald Fagin (1981)[19] Every constraint on the table is a logical consequence of the table's domain constraints and key constraints
Sixth normal form (6NF) Table features no
non-trivial join dependencies at all
(with reference to generalized join
operator)
Other people have pointed you to the formal rules for normalization. Here are some informal guidelines I use:
If you have columns in a table the names of which differ only by a number (eg Phone1 and PHone2).
If you have any columns in a table that should be filled in only when another column in the table is filled in.
If updating a "fact" in the database (such as a street address) requires more than one UPDATE.
If the same question could ever get two different answers depending on which table you get your information from.
If the answer to any non-trivial question can be gotten from the database without JOINing at least two tables.
If you have any quantity-based restrictions in the database other than "only 1 of something is allowed" (that is, "only one address is allowed" is okay, but "only two addresses are allowed" indicates a normalization problem).
3NF is generally all you need and it follows three rules:
Every column in the table should be dependent on:
the key (1NF),
the whole key (2NF),
and nothing but the key (3NF) (so help me Codd is the way that quote usually ends).
You can often "downgrade" to 2NF for performance reasons, provided you understand the implications and only when you strike problems, but 3NF should be the initial goal for all your designs..
As everyone else has said, you know when you start having (too many) duplicate columns in multiple tables.
That being said, it is sometimes useful to have redundant columns across multiple tables. This can reduce the number of JOINs you have to do in complicated queries. Just be careful to keep all the tables in sync, or you're just asking for trouble.
This is a pretty good article. Getting normal is a science, not an art. Now knowing when to DEnormalize... that's an art.
http://www.alvechurchdata.co.uk/hints-and-tips/softnorm.html
See Description of the database normalization basics
What level of normalization are you currently at? If you can't answer that I assume your database is a nasty mess. I always hit 3rd normal on initial design and de-normalize or normalize further if and when needed.
I assume you're talking about a transactional database supporting an interactive application, but for what it's worth...
OLAP databases used exclusively for reporting and only updated by ETL processes may benefit from a less normalized structure. In these applications you accept the cost of redundant data storage and duplication for the performance benefit of fewer joins and the increased ease of use for (sometimes less technical) data analysts and business analysts.
Transactional databases should always be normalized to the extent practical (at least 3NF) and then selectively denormalized only as needed. And the need to denormalize should ideally be based on actual performance testing results.
When you have to search trough huge amounts of data just to extract some basic info - i.e. what kind of Product categories are there or something like that.

Dealing with "hypernormalized" data

My employer, a small office supply company, is switching suppliers and I am looking through their electronic content to come up with a robust database schema; our previous schema was pretty much just thrown together without any thought at all, and it's pretty much led to an unbearable data model with corrupt, inconsistent information.
The new supplier's data is much better than the old one's, but their data is what I would call hypernormalized. For example, their product category structure has 5 levels: Master Department, Department, Class, Subclass, Product Block. In addition the product block content has the long description, search terms and image names for products (the idea is that a product block contains a product and all variations - e.g. a particular pen might come in black, blue or red ink; all of these items are essentially the same thing, so they apply to a single product block). In the data I've been given, this is expressed as the products table (I say "table" but it's a flat file with the data) having a reference to the product block's unique ID.
I am trying to come up with a robust schema to accommodate the data I'm provided with, since I'll need to load it relatively soon, and the data they've given me doesn't seem to match the type of data they provide for demonstration on their sample website (http://www.iteminfo.com). In any event, I'm not looking to reuse their presentation structure so it's a moot point, but I was browsing the site to get some ideas of how to structure things.
What I'm unsure of is whether or not I should keep the data in this format, or for example consolidate Master/Department/Class/Subclass into a single "Categories" table, using a self-referencing relationship, and link that to a product block (product block should be kept separate as it's not a "category" as such, but a group of related products for a given category). Currently, the product blocks table references the subclass table, so this would change to "category_id" if I consolidate them together.
I am probably going to be creating an e-commerce storefront making use of this data with Ruby on Rails (or that's my plan, at any rate) so I'm trying to avoid getting snagged later on or having a bloated application - maybe I'm giving it too much thought but I'd rather be safe than sorry; our previous data was a real mess and cost the company tens of thousands of dollars in lost sales due to inconsistent and inaccurate data. Also I am going to break from the Rails conventions a little by making sure that my database is robust and enforces constraints (I plan on doing it at the application level, too), so that's something I need to consider as well.
How would you tackle a situation like this? Keep in mind that I have the data to be loaded already in flat files that mimic a table structure (I have documentation saying which columns are which and what references are set up); I'm trying to decide if I should keep them as normalized as they currently are, or if I should look to consolidate; I need to be aware of how each method will affect the way I program the site using Rails since if I do consolidate, there will be essentially 4 "levels" of categories in a single table, but that definitely seems more manageable than separate tables for each level, since apart from Subclass (which directly links to product blocks) they don't do anything except show the next level of category under them. I'm always a loss for the "best" way to handle data like this - I know of the saying "Normalize until it hurts, then denormalize until it works" but I've never really had to implement it until now.
I would prefer the "hypernormalized" approach over a denormal data model. The self referencing table you mentioned might reduce the number of tables down and simplify life in some ways, but in general this type of relationship can be tricky to deal with. Hierarchical queries become a pain, as does mapping an object model to this (if you decide to go that route).
A couple of extra joins is not going to hurt and will keep the application more maintainable. Unless performance degrades due to the excessive number of joins, I would opt to leave things like they are. As an added bonus if any of these levels of tables needed additional functionality added, you will not run into issues because you merged them all into the self referencing table.
I totally disagree with the criticisms about self-referencing table structures for parent-child hierarchies. The linked list structure makes UI and business layer programming easier and more maintainable in most cases, since linked lists and trees are the natural way to represent this data in languages that the UI and business layers would typically be implemented in.
The criticism about the difficulty of maintaining data integrity constraints on these structures is perfectly valid, though the simple solution is to use a closure table that hosts the harder check constraints. The closure table is easily maintained with triggers.
The tradeoff is a little extra complexity in the DB (closure table and triggers) for a lot less complexity in UI and business layer code.
If I understand correctly, you want to take their separate tables and turn them into a hierarchy that's kept in a single table with a self-referencing FK.
This is generally a more flexible approach (for example, if you want to add a fifth level), BUT SQL and relational data models don't tend to work well with linked lists like this, even with new syntax like MS SQL Servers CTEs. Admittedly, CTEs make it much better though.
It can be difficult and costly to enforce things, like that a product must always be on the fourth level of the hierarchy, etc.
If you do decide to do it this way, then definitely check out Joe Celko's SQL for Smarties, which I believe has a section or two on modeling and working with hierarchies in SQL or better yet get his book that is devoted to the subject (Joe Celko's Trees and Hierarchies in SQL for Smarties).
Normalization implies data integrity, that is: each normal form reduces the number of situations where you data is inconsistent.
As a rule, denormalization has a goal of faster querying, but leads to increased space, increased DML time, and, last but not least, increased efforts to make data consistent.
One usually writes code faster (writes faster, not the code faster) and the code is less prone to errors if the data is normalized.
Self referencing tables almost always turn out to be much worse to query and perform worse than normalized tables. Don't do it. It may look to you to be more elegant, but it is not and is a very poor database design technique. Personally the structure you described sounds just fine to me not hypernormalized. A properly normalized database (with foreign key constraints as well as default values, triggers (if needed for complex rules) and data validation constraints) is also far likelier to have consistent and accurate data. I agree about having the database enforce the rules, likely this is part of why the last application had bad data because the rules were not enforced in the proper place and people were able to easily get around them. Not that the application shouldn't check as well (no point even sending an invalid date for instance for the datbase to fail on insert). Since youa redesigning, I would put more time and effort into designing the necessary constraints and choosing the correct data types (do not store dates as string data for instance), than in trying to make the perfectly ordinary normalized structure look more elegant.
I would bring it in as close to their model as possible (and if at all possible, I would get files which match their schema - not a flattened version). If you bring the data directly into your model, what happens if data they send starts to break assumptions in the transformation to your internal application's model?
Better to bring their data in, run sanity checks and check that assumptions are not violated. Then if you do have an application-specific model, transform it into that for optimal use by your application.
Don't denormalize. Trying to acheive a good schema design by denormalizing is like trying to get to San Francisco by driving away from New York. It doesn't tell you which way to go.
In your situation, you want to figure out what a normalized schema would like. You can base that largely on the source schema, but you need to learn what the functional dependencies (FD) in the data are. Neither the source schema nor the flattened files are guaranteed to reveal all the FDs to you.
Once you know what a normalized schema would look like, you now need to figure out how to design a schema that meets your needs. It that schema is somewhat less than fully normalized, so be it. But be prepared for difficulties in programming the transformation between the data in the flattened files and the data in your desgined schema.
You said that previous schemas at your company cost millions due to inconsistency and inaccuracy. The more normalized your schema is, the more protected you are from internal inconsistency. This leaves you free to be more vigilant about inaccuracy. Consistent data that's consistently wrong can be as misleading as inconsistent data.
is your storefront (or whatever it is you're building, not quite clear on that) always going to be using data from this supplier? might you ever change suppliers or add additional different suppliers?
if so, design a general schema that meets your needs, and map the vendor data to it. Personally I'd rather suffer the (incredibly minor) 'pain' of a self-referencing Category (hierarchical) table than maintain four (apparently semi-useless) levels of Category variants and then next year find out they've added a 5th, or introduced a product line with only three...
For me, the real question is: what fits the model better?
It's like comparing a Tuple and a List.
Tuples are a fixed size and are heterogeneous -- they are "hypernormalized".
Lists are an arbitrarty size and are homogeneous.
I use a Tuple when I need a Tuple and a List when I need a list; they fundamentally server different purposes.
In this case, since the product structure is already well defined (and I assume not likely to change) then I would stick with the "Tuple approach". The real power/use of a List (or recursive table pattern) is when you need it to expand to an arbitrary depth, such as for a BOM or a genealogy tree.
I use both approaches in some of my database depending upon the need. However, there is also the "hidden cost" of a recursive pattern which is that not all ORMs (not sure about AR) support it well. Many modern DBs have support for "join-throughs" (Oracle), hierarchy IDs (SQL Server) or other recursive patterns. Another approach is to use a set-based hierarchy (which generally relies on triggers/maintenance). In any case, if the ORM used does not support recursive queries well, then there may be the extra "cost" of using the to the DB features directly -- either in terms of manual query/view generation or management such as triggers. If you don't use a funky ORM, or simply use a logic separator such as iBatis, then this issue may not even apply.
As far as performance, on new Oracle or SQL Server (and likely others) RDBMS, it ought to be very comparable so that would be the least of my worries: but check out the solutions available for your RDBMS and portability concerns.
Everybody who recommends you not to have a hierarchy introduced in the database, considering just the option of having a self-referenced table. This is not the only way to model the hierarchy in the database.
You may use a different approach, that provides you with easier and faster querying without using recursive queries.
Let's say you have a big set of nodes (categories) in your hierarchy:
Set1 = (Node1 Node2 Node3...)
Any node in this set can also be another set by itself, that contains other nodes or nested sets:
Node1=(Node2 Node3=(Node4 Node5=(Node6) Node7))
Now, how we can model that? Let's have each node to have two attributes, that set the boundaries of the nodes it contains:
Node = { Id: int, Min: int, Max: int }
To model our hierarchy, we just assign those min/max values accordingly:
Node1 = { Id = 1, Min = 1, Max = 10 }
Node2 = { Id = 2, Min = 2, Max = 2 }
Node3 = { Id = 3, Min = 3, Max = 9 }
Node4 = { Id = 4, Min = 4, Max = 4 }
Node5 = { Id = 5, Min = 5, Max = 7 }
Node6 = { Id = 6, Min = 6, Max = 6 }
Node7 = { Id = 7, Min = 8, Max = 8 }
Now, to query all nodes under the Set/Node5:
select n.* from Nodes as n, Nodes as s
where s.Id = 5 and s.Min < n.Min and n.Max < s.Max
The only resource-consuming operation would be if you want to insert a new node, or move some node within the hierarchy, as many records will be affected, but this is fine, as the hierarchy itself does not change very often.