My employer, a small office supply company, is switching suppliers and I am looking through their electronic content to come up with a robust database schema; our previous schema was pretty much just thrown together without any thought at all, and it's pretty much led to an unbearable data model with corrupt, inconsistent information.
The new supplier's data is much better than the old one's, but their data is what I would call hypernormalized. For example, their product category structure has 5 levels: Master Department, Department, Class, Subclass, Product Block. In addition the product block content has the long description, search terms and image names for products (the idea is that a product block contains a product and all variations - e.g. a particular pen might come in black, blue or red ink; all of these items are essentially the same thing, so they apply to a single product block). In the data I've been given, this is expressed as the products table (I say "table" but it's a flat file with the data) having a reference to the product block's unique ID.
I am trying to come up with a robust schema to accommodate the data I'm provided with, since I'll need to load it relatively soon, and the data they've given me doesn't seem to match the type of data they provide for demonstration on their sample website (http://www.iteminfo.com). In any event, I'm not looking to reuse their presentation structure so it's a moot point, but I was browsing the site to get some ideas of how to structure things.
What I'm unsure of is whether or not I should keep the data in this format, or for example consolidate Master/Department/Class/Subclass into a single "Categories" table, using a self-referencing relationship, and link that to a product block (product block should be kept separate as it's not a "category" as such, but a group of related products for a given category). Currently, the product blocks table references the subclass table, so this would change to "category_id" if I consolidate them together.
I am probably going to be creating an e-commerce storefront making use of this data with Ruby on Rails (or that's my plan, at any rate) so I'm trying to avoid getting snagged later on or having a bloated application - maybe I'm giving it too much thought but I'd rather be safe than sorry; our previous data was a real mess and cost the company tens of thousands of dollars in lost sales due to inconsistent and inaccurate data. Also I am going to break from the Rails conventions a little by making sure that my database is robust and enforces constraints (I plan on doing it at the application level, too), so that's something I need to consider as well.
How would you tackle a situation like this? Keep in mind that I have the data to be loaded already in flat files that mimic a table structure (I have documentation saying which columns are which and what references are set up); I'm trying to decide if I should keep them as normalized as they currently are, or if I should look to consolidate; I need to be aware of how each method will affect the way I program the site using Rails since if I do consolidate, there will be essentially 4 "levels" of categories in a single table, but that definitely seems more manageable than separate tables for each level, since apart from Subclass (which directly links to product blocks) they don't do anything except show the next level of category under them. I'm always a loss for the "best" way to handle data like this - I know of the saying "Normalize until it hurts, then denormalize until it works" but I've never really had to implement it until now.
I would prefer the "hypernormalized" approach over a denormal data model. The self referencing table you mentioned might reduce the number of tables down and simplify life in some ways, but in general this type of relationship can be tricky to deal with. Hierarchical queries become a pain, as does mapping an object model to this (if you decide to go that route).
A couple of extra joins is not going to hurt and will keep the application more maintainable. Unless performance degrades due to the excessive number of joins, I would opt to leave things like they are. As an added bonus if any of these levels of tables needed additional functionality added, you will not run into issues because you merged them all into the self referencing table.
I totally disagree with the criticisms about self-referencing table structures for parent-child hierarchies. The linked list structure makes UI and business layer programming easier and more maintainable in most cases, since linked lists and trees are the natural way to represent this data in languages that the UI and business layers would typically be implemented in.
The criticism about the difficulty of maintaining data integrity constraints on these structures is perfectly valid, though the simple solution is to use a closure table that hosts the harder check constraints. The closure table is easily maintained with triggers.
The tradeoff is a little extra complexity in the DB (closure table and triggers) for a lot less complexity in UI and business layer code.
If I understand correctly, you want to take their separate tables and turn them into a hierarchy that's kept in a single table with a self-referencing FK.
This is generally a more flexible approach (for example, if you want to add a fifth level), BUT SQL and relational data models don't tend to work well with linked lists like this, even with new syntax like MS SQL Servers CTEs. Admittedly, CTEs make it much better though.
It can be difficult and costly to enforce things, like that a product must always be on the fourth level of the hierarchy, etc.
If you do decide to do it this way, then definitely check out Joe Celko's SQL for Smarties, which I believe has a section or two on modeling and working with hierarchies in SQL or better yet get his book that is devoted to the subject (Joe Celko's Trees and Hierarchies in SQL for Smarties).
Normalization implies data integrity, that is: each normal form reduces the number of situations where you data is inconsistent.
As a rule, denormalization has a goal of faster querying, but leads to increased space, increased DML time, and, last but not least, increased efforts to make data consistent.
One usually writes code faster (writes faster, not the code faster) and the code is less prone to errors if the data is normalized.
Self referencing tables almost always turn out to be much worse to query and perform worse than normalized tables. Don't do it. It may look to you to be more elegant, but it is not and is a very poor database design technique. Personally the structure you described sounds just fine to me not hypernormalized. A properly normalized database (with foreign key constraints as well as default values, triggers (if needed for complex rules) and data validation constraints) is also far likelier to have consistent and accurate data. I agree about having the database enforce the rules, likely this is part of why the last application had bad data because the rules were not enforced in the proper place and people were able to easily get around them. Not that the application shouldn't check as well (no point even sending an invalid date for instance for the datbase to fail on insert). Since youa redesigning, I would put more time and effort into designing the necessary constraints and choosing the correct data types (do not store dates as string data for instance), than in trying to make the perfectly ordinary normalized structure look more elegant.
I would bring it in as close to their model as possible (and if at all possible, I would get files which match their schema - not a flattened version). If you bring the data directly into your model, what happens if data they send starts to break assumptions in the transformation to your internal application's model?
Better to bring their data in, run sanity checks and check that assumptions are not violated. Then if you do have an application-specific model, transform it into that for optimal use by your application.
Don't denormalize. Trying to acheive a good schema design by denormalizing is like trying to get to San Francisco by driving away from New York. It doesn't tell you which way to go.
In your situation, you want to figure out what a normalized schema would like. You can base that largely on the source schema, but you need to learn what the functional dependencies (FD) in the data are. Neither the source schema nor the flattened files are guaranteed to reveal all the FDs to you.
Once you know what a normalized schema would look like, you now need to figure out how to design a schema that meets your needs. It that schema is somewhat less than fully normalized, so be it. But be prepared for difficulties in programming the transformation between the data in the flattened files and the data in your desgined schema.
You said that previous schemas at your company cost millions due to inconsistency and inaccuracy. The more normalized your schema is, the more protected you are from internal inconsistency. This leaves you free to be more vigilant about inaccuracy. Consistent data that's consistently wrong can be as misleading as inconsistent data.
is your storefront (or whatever it is you're building, not quite clear on that) always going to be using data from this supplier? might you ever change suppliers or add additional different suppliers?
if so, design a general schema that meets your needs, and map the vendor data to it. Personally I'd rather suffer the (incredibly minor) 'pain' of a self-referencing Category (hierarchical) table than maintain four (apparently semi-useless) levels of Category variants and then next year find out they've added a 5th, or introduced a product line with only three...
For me, the real question is: what fits the model better?
It's like comparing a Tuple and a List.
Tuples are a fixed size and are heterogeneous -- they are "hypernormalized".
Lists are an arbitrarty size and are homogeneous.
I use a Tuple when I need a Tuple and a List when I need a list; they fundamentally server different purposes.
In this case, since the product structure is already well defined (and I assume not likely to change) then I would stick with the "Tuple approach". The real power/use of a List (or recursive table pattern) is when you need it to expand to an arbitrary depth, such as for a BOM or a genealogy tree.
I use both approaches in some of my database depending upon the need. However, there is also the "hidden cost" of a recursive pattern which is that not all ORMs (not sure about AR) support it well. Many modern DBs have support for "join-throughs" (Oracle), hierarchy IDs (SQL Server) or other recursive patterns. Another approach is to use a set-based hierarchy (which generally relies on triggers/maintenance). In any case, if the ORM used does not support recursive queries well, then there may be the extra "cost" of using the to the DB features directly -- either in terms of manual query/view generation or management such as triggers. If you don't use a funky ORM, or simply use a logic separator such as iBatis, then this issue may not even apply.
As far as performance, on new Oracle or SQL Server (and likely others) RDBMS, it ought to be very comparable so that would be the least of my worries: but check out the solutions available for your RDBMS and portability concerns.
Everybody who recommends you not to have a hierarchy introduced in the database, considering just the option of having a self-referenced table. This is not the only way to model the hierarchy in the database.
You may use a different approach, that provides you with easier and faster querying without using recursive queries.
Let's say you have a big set of nodes (categories) in your hierarchy:
Set1 = (Node1 Node2 Node3...)
Any node in this set can also be another set by itself, that contains other nodes or nested sets:
Node1=(Node2 Node3=(Node4 Node5=(Node6) Node7))
Now, how we can model that? Let's have each node to have two attributes, that set the boundaries of the nodes it contains:
Node = { Id: int, Min: int, Max: int }
To model our hierarchy, we just assign those min/max values accordingly:
Node1 = { Id = 1, Min = 1, Max = 10 }
Node2 = { Id = 2, Min = 2, Max = 2 }
Node3 = { Id = 3, Min = 3, Max = 9 }
Node4 = { Id = 4, Min = 4, Max = 4 }
Node5 = { Id = 5, Min = 5, Max = 7 }
Node6 = { Id = 6, Min = 6, Max = 6 }
Node7 = { Id = 7, Min = 8, Max = 8 }
Now, to query all nodes under the Set/Node5:
select n.* from Nodes as n, Nodes as s
where s.Id = 5 and s.Min < n.Min and n.Max < s.Max
The only resource-consuming operation would be if you want to insert a new node, or move some node within the hierarchy, as many records will be affected, but this is fine, as the hierarchy itself does not change very often.
Related
In about every SQL-based database application I have worked on so far, sooner or later the following three-faceted requirement has popped up:
There is some entity, linked in a hierarchical fashion (i.e. the tuples form a tree structure).
Users must be able to define any number of custom attributes with values for the tuples, and these values are inherited/overridden towards the leaves of the tree structure. ("Dumb" attributes usually suffice. That is, no uniqueness constraints, no foreign keys, only one value per attribute, ...)
Users must be able to run arbitrary queries on this data (i.e. custom boolean expressions, based upon filters for the values of the user-defined attributes that are linked with AND/OR).
Storing the data, roughly matching the first two bullets above, is quite straightforward:
The hierarchy is built up by giving the respective table a parent column. This column will be null for root nodes, and a pointer to the ID of the parent node for all other nodes.
The user-defined attributes are stored according to the entity-attribute-value pattern.
While there are numerous resources that suggest to use a different approach especially in the latter point (e.g. answers here, here, or here), I have not usually been in a position to move away from a traditional static relational database schema. Hence, let's simply assume the above as a given. Also, hardly ever could I rely on the specifics of a particular DBMS; the more usual case was systems that were supposed to work with MS SQL Server, Oracle, and possibly others as backends without requiring two significantly different product versions.
Solving the third item, however, is always problematic (even without considering the hierarchical inheritance of attribute values). The number of joins depends on the different number of attributes considered in the boolean expression. Alternatively, the number of joins can somewhat be reduced by determining the maximum number of distinct attributes considered in any case of the custom boolean expression, which may save joins, but makes the resulting queries and the code used to generate them even less intelligible and maintainable. For instance,
a = 5 or (b = 8 and c = 9)
could do with 2 joins to the attribute-value table.
I have always been able to do this "somehow", but as this appears to be a fairly ubiquitous situation, I am looking for the "canonical" way to generate SQL queries in this situation. Is there a "standard pattern" to follow here?
Careful not to fall prey to the inner platform effect. It is a complicated problem, and SQL itself is designed to handle the complexities. Generate DDL to add and remove columns as needed, and generate simple select statements for queries. Store each Tuple Type (distinct set of attributes) as a table.
With regards to inheritance, I recommend handling it in the application or DAL, and only storing the non-inherited values. On retrieval, read all parent rows to calculate the functional values. If you do need to access "functional" values from SQL, use an indexed view or triggers to maintain them separate from storage.
Hierarchies can be represented as you describe, but a simple "Parent" column can make it difficult to query beyond a single level. Look at hierarchyid on SQL Server or CONNECT BY on oracle.
Avoiding EAV stores allows you to:
Use indexes and statistics where needed
Keep efficient storage (ints stored as ints, money stored as money)
Keep understandable queries (SELECT * FROM vwProducts WHERE Color = 'RED' ORDER BY Price ASC)
If you want an EAV system because you have too many attributes (>1024 per type) or they are not somewhat statically defined (many changes per hour), I would avoid using a relational database in the first place. Use an EAV (NoSQL) database server instead.
tl;dr: If you have a schema, use DDL to tell the server about it. If you don't, use a more appropriate server.
So, per Mehrdad's answer to a related question, I get it that a "proper" database table column doesn't store a list. Rather, you should create another table that effectively holds the elements of said list and then link to it directly or through a junction table. However, the type of list I want to create will be composed of unique items (unlike the linked question's fruit example). Furthermore, the items in my list are explicitly sorted - which means that if I stored the elements in another table, I'd have to sort them every time I accessed them. Finally, the list is basically atomic in that any time I wish to access the list, I will want to access the entire list rather than just a piece of it - so it seems silly to have to issue a database query to gather together pieces of the list.
AKX's solution (linked above) is to serialize the list and store it in a binary column. But this also seems inconvenient because it means that I have to worry about serialization and deserialization.
Is there any better solution? If there is no better solution, then why? It seems that this problem should come up from time to time.
... just a little more info to let you know where I'm coming from. As soon as I had just begun understanding SQL and databases in general, I was turned on to LINQ to SQL, and so now I'm a little spoiled because I expect to deal with my programming object model without having to think about how the objects are queried or stored in the database.
Thanks All!
John
UPDATE: So in the first flurry of answers I'm getting, I see "you can go the CSV/XML route... but DON'T!". So now I'm looking for explanations of why. Point me to some good references.
Also, to give you a better idea of what I'm up to: In my database I have a Function table that will have a list of (x,y) pairs. (The table will also have other information that is of no consequence for our discussion.) I will never need to see part of the list of (x,y) pairs. Rather, I will take all of them and plot them on the screen. I will allow the user to drag the nodes around to change the values occasionally or add more values to the plot.
No, there is no "better" way to store a sequence of items in a single column. Relational databases are designed specifically to store one value per row/column combination. In order to store more than one value, you must serialize your list into a single value for storage, then deserialize it upon retrieval. There is no other way to do what you're talking about (because what you're talking about is a bad idea that should, in general, never be done).
I understand that you think it's silly to create another table to store that list, but this is exactly what relational databases do. You're fighting an uphill battle and violating one of the most basic principles of relational database design for no good reason. Since you state that you're just learning SQL, I would strongly advise you to avoid this idea and stick with the practices recommended to you by more seasoned SQL developers.
The principle you're violating is called first normal form, which is the first step in database normalization.
At the risk of oversimplifying things, database normalization is the process of defining your database based upon what the data is, so that you can write sensible, consistent queries against it and be able to maintain it easily. Normalization is designed to limit logical inconsistencies and corruption in your data, and there are a lot of levels to it. The Wikipedia article on database normalization is actually pretty good.
Basically, the first rule (or form) of normalization states that your table must represent a relation. This means that:
You must be able to differentiate one row from any other row (in other words, you table must have something that can serve as a primary key. This also means that no row should be duplicated.
Any ordering of the data must be defined by the data, not by the physical ordering of the rows (SQL is based upon the idea of a set, meaning that the only ordering you should rely on is that which you explicitly define in your query)
Every row/column intersection must contain one and only one value
The last point is obviously the salient point here. SQL is designed to store your sets for you, not to provide you with a "bucket" for you to store a set yourself. Yes, it's possible to do. No, the world won't end. You have, however, already crippled yourself in understanding SQL and the best practices that go along with it by immediately jumping into using an ORM. LINQ to SQL is fantastic, just like graphing calculators are. In the same vein, however, they should not be used as a substitute for knowing how the processes they employ actually work.
Your list may be entirely "atomic" now, and that may not change for this project. But you will, however, get into the habit of doing similar things in other projects, and you'll eventually (likely quickly) run into a scenario where you're now fitting your quick-n-easy list-in-a-column approach where it is wholly inappropriate. There is not much additional work in creating the correct table for what you're trying to store, and you won't be derided by other SQL developers when they see your database design. Besides, LINQ to SQL is going to see your relation and give you the proper object-oriented interface to your list automatically. Why would you give up the convenience offered to you by the ORM so that you can perform nonstandard and ill-advised database hackery?
You can just forget SQL all together and go with a "NoSQL" approach. RavenDB, MongoDB and CouchDB jump to mind as possible solutions. With a NoSQL approach, you are not using the relational model..you aren't even constrained to schemas.
What I have seen many people do is this (it may not be the best approach, correct me if I am wrong):
The table which I am using in the example is given below(the table includes nicknames that you have given to your specific girlfriends. Each girlfriend has a unique id):
nicknames(id,seq_no,names)
Suppose, you want to store many nicknames under an id. This is why we have included a seq_no field.
Now, fill these values to your table:
(1,1,'sweetheart'), (1,2,'pumpkin'), (2,1,'cutie'), (2,2,'cherry pie')
If you want to find all the names that you have given to your girl friend id 1 then you can use:
select names from nicknames where id = 1;
Simple answer: If, and only if, you're certain that the list will always be used as a list, then join the list together on your end with a character (such as '\0') that will not be used in the text ever, and store that. Then when you retrieve it, you can split by '\0'. There are of course other ways of going about this stuff, but those are dependent on your specific database vendor.
As an example, you can store JSON in a Postgres database. If your list is text, and you just want the list without further hassle, that's a reasonable compromise.
Others have ventured suggestions of serializing, but I don't really think that serializing is a good idea: Part of the neat thing about databases is that several programs written in different languages can talk to one another. And programs serialized using Java's format would not do all that well if a Lisp program wanted to load it.
If you want a good way to do this sort of thing there are usually array-or-similar types available. Postgres for instance, offers array as a type, and lets you store an array of text, if that's what you want, and there are similar tricks for MySql and MS SQL using JSON, and IBM's DB2 offer an array type as well (in their own helpful documentation). This would not be so common if there wasn't a need for this.
What you do lose by going that road is the notion of the list as a bunch of things in sequence. At least nominally, databases treat fields as single values. But if that's all you want, then you should go for it. It's a value judgement you have to make for yourself.
In addition to what everyone else has said, I would suggest you analyze your approach in longer terms than just now. It is currently the case that items are unique. It is currently the case that resorting the items would require a new list. It is almost required that the list are currently short. Even though I don't have the domain specifics, it is not much of a stretch to think those requirements could change. If you serialize your list, you are baking in an inflexibility that is not necessary in a more-normalized design. Btw, that does not necessarily mean a full Many:Many relationship. You could just have a single child table with a foreign key to the parent and a character column for the item.
If you still want to go down this road of serializing the list, you might consider storing the list in XML. Some databases such as SQL Server even have an XML data type. The only reason I'd suggest XML is that almost by definition, this list needs to be short. If the list is long, then serializing it in general is an awful approach. If you go the CSV route, you need to account for the values containing the delimiter which means you are compelled to use quoted identifiers. Persuming that the lists are short, it probably will not make much difference whether you use CSV or XML.
If you need to query on the list, then store it in a table.
If you always want the list, you could store it as a delimited list in a column. Even in this case, unless you have VERY specific reasons not to, store it in a lookup table.
Many SQL databases allow a table to contain a subtable as a component. The usual method is to allow the domain of one of the columns to be a table. This is in addition to using some convention like CSV to encode the substructure in ways unknown to the DBMS.
When Ed Codd was developing the relational model in 1969-1970, he specifically defined a normal form that would disallow this kind of nesting of tables. Normal form was later called First Normal Form. He then went on to show that for every database, there is a database in first normal form that expresses the same information.
Why bother with this? Well, databases in first normal form permit keyed access to all data. If you provide a table name, a key value into that table, and a column name, the database will contain at most one cell containing one item of data.
If you allow a cell to contain a list or a table or any other collection, now you can't provide keyed access to the sub items, without completely reworking the idea of a key.
Keyed access to all data is fundamental to the relational model. Without this concept, the model isn't relational. As to why the relational model is a good idea, and what might be the limitations of that good idea, you have to look at the 50 years worth of accumulated experience with the relational model.
I'd just store it as CSV, if it's simple values then it should be all you need (XML is very verbose and serializing to/from it would probably be overkill but that would be an option as well).
Here's a good answer for how to pull out CSVs with LINQ.
Only one option doesn't mentioned in the answers. You can de-normalize your DB design. So you need two tables. One table contains proper list, one item per row, another table contains whole list in one column (coma-separated, for example).
Here it is 'traditional' DB design:
List(ListID, ListName)
Item(ItemID,ItemName)
List_Item(ListID, ItemID, SortOrder)
Here it is de-normalized table:
Lists(ListID, ListContent)
The idea here - you maintain Lists table using triggers or application code. Every time you modify List_Item content, appropriate rows in Lists get updated automatically. If you mostly read lists it could work quite fine. Pros - you can read lists in one statement. Cons - updates take more time and efforts.
I was very reluctant to choose the path I finally decide to take because of many answers. While they add more understanding to what is SQL and its principles, I decided to become an outlaw. I was also hesitant to post my findings as for some it's more important to vent frustration to someone breaking the rules rather than understanding that there are very few universal truthes.
I have tested it extensively and, in my specific case, it was way more efficient than both using array type (generously offered by PostgreSQL) or querying another table.
Here is my answer:
I have successfully implemented a list into a single field in PostgreSQL, by making use of the fixed length of each item of the list. Let say each item is a color as an ARGB hex value, it means 8 char. So you can create your array of max 10 items by multiplying by the length of each item:
ALTER product ADD color varchar(80)
In case your list items length differ you can always fill the padding with \0
NB: Obviously this is not necessarily the best approach for hex number since a list of integers would consume less storage but this is just for the purpose of illustrating this idea of array by making use of a fixed length allocated to each item.
The reason why:
1/ Very convenient: retrieve item i at substring i*n, (i +1)*n.
2/ No overhead of cross tables queries.
3/ More efficient and cost-saving on the server side. The list is like a mini blob that the client will have to split.
While I respect people following rules, many explanations are very theoretical and often fail to acknowledge that, in some specific cases, especially when aiming for cost optimal with low-latency solutions, some minor tweaks are more than welcome.
"God forbid that it is violating some holy sacred principle of SQL": Adopting a more open-minded and pragmatic approach before reciting the rules is always the way to go. Else you might end up like a candid fanatic reciting the Three Laws of Robotics before being obliterated by Skynet
I don't pretend that this solution is a breakthrough, nor that it is ideal in term of readability and database flexibility, but it can certainly give you an edge when it comes to latency.
What I do is that if the List required to be stored is small then I would just convert it to a string then split it later when required.
example in python -
for y in b:
if text1 == "":
text1 = y
else:
text1 = text1 + f"~{y}"
then when I required it I just call it from the db and -
out = query.split('~')
print(out)
this will return a list, and a string will be stored in the db. But if you are storing a lot of data in the list then creating a table is the best option.
If you really wanted to store it in a column and have it queryable a lot of databases support XML now. If not querying you can store them as comma separated values and parse them out with a function when you need them separated. I agree with everyone else though if you are looking to use a relational database a big part of normalization is the separating of data like that. I am not saying that all data fits a relational database though. You could always look into other types of databases if a lot of your data doesn't fit the model.
I think in certain cases, you can create a FAKE "list" of items in the database, for example, the merchandise has a few pictures to show its details, you can concatenate all the IDs of pictures split by comma and store the string into the DB, then you just need to parse the string when you need it. I am working on a website now and I am planning to use this way.
you can store it as text that looks like a list and create a function that can return its data as an actual list. example:
database:
_____________________
| word | letters |
| me | '[m, e]' |
| you |'[y, o, u]' | note that the letters column is of type 'TEXT'
| for |'[f, o, r]' |
|___in___|_'[i, n]'___|
And the list compiler function (written in python, but it should be easily translatable to most other programming languages). TEXT represents the text loaded from the sql table. returns list of strings from string containing list. if you want it to return ints instead of strings, make mode equal to 'int'. Likewise with 'string', 'bool', or 'float'.
def string_to_list(string, mode):
items = []
item = ""
itemExpected = True
for char in string[1:]:
if itemExpected and char not in [']', ',', '[']:
item += char
elif char in [',', '[', ']']:
itemExpected = True
items.append(item)
item = ""
newItems = []
if mode == "int":
for i in items:
newItems.append(int(i))
elif mode == "float":
for i in items:
newItems.append(float(i))
elif mode == "boolean":
for i in items:
if i in ["true", "True"]:
newItems.append(True)
elif i in ["false", "False"]:
newItems.append(False)
else:
newItems.append(None)
elif mode == "string":
return items
else:
raise Exception("the 'mode'/second parameter of string_to_list() must be one of: 'int', 'string', 'bool', or 'float'")
return newItems
Also here is a list-to-string function in case you need it.
def list_to_string(lst):
string = "["
for i in lst:
string += str(i) + ","
if string[-1] == ',':
string = string[:-1] + "]"
else:
string += "]"
return string
Imagine your grandmother's box of recipes, all written on index cards. Each of those recipes is a list of ingredients, which are themselves ordered pairs of items and quantities. If you create a recipe database, you wouldn't need to create one table for the recipe names and a second table where each ingredient was a separate record. That sounds like what we're saying here. My apologies if I've misread anything.
From Microsoft's T-SQL Fundamentals:
Atomicity of attributes is subjective in the same way that the
definition of a set is subjective. As an example, should an employee
name in an Employees relation be expressed with one attribute
(fullname), two (firstname and lastname), or three (firstname,
middlename, and lastname)? The answer depends on the application. If
the application needs to manipulate the parts of the employee’s name
separately (such as for search purposes), it makes sense to break them
apart; otherwise, it doesn’t.
So, if you needed to manipulate your list of coordinates via SQL, you would need to split the elements of the list into separate records. But is you just wanted to store a list and retrieve it for use by some other software, then storing the list as a single value makes more sense.
I was wondering if you have a website with a dozen different types of listings (Shops, Restaurants, Clubs, Hotels, Events) that require different fields, is there a benefit of creating a table with columns defined like so
Example Shop:
shop_id | name | X | Y | city | district | area | metro | station | address | phone | email | website | opening_hours
Or a more abstract approach similar to this:
object_id | name
---------------
1 | Messy Joe's
2 | Bate's Motel
type_id | name
---------------
1 | hotel
2 | restaurant
object_id | type_id
---------------
1 | 2
2 | 1
field_id | name | field_type
---------------
1 | address | text
2 | opening_hours | date
3 | speciality | text
type_id | field_id
---------------
1 | 1
1 | 2
2 | 1
2 | 3
object_id | field_id | value
1 | 1 | 1st street....
1 | 3 | English Cuisine
Of course it can be more abstract if value's are predefined (Example: specialties could have their own list)
If I take the abstract approach it can be very flexible, but queries will be more complex with a lot of joins.
But I don't know if this affects the performance, executing these 'more complex' queries.
I would be interested to know what are the up and downsides of both methods. I can just imagine for myself, but I don't have the experience to confirm this.
Certain issues need to be clarified and resolved before we can enter into a reasonable discussion.
Pre-requisite Resolution
Labels
In a profession that demands precision, it is important that we use precise labels, to avoid confusion, and so that we can communicate without having to use long-winded descriptions and qualifiers.
What you have posted as FixedTables, is Unnormalised. Fair enough, it may be an attempt at Third Normal form, but in fact it is a flat file, Unnormalised (not "denormalised). What you have posted as AbstractTables is, to be precise, Entity-Attribute-Value, which is almost, but not quite, Sixth Normal form, and is therefore more Normalised than 3NF. Assuming it is done correctly, of course.
The Unnormalised flat file is not "denormalised". It is chock full of duplication (nothing has been done to remove repeating groups and duplicate columns or to resolve dependencies) and Nulls, it is a performance hog in many ways, and prevents concurrency.
In order to be Denormalised, it has to first be Normalised, and then the Normalisation backed off a little for some good reason. Since it is not Normalised in the first place, it cannot be Denormalised. It is simply Unnormalised.
It cannot be said to be denormalised "for performance", because being a performance hog, it is the very antithesis of performance. Well, they need a justification for the lack of formalised design], and "for performance" is it. Even the smallest formal scrutiny exposed the misrepresentation (but very few people can provide, so it remains hidden, until they get an outsider to address, you guessed it, the massive performance problem).
Normalised structures perform far better than Unnormalised structures. More normalised structures (EAV/6NF) perform better than less normalised structures (3NF/5NF).
I am agreeing with the thrust of OMG Ponies, but not their labels and definitions
rather than saying 'don't "denormalise" unless you have to', I am saying, 'Normalise faithfully, period' and 'if there is a performance problem, you have not Normalised correctly'.
Wikipedia
The entries for Normal Forms and Normalisation offer definitions that are incorrect; they confuse the Normal Forms; they are lacking regarding the process of Normalisation; and they give equal weight to absurd or questionable NFs which have been debunked long ago. The result is, Wikipedia adds to an already confused and rarely understood subject. So don't waste your time.
However, in order to progress, without that reference posing a hindrance, let me say this.
The definition of 3NF is stable, and has not changed.
There is a lot of confusion of the NFs between 3NF and 5NF. The truth is that this is an area that progressed over the last 15 years; and many orgs, academics as well as vendors with their products with limitations, jumped to create a new "Normal Form" to validate their offerings. All serving commercial interests and academically unsound. 3NF in its original untampered state intended and guaranteed certain attributes.
The sum total is, 5NF is today, what 3NF was intended to be 15 years ago, and you can skip the commercial banter and the twelve or so "special" (commercial and pseudo-academic) NFs in-between, some of which are identified in Wikipedia, and even that in confusing terms.
Fifth Normal Form
Since you have been able to understand and implement the EAV in your post, you will have no problem understanding the following. Of course a true Relational Model is pre-requisite, strong keys, etc. Fifth Normal Form is, since we are skipping the Fourth:
Third Normal Form
which in simple definitive terms is, every non-key column in every table has a 1::1 relationship to the Primary Key of the table,
and to no other non-key columns
Zero data duplication (the result, if Normalisation is progressed diligently; not achieved by intelligence or experience alone, or by working toward it as a goal without the formal process)
no Update Anomalies (when you update a column somewhere, you do not have to update the same column located somewhere else; the column exists in one and only one place).
If you understand the above, 4NF, BCNF, and all the silly "NFs" can be dismissed, they are required for physicalised Record Filing Systems, as promoted by academics, quite foreign to the Relational Model (Codd).
Sixth Normal Form
The purpose is elimination of missing data (attribute columns), aka elimination of Nulls
This is the one true solution to the Null Problem (also called Handling Missing Values), and the result is a database without Nulls. (It can be done at 5NF with standards and Null substitutes but that is not optimal.) How you interpret and display the missing values is another story.
Technically, is not a true Normal Form, because it does not have 5NF as a pre-requisite, but it has a value
EAV vs Sixth Normal Form
All the databases I have written, except one, are pure 5NF. I have worked with (administered, fixed up, enhanced) a couple of EAV databases, and I have implemented many true 6NF databases. EAV is a loose implementation of 6NF, often done by people who do not have a good grasp on Normalisation and the NFs, but who can see the value in, and need the flexibility of, EAV. You are a perfect example.
The difference is this: because it is loose, and because implementers do not have a reference (6NF) to be faithful to, they only implement what they need, and they write it all in code; that ends up being an inconsistent model.
Whereas, a pure 6NF implementation does have a pure academic reference point, and thus it is usually tighter, and consistent. Typically this shows up in two visible elements:
6NF has a catalogue to contain metadata, and everything is defined in metadata, not code. EAV does not have one, everything is in code (implementers keep track of the objects and attributes). Obviously a catalogue eases the addition of columns, navigation, and allows utilities to be formed.
6NF when understood, provides the true solution to The Null Problem. EAV implementers, since they are absent the 6NF context, handle missing data in code, inconsistently, or worse, allow Nulls in the database. 6NF implementers disallow Nulls, and handle missing Data consistently and elegantly, without requiring code constructs (for Null handling; you still have to code for missing data of course).
Eg. For 6NF databases with a catalogue, I have a set of procs that will [re]generate the SQL required to perform all SELECTs, and I provide Views in 5NF for all users, so they do not need to know or understand the underlying 6NF structure. They are driven off the catalogue. Thus changes are easy and automated. EAV types do that manually, due to the absence of the catalogue.
Discussion
Now, we can start the discussion.
"Of course it can be more abstract if
value's are predefined (Example:
specialities could have their own
list)"
Sure. But do not get too "abstract". Maintain consistency and implement such lists in the same EAV (or 6NF) manner as other lists.
"If I take the abstract approach it
can be very flexible, but queries will
be more complex with a lot of joins.
But I don't know if this affects the
performance, executing these 'more
complex' queries."
Joins are pedestrian in relational databases. The problem is not the database, the problem is that SQL is cumbersome when handling joins, especially compound keys.
EAV and 6NF databases have more Joins, which just as pedestrian, no more, no less. If you have to code each SELECT manually, sure, the cumbersome gets really cumbersome.
The entire problem can be eliminated by (a) going with 6NF over EAV and (b) implementing a catalogue, from which you can (c) generate all the basic SQL. Eliminates an entire class of errors as well.
It is a common myth that Joins somehow have a cost. Totally false.
The join is implemented at compile time, there is nothing of substance to 'cost' CPU cycles.
The issue is the size of tables being joined, not the cost of the Join between those same tables.
Joining two tables with millions of rows each, on a correct PK⇢FK relation, each of which have the appropriate indices
(Unique on the parent [PK] side; Unique on the Child side [PK=parent FK + something]
is instantaneous
Where the Child index is not unique, but at least the leading columns are valid, it is slower; where there is no useful index, of course it is very slow.
None of it has to do with Join cost.
Where many rows are returned, the bottleneck will be the network and the disk layout; not the join processing.
Therefore you can get as "complex" as you like, there is no cost, SQL can handle it.
I would be interested to know what are
the up and downsides of both methods.
I can just imagine for myself, but I
don't have the experience to confirm
this.
5NF (or 3NF for those who have not made the progression) is the easiest and best, in terms of implementation; ease of use (developers as well as users); and maintenance.
The drawback is, every time you add a column, you have to change the database structure (table DDL). That is fine is some cases, but not in most cases, due to change control in place, quite onerous.
Second, you have to change existing code (code handling the new column does not count, because that is an imperative): where good standards are implemented, that is minimised; where they are absent, the scope is unpredictable.
EAV (which is what you have posted), allows columns to be added without DDL changes. That is the single reason people choose it. (code handling the new column does not count, because that is an imperative). If implemented well, it will not affect existing code; if not, it will.
But you need EAV-capable developers.
When EAV is implemented badly, it is abominable, a worse mess than 5NF done badly, but not any worse than Unnormalised which is what most databases out there are (misrepresented as "denormalised for performance").
Of course, it is even more important (than in 5NF/3NF) to hold a strong Transaction context, because the columns are far more distributed.
Likewise, it is essential to retain Declarative Referential Integrity: the messes I have seen were due in large part to the developers removing DRI because it became "too hard to maintain", the result was, as you can imagine, one mother of a data heap with duplicate 3NF/5NF rows and columns all over the place. And inconsistent Null handling.
There is no difference in performance, assuming that the server has been reasonably configured for the intended purpose. (Ok, there are specific optimisations that are possible only in 6NF, which are not possible in other NFs, but I think that is outside the scope of this thread.) And again, EAV done badly can cause unnecessary bottlenecks, no more so than Unnormalised.
Of course, if you go with EAV, I am recommending more formality; buy the full quid; go with 6NF; implement a catalogue; utilities to produce SQL; Views; handle Missing Data consistently; eliminate Nulls altogether. This reduces your vulnerability to the quality of your developers; they can forget about the EAV/6NF esoteric issues, use Views, and concentrate on the app logic.
In your question, you have presented at least two major issues at the same time. Those two issues are E-A-V and gen-spec.
First, let's talk about E-A-V. Your last table (object_id, field_id, value) is essentially an E-A-V. There is an upside to E-A-V and a downside to E-A-V. The upside is that the structure is so generic that it can accomodate almost any body of data describing almost any subject matter. That means that you can proceed to design and implementation with no data analysis and no understanding of the subject matter, and not worry about wrong assumptions. The down side is that at retrieval time, you have to do the data analysis that you skipped over before building the data base, in order to come up with queries that mean anything. This is much more serious than just retrieval efficiency. But you are also going to have terrible problems with retrieval efficiency. There are only two ways to learn about this pitfall: live through it or read about it from those who have. I recommend the reading.
Second, you have a gen-spec case. Your table (object_id, type_id) captures a gen-spec (generalization-specialization) pattern, along with the related tables. If I had to generalize between hotels and restaurants, I might call it something like "public accomodations" or "venues". But I'm not sure I understand your case, and you may be driving for something even more general than those two names suggest. After all, you've included "events" in your list, and an event is not a type of venue in my mind.
I've referred other people to readings on gen-spec and the relational model in previous responses.
When two tables are very similar, when should they be combined?
But I hesitate to send you off in the same direction, because it's not clear to me that you want to come up with a relational model of the data before building your database. A relational model of a body of data and an E-A-V model of the same data are almost totally at odds with each other. It seems to me you have to make that choice before you even explore how to express gen-spec in the relational model of data.
When you start to require a large number of different entities (or even before...), a nosql solution would be vastly simpler than either choice.
Just store each entity/record with the exact fields you require.
{
"id": 1,
"type":"Restaurant",
"name":"Messy Joe",
"address":"1 Main St.",
"tags":["asian","fusion","casual"]
}
The "abstract" approach is better known as "Normalization", looks like 3rd Normal Form (3NF).
The other one is called "Denormalized", and can be a valid performance option... when you've encountered speed issues using the Normalized approach, not before.
How do you have the listings represented in code? I'd guess Listing as a supertype, with Shop, Restuarant, etc. as subtypes?
Assuming so, this is a case of how to map subtypes to a relational database. There are generally three choices:
Option 1: single table per subtype,
with common attributes repeated in
each table (name, id, etc).
Option 2: single table for all objects (your single table approach)
Option 3: table for the supertype and one for each subtype
There's no universally correct solution. My preference is generally to start with option 3; it provides an intituitive structure to work with, is pretty well normalised and can easily be extended. It means a single join for retrieving each instance - but RDBMS are well optimised for doing joins so it doesn't really cause performance problems in practice.
Option 2 can be more performant for queries (no joins) but causes problems if other tables need to refer to all supertype instances (proliferation of foreign keys).
Option 1 appears at first sight to be the most performant, although 2 caveats: (1) It's not resilient to change. If you add a new subtype (and so different attributes) you'll need to change the table structure and migrate it. (2) It can be less efficient than it seems. Because the table population is sparse, some DBs don't store it particularly efficiently. As a consequence it can be less efficicent than option 1 - since the query engine can do joins faster than it can search bloated sparse table spaces.
Which to choose really comes down to knowing details of your problem. I'd suggest reading up a bit on the options: this article is a good place to start.
hth
Here's a simple example of an SQL table:
CREATE TABLE persons
(
id INTEGER,
name VARCHAR(255),
height DOUBLE
);
Since I haven't used SQL very much, I haven't yet learned to think in its terms. Effectively, my brain translates the above into this:
struct Person
{
int id;
string name;
double height;
Person(int id_, const char* name_, double height_)
:id(id_),name(name_),height(height_)
{}
};
Person persons[64];
Then, inserting some elements, in SQL:
INSERT INTO persons (id, name, height) VALUES (1234, 'Frank', 5.125);
INSERT INTO persons (id, name, height) VALUES (5678, 'Jesse', 6.333);
...and how I'm thinking of it:
persons[0] = Person(1234, "Frank", 5.125);
persons[1] = Person(5678, "Jesse", 6.333);
I've read that SQL can be thought of as two major parts: data manipulation and data definition. I'm more concerned about organizing my data in the first place, as opposed to querying and modifying it. There, the distinctions of SQL are immediately obvious. To me, it seems like the subtleties of how data can and should be structured in SQL is a more obscure topic. Where does the array-of-structs analogy I'm automatically drawing for myself break down?
To give a concrete example, let's say that I want each entry in my persons table (or each of my Person objects) to contain a field denoting the names of that person's children (actual fruit-of-your-loins children, not hierarchical data structure children). In reality, these would probably be cross-table references (or pointers to objects), but let's keep things simple and make this field contain zero or more names. In my C++ example, I'd modify the declaration like so:
vector<string> namesOfChildren;
...and do something like this:
persons[0].namesOfChildren.push_back("John");
persons[0].namesOfChildren.push_back("Jane");
But, from what I can tell, the typical usage of SQL doesn't mirror this approach. If I'm wrong and there's a simple, straightforward solution, great. If not, I'm sure a SQL novice like myself could benefit greatly from a little cogitation on the subject of how databases of SQL tables are meant to be used in contrast to bare, generic data structures.
To me, it seems like the subtleties of how data can and should be structured in SQL is a more obscure topic.
It's called "data(base) modeling" and is somewhere between engineering discipline and art (like much of the computer programming). If you are really interested in the topic, take a look at ERwin Methods Guide.
Where does the array-of-structs analogy I'm automatically drawing for myself break down?
At persistency, concurrency, consistency and scalability.
Persistency: The table is automatically saved to the permanent storage. It'll stay there and survive reboots (not that a real database server will reboot much) until you explicitly delete it or there is a catastrophic hardware failure. DBMSes have well-oiled backup procedures that should help in the latter case.
Concurrency: Tables are meant to be accessed and (need be) modified by many clients concurrently. Mechanisms such as locking and multi-version concurrency control are employed to ensure clients will not "step on each other's toes".
Consistency: You can define certain constraints (such as uniqueness, foreign keys or checks) and the DBMS will make sure they are never broken. Furthermore, this can often be done in a declarative manner, minimizing chance for errors. On top of that, everything you do in a database is transactional, so you reap the benefits of atomicity, consistency, isolation and durability (aka. "ACID"). In a nutshell, the database will defend itself from bad data.
Scalability: A well designed database schema can grow well beyond the confines of the available RAM, and still keep good performance, using techniques such as indexing, partitioning, clustering etc... Furthermore, SQL is declarative and set-based, which means that the DBMS has the latitude to pick the optimal "query execution plan" for the data at hand, auto-parallelize the query, cache the results in hope they will be reused etc... without changing the meaning of the query.
Your analogy to the array of structs is not bad ... for the beginning.
After this beginning the differences start in relation to organizing data.
Database people love their "Normal Forms" laws. We do not have these laws in C++ or similar programming languages. Organizing data in the tables according to these laws help database engines to do their magic (queries, joins) better, i.e keep databases compact and crunch millions of rows in fractions of a second, and allow multiple requests concurrently. They are not absolute laws: the 1NF (1st Normal Form) is followed in 99.9999% cases, but the bigger the number (2NF, 3NF, ...) the more often DB planners allow themselves to deviate from them.
Description of normal forms can be found for example here.
I will try to illustrate differences on your example.
In your example the fields of your struct correspond to the columns of the database table. Adding vector of the names as a new field of struct would correspond to adding comma separated list of the names into a new column of your table. This is a violation of the 1NF which demands that one cell is for one value - not for the list of values. To normalize your data you will need to have two arrays: one of Person structs, and another new of structs for Child. While in C++ we can use just pointers to link each child to its parent, in SQL we must use the mechanism of the key. You already added id field into Person struct, now we need to add ParentId field to Child struct so that database engine could find the Parent. ParentId column is called foreign key. Another approach to satisfy 1NF instead of creating the new table/struct for children is that we can switch to children-centric thinking and have just one table with a record per child which will include all the information about the parent of the child. Info about the parent obviously will be repeated in as many records as many children this parent has.
Note (this is also considered part of 1NF) that while in the array of structs we always know the order of the elements, in databases it is up to the engine in what order to store the records. It is just mathematical un-ordered set of records, the engine can resort it in internal storage for various optimizations as it likes. When you retrieve the records from the database with the SELECT statement, if you care about the order, you need to provide ORDER BY clause.
2NF is about removing repetitions from your records. Imagine you would have place of work related fields also as part of your Person struct. Imagine it would include Name of the company and company address. If many Persons in your dataset work in the same Company your would repeat address of the company in their records. Probably we wouldn't do these repetitions in C++ either, but nevertheless extracting these repetitions into a separate table would satisfy 2NF. Strictly speaking even if there is no repetitions and all your Persons work in different places, 2NF still requires to extract data about the workplaces into separate table because it requires that one table would represent one entity.
3NF is about removing transitive dependency and is considered kind of optional, so I will not describe it here. See link above.
Another feature of databases quite different from conventional programming of data structures in C++ is the database indexes. Simplifying, index is just a copy of a column (or columns) (i.e vertical slice) into a separate table where they are stored in an inherent for them order and each record in the index retains the reference to the whole record. So, in your example to create index by height you would create another array of 64 elems of the new
struct HeightIndexElem
{
double height;
Person* pFullRecord;
}
and sort them by height in this array. This will allow the DB engine to automatically optimize certain queries. The database engine itself decides when to use certain index. In C++ we usually create maps (Dictionaries in C#) to speed up finding element by certain characteristic but we must use these maps ourselves - no automatic aspect there.
There are major differences:-
SQL tables are persistent -- (English Tran: written to disk)
They are transactional -- (really written to disk)
They can be an arbitary size -- (Tables of a several hundred million rows are quite common)
They support relational algebra -- (Joins with other tables, filtering etc.)
Relational Algebra is provable -- For a given SELECT statement there is only one possible correct answer.
The biggest differences are that when you "UPDATE" and "COMMIT" you know your data is saved in the database and will be there until you decide to "DELETE" it. When you update a structure within an array its gone when the machine is switched off.
The other big difference is scale. The size of a modern DBMS is only limited by your hard disk budget.
[I really like farfareast's answer from an academic stand point, but I feel the need to add a more practically oriented answer too.]
SQL tables themselves are "bare, generic data structures" as you call C++'s structures. They are only different data structures: a table is always an array of (fixed size) structs and the only pointers you can use are foreign keys.
For example, when you are adding a vector<string> to your struct, you are already using pointers internally as strings are only a "fancy" way of writing char*. This would already require a second table in SQL (using a secondayr index column to keep the elements in order). Of course there are things like postgresql's arrays that can help in this specific case, but those are "only" shortcuts for similar hand-writeable constructs.
The real difference in data structure and algorithms comes from the fact that you can easily add declarations of index structures. Say you know you need to always access Persons in the order of their height. In C++ you'd use some kind of tree or sorted list to keep them in order. There is an STL container for that. The downside is, that when you need to access them in a different order (say by name), you'll have to add a second tree and duplicate the data or start using pointers to Persons. If you add a Person, you need to update all containers and so on. This becomes cumbersome and soon you'll be on the front page of The Daily WTF. SQL tables on the other side can have attached indices which automatically keep up with new and changed data. Of course, their maintenance also must be paid in performance, but the management of them is basically deciding which are required by your access patterns -- something needed in every case -- and defining them. In contrast to having to rewrite large parts of an application, this is a much more favorable situation.
We are starting a new project where we need to store product and many product attributes in a database. The technology stack is MS SQL 2008 and Entity Framework 4.0 / LINQ for data access.
The products (and Products Table) are pretty straightforward (a SKU, manufacturer, price, etc..). However there are also many attributes to store with each product (think industrial widgets). These may range from color to certification(s) to pipe size. Every product may have different attributes, and some may have multiples of the same attribute (Ex: Certifications).
The current proposal is that we will basically have a name/value pair table with a FK back to the product ID in each row.
An example of the attributes Table may look like this:
ProdID AttributeName AttributeValue
123 Color Blue
123 FittingSize 1.25
123 Certification AS1111
123 Certification EE2212
123 Certification FM.3
456 Pipe 11
678 Color Red
999 Certification AE1111
...
Note: Attribute name would likely come from a lookup table or enum.
So the main question here is: Is this the best pattern for doing something like this? How will the performance be? Queries will be based on a JOIN of the product and attributes table, and generally need many WHEREs to filter on specific attributes - the most common search will be to find a product based on a set of known/desired attributes.
If anyone has any suggestions or a better pattern for this type of data, please let me know.
Thanks!
-Ed
You are about to re-invent the dreaded EAV model, Entity-Attribute-Value. This is notorious for having problems in real-life, for various reasons, many covered by Dave's answer.
Luckly the SQL Customer Advisory Team (SQLCAT) has a whitepaper on the topic,
Best Practices for Semantic Data Modeling for Performance and Scalability. I highly recommend this paper. Unfortunately, it does not offer a panacea, a cookie cutter solution, since the problem has no solution. Instead, you'll learn how to find the balance between a fixed queryable schema and a flexible EAV structure, a balance that works for your specific case:
Semantic data models can be very
complex and until semantic databases
are commonly available, the challenge
remains to find the optimal balance
between the pure object model and the
pure relational model for each
application. The key to success is to
understand the issues, make the
necessary mitigations for those
issues, and then test, test, and test.
Scalability testing is a critical
success factor if you are going to
find that optimal design.
This is going to be problematic for a couple of reasons:
Your entity queries will be much harder to write. Transforming the results of those queries into something resembling a ViewModel when it comes time for presentation is going to be painful because it will involve a pivot for each product.
Understanding what your datatypes will be is going to be tough when it comes time to read certain types of data. Are you planning on storing this as strings? For example, DateTimes hold more data than the default .ToString() implementation writes to the string. You're also going to have issues if you try to store floating-point values.
Your objects' data integrity is at risk. There will be a temptation to put properties which should be just attributes of your main product tables in this "bucket o' data". Maybe the design will be semi-sane to begin with, but I guarantee you that after a certain amount of time, folks will start to just throw properties in the bag. It'll then be very tough to keep your objects' integrity with such a loosely defined structure.
Your indexes will most likely be suboptimal. Again think of a property which should be on your product table. Instead of being able to index on just one column, you will now be forced to make a potentially very large composite index on your "type" table.
Since you're apparently planning to throw out proper datatypes and use strings, the performance of range queries for numeric data will likely be poor.
Your table will get big, slowing backups and queries. Instead of an integer being 4 bytes, you're going to have to store far more for an integer of any size.
Better to normalize the table in a more "traditional" way using "IS-A" relationships. For example, you might have Pipes, which are a type of Product, but have a couple more attributes. You might have Stoves, which are a type of product, but have a couple more attributes still.
If you really have a generic database and all sorts of other properties which aren't going to be subject to data integrity rules, you very well may want to consider storing data in an XML column. It's hard to tell you what the correct design choice is unless I know a lot more about your business.
IMO this is a design antipattern. The siren song of this idea has lured many a developer onto the rocks of of an unmaintainable application.
I know it is an old one - however there might be other readers...
I have seen the balance EAV to attribute modeled approach. Well - it is still EAV. "EAV's are like drugs" is pretty much true. So what about thinking it through once more - and let's be aggressive really:
I still liked the supertype apporach, where a lot of tables use the same primary key from a key generator. Let's reuse this one. So what about creating a new table for each set of attributes - all having the primary from the same key generator? Eg. you would have a table with the fields "color,pipe", another table "fittingsize,pipe", and so on. The requirement "volatility of attributes" screams for a carefully(automatically) maintained data dictionary anyway.
This approach is fully normalized and can be fully automated. You can support checks if specific attribute sets materialized already as table by hashing attribute name clusters, eg. crc32(lower('color~fittingsize~pipe')) where the atribute names need to be sorted alphabetically. Of course this requires to have the hash in the data dictionary. Based on the data dictionary each object can be searched (using 'UNION'), especially if the data dictionary itself is a table. Having the data dictionary as table also allows you to use its primary (surrogate) key as basis for unique tablenames, to end up with tables like 'attributes1','attributes2',... Most databases nowadays support some billion tables - so we are sort of save on that end as well. You could even have a product catalouge with very common attributes, that reference the extended attribute tables.
An open issue are 1:n data sets. I am afraid you need to sort them out in separate tables. However this very much depends on your data presentation and querying strategy. Should they always be presented as comma seperated string attached to the product or do you want to eg. be able to query for all products of a certain Certification?
Before you flame this approach please consider this: It is meant for use cases where you have a very high volatility of attributes - in quantity and quality - only. Also it was preset, that you cannot know most of the attributes at the point in time when the solution is created. So do not discuss this in a context where you can model your attributes upfront which would enable you to balance trade offs much better.
In short, you cannot go all one route. If you use an EAV like your example you will have a myriad of problems like those outlined by the other posters not the least of which will be performance and data integrity. Let me reiterate, that using an EAV as the core of your solution will fail when you get to reporting and analysis. However, as you have also stated, you might have hundreds of attributes that change regularly.
The solution, IMO, is a hybrid. For common attributes, use columns/standard schema. For additional, arbitrary attributes, use an EAV. However, the rule with the EAV data is that you can never, ever, under any circumstances, write a query that includes a sort or filter on an attribute. I.e., you can never write Where AttributeName = 'Foo'. The EAV portion of the schema represents a bag of data that is merely there for tracking purposes. In fact, I have seen many people implement this solution by using Xml for the EAV portion. The moment someone does want to search, filter, sort or place an EAV value in a specific spot on a report, that attribute must be elevated to a top level column in the products table.
The key to this hybrid approach is discipline. It will seem simple enough to add a filter, sort or put an attribute in a specific spot somewhere on a report especially when you get pressure from management. You must resist this temptation. Once you go down the dark path... If you do not think that you can maintain that level of discipline in your development team, then I would not use an EAV. As I've mentioned before, EAV's are like drugs: in small quantities and used under the right circumstances they can be beneficial. Too much will kill you.
Rather than have a name-value table, create the usual Product table structure containing all the common attributes, and add an XML column for the attributes that vary by product.
I have used this structure before and it worked quite well.
As #Dave Markle mentions, the name-value approach can lead to a world of pain.