Scaling of objective function in optimization problems - optimization

In a lot of optimization algorithms I have seen that they use a scaling factor to scale the objective function. I dont understand what is the reason behind this. Why do we need scaling of objective function in optimization algorithms? Does it work without scaling. Logically it should work but I am a litte bit confused now.
I hope you can answer me and thank you indeed

Scaling is often used in optimization problems to either:
A) Make better answers look MUCH better (log scaling)
or
B) Make the difference between an OK answer and a slightly better answer come closer together (Quashing functions).
Most algorithms should work on a non-scaled objective function, but will likely work better on the scaled version.
To see the effect I recommend running your meta-heuristic on both versions.

Related

Information about CGAL and alternatives

I'm working on a problem that will eventually run in an embedded microcontroller (ESP8266). I need to perform some fairly simple operations on linear equations. I don't need much, but do need to be able work with points and linear equations to:
Define an equations for lines either from two known points, or one
point and a gradient
Calculate a new x,y point on an equation line that is a specific distance from another point on that equation line
Drop a perpendicular onto an equation line from a point
Perform variations of cosine-rule calculations on points and triangle sides defined as equations
I've roughed up some code for this a while ago based on high school "y = mx + c" concepts, but it's flawed (it fails with infinities when lines are vertical), and currently in Scala. Since I suspect I'm reinventing a wheel that's not my primary goal, I'd like to use someone else's work for this!
I've come across CGAL, and it seems very likely it's capable of all this and more, but I have two questions about it (given that it seems to take ages to get enough understanding of this kind of huge library to actually be able to answer simple questions!)
It seems to assert some kind of mathematical perfection in it's calculations, but that's not important to me, and my system will be severely memory constrained. Does it use/offer memory efficient approximations?
Is it possible (and hopefully easy) to separate out just a limited subset of features, or am I going to find the entire library (or even a very large subset) heading into my memory limited machine?
And, I suppose the inevitable follow up: are there more suitable libraries I'm unaware of?
TIA!
The problems that you are mentioning sound fairly simple indeed, so I'm wondering if you really need any library at all. Maybe if you post your original code we could help you fix it--your problem sounds like you need to redo a calculation avoiding a division by zero.
As for your point (2) about separating a limited number of features from CGAL, giving the size and the coding style of that project, from my experience that will be significantly more complicated (if at all possible) than fixing your own code.
In case you want to try a simpler library than CGAL, maybe you could try Boost.Geometry
Regards,

How does "minimize" work in Z3

I'm using the minimize function in Z3 a lot and I'm worrying about some scalability issues (when the number of variables I'm minimizing grows). What is the underlying algorithm of "minimize" and is there a general way to speed things up?
See this paper for details on the optimization algorithms used in Z3. Regarding your question about "general way to speed things up:" Impossible to tell without seeing exactly what you're trying to do and how you are encoding it. Posting a concrete example where things don't "scale" might be helpful.

Selecting a solver & modeling language for optimization problems

I use lp_solve (from R) currently to solve reasonably large (but sparse) LPs/IPs for planning/optimization and other Operations Research flavored problems that arise at work.
Broadly speaking, it works well, and i like working in R, but i know that the models we consider will need to evolve at least to being quadratic in nature (with the possibility of being non-convex in general).
I'd like to know what the "industry standard" is in this space: should i not look beyond the AMPL/CPLEX combination (and invest some time there) ?
Additional questions:
Which of GAMS/AMPL is a better choice? (not proficient in either, but know what i need functionally: sparse matrix support for example)
For really large LPs/QPs/IPs, how well does CPLEX scale across clusters? How much of a curve is there to be able to setup/run such a cluster?

How to optimize MATLAB loops?

I have been working lately on a number of iterative algorithms in MATLAB, and been getting hit hard by MATLAB's performance (or lack thereof) when it comes to loops. I'm aware of the benefit of vectorizing code when possible, but are there any tools for optimization when you need the loop for your algorithm?
I am aware of the MEX-file option to write small subroutines in C/C++, although given my algorithms, this can be a very painful option given the data structures required. I mainly use MATLAB for the simplicity and speed of prototyping, so a syntactically complex, statically typed language is not ideal for my situation.
Are there any other suggestions? Even other languages (python?) which have relatively painless matrix tools are an option.
It was once true that vectorization would improve the speed of your MATLAB code. However, that is largely no longer true with the JIT-accelerator
This video demonstrating the MATLAB profiler might help.
PROFILER is very useful tool to find bottlenecks in Matlab code. it does not change your code of course, but helps to find which functions/lines to optimize with vectorization or mex.
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/profile.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_env/f9-17018.html
If you have a choice, be sure to set up your loops so you scan the data column-wise which is how the data in MATLAB are arranged. In addition, be sure to preallocate any output arrays before the loop and index into them instead of growing the array inside the for-loop.
If you can cast your code so your operations are called on the whole matrix then you will see great improvement in the speed of your code. Many functions are much quicker when operating on the whole matrix rather than in an element-wise fashion with loops.
You might want to investigate MATLAB's Parallel Computing Toolbox which can make a big difference if you have the right hardware. I re-wrote about 12 lines of code and got 4 - 6 times speedup for one of our loop-intensive programs on and eight core PC.

Compiler optimizations: Where/how can I get a feel for what the payoff is for different optimizations?

In my independent study of various compiler books and web sites, I am learning about many different ways that a compiler can optimize the code that is being compiled, but I am having trouble figuring out how much of a benefit each optimization will tend to give.
How do most compiler writers go about deciding which optimizations to implement first? Or which optimizations are worth the effort or not worth the effort? I realize that this will vary between types of code and even individual programs, but I'm hoping that there is enough similarity between most programs to say, for instance, that one given technique will usually give you a better performance gain than another technique.
I found when implementing textbook compiler optimizations that some of them tended to reverse the improvements made by other optimizations. This entailed a lot of work trying to find the right balance between them.
So there really isn't a good answer to your question. Everything is a tradeoff. Many optimizations work well on one type of code, but are pessimizations for other types. It's like designing a house - if you make the kitchen bigger, the pantry gets smaller.
The real work in building an optimizer is trying out the various combinations, benchmarking the results, and, like a master chef, picking the right mix of ingredients.
Tongue in cheek:
Hubris
Benchmarks
Embarrassment
More seriously, it depends on your compiler's architecture and goals. Here's one person's experience...
Go for the "big payoffs":
native code generation
register allocation
instruction scheduling
Go for the remaining "low hanging fruit":
strength reduction
constant propagation
copy propagation
Keep bennchmarking.
Look at the output; fix anything that looks stupid.
It is usually the case that combining optimizations, or even repeating optimization passes, is more effective than you might expect. The benefit is more than the sum of the parts.
You may find that introduction of one optimization may necessitate another. For example, SSA with Briggs-Chaitin register allocation really benefits from copy propagation.
Historically, there are "algorithmical" optimizations from which the code should benefit in most of the cases, like loop unrolling (and compiler writers should implement those "documented" and "tested" optimizations first).
Then there are types of optimizations that could benefit from the type of processor used (like using SIMD instructions on modern CPUs).
See Compiler Optimizations on Wikipedia for a reference.
Finally, various type of optimizations could be tested profiling the code or doing accurate timing of repeated executions.
I'm not a compiler writer, but why not just incrementally optimize portions of your code, profiling all the while?
My optimization scheme usually goes:
1) make sure the program is working
2) find something to optimize
3) optimize it
4) compare the test results with what came out from 1; if they are different, then the optimization is actually a breaking change.
5) compare the timing difference
Incrementally, I'll get it faster.
I choose which portions to focus on by using a profiler. I'm not sure what extra information you'll garner by asking the compiler writers.
This really depends on what you are compiling. There is was a reasonably good discussion about this on the LLVM mailing list recently, it is of course somewhat specific to the optimizers they have available. They use abbreviations for a lot of their optimization passes, if you not familiar with any of acronyms they are tossing around you can look at their passes page for documentation. Ultimately you can spend years reading academic papers on this subject.
This is one of those topics where academic papers (ACM perhaps?) may be one of the better sources of up-to-date information. The best thing to do if you really want to know could be to create some code in unoptimized form and some in the form that the optimization would take (loops unrolled, etc) and actually figure out where the gains are likely to be using a compiler with optimizations turned off.
It is worth noting that in many cases, compiler writers will NOT spend much time, if any, on ensuring that their libraries are optimized. Benchmarks tend to de-emphasize or even ignore library differences, presumably because you can just use different libraries. For example, the permutation algorithms in GCC are asymptotically* less efficient than they could be when trying to permute complex data. This relates to incorrectly making deep copies during calls to swap functions. This will likely be corrected in most compilers with the introduction of rvalue references (part of the C++0x standard). Rewriting the STL to be much faster is surprisingly easy.
*This assumes the size of the class being permuted is variable. E.g. permutting a vector of vectors of ints would slow down if the vectors of ints were larger.
One that can give big speedups but is rarely done is to insert memory prefetch instructions. The trick is to figure out what memory the program will be wanting far enough in advance, never ask for the wrong memory and never overflow the D-cache.