Blender export to obj messes my normals - blender

I'm having a bit of trouble with the Wavefront exporter of Blender.
Actually I'm developing a parser for .obj mesh. I created a mesh in Blender, set up its UVs, normals and so on... When I'm loading this mesh with my loader, UVs get placed correctly but not normals, in fact they are all flipped!
If I flip all normals in Blender, the mesh is correctly displayed in my app. The strange thing is that if a create a simple cube, export it, load it, display it in my app, it'll be correctly displayed without having to "badly" flip in Blender.
I tried a lot with the parameters of exporter, I set my mesh smooth so that I'm sure I get per vertex normals...
I tried by setting backface culling ON/OFF, in fact I tried a lot of thing I found on teh Internet without result.
Here is a bit of my code :
//I add information about vertices / uv / normals in 3 collections
//vertex
case "v":
l_vertex = new VPrimVertex(new VPrimVector3(Double.Parse(l_words[1]), Double.Parse(l_words[2]), Double.Parse(l_words[3])));
ListeVertices.Add(l_vertex);
break;
//vertex normal
case "vn":
ListeNormales.Add(new VPrimVector3(Double.Parse(l_words[1]), Double.Parse(l_words[2]), Double.Parse(l_words[3])));
break;
//vertex UV
case "vt":
//pas la même orientation UV entre Wavefront et WPF d'où le 1-V
ListeUVs.Add(new VPrimPointUV(Double.Parse(l_words[1]), 1.0-Double.Parse(l_words[2])));
break;
//face
case "f":
//pas un triangle
if (l_words.Length > 4)
{
Triangule(l_words);
}
//triangle
else
{
ComputeFace(l_words);
}
break;
.
.
.
Computeface(){
...
//for each face :
//for each vertex of a face :
//p_face[i] contains strings like v1/vt1/vn1
l_stringVertex = p_face[i].Split('/');
l_vertex = ListeVertices.ElementAt(int.Parse(l_stringVertex[0]) - 1);
l_vertex.AddAdjacent(l_face);
l_vertex.Normale = ListeNormales.ElementAt(int.Parse(l_stringVertex[2]) - 1);
l_face.AddVertex(l_vertex);
l_face.UVList.Add(m_listeUVs.ElementAt(int.Parse(l_stringVertex[1]) - 1));
...
}
And then I fill WPF MeshGeometry3D with all thoses datas.
private void Finalise()
{
Point3D l_point3D;
Vector3D l_vector;
Point l_point;
VPrimPointUV l_pointUV;
int i;
foreach (VPrimFace l_face in Racine.SubdivideList)
{
i = 0;
foreach (VPrimVertex l_vertex in l_face.VertexList)
{
l_point3D = new Point3D(l_vertex.Position.X, l_vertex.Position.Y, l_vertex.Position.Z);
CurrentMesh.MeshGeometry3D.Positions.Add(l_point3D);
l_vertex.moyenneNormaleFacesAdjacentes();
l_vector = new Vector3D(l_vertex.Normale.X, l_vertex.Normale.Y, l_vertex.Normale.Z);
CurrentMesh.MeshGeometry3D.Normals.Add(l_vector);
if (Texture)
{
l_pointUV = l_face.UVList.ElementAt(i);
l_point = new Point(l_pointUV.U, l_pointUV.V);
CurrentMesh.MeshGeometry3D.TextureCoordinates.Add(l_point);
}
CurrentMesh.MeshGeometry3D.TriangleIndices.Add(CurrentMesh.MeshGeometry3D.Positions.Count-1);
i += 1;
}
}
}
If you have any idea...Thank you
On Blender 2.66

Related

How do I extract the output from CGAL::poisson_surface_reconstruction_delaunay?

I am trying to convert a point cloud to a trimesh using CGAL::poisson_surface_reconstruction_delaunay() and extract the data inside the trimesh to an OpenGL friendly format:
// The function below should set vertices and indices so that:
// triangle 0: (vertices[indices[0]],vertices[indices[1]],vertices[indices[2]]),
// triangle 1: (vertices[indices[3]],vertices[indices[4]],vertices[indices[5]])
// ...
// triangle n - 1
void reconstructPointsToSurfaceInOpenGLFormat(const& std::list<std::pair<Kernel::Point_3, Kernel::Vector_3>> points, // input: points and normals
std::vector<glm::vec3>& vertices, // output
std::vector<unsigned int>& indices) { // output
CGAL::Surface_mesh<Kernel::Point_3> trimesh;
double spacing = 10;
bool ok = CGAL::poisson_surface_reconstruction_delaunay(points.begin(), points.end(),
CGAL::First_of_pair_property_map<std::pair<Kernel::Point_3, Kernel::Vector_3>>(),
CGAL::Second_of_pair_property_map<std::pair<Kernel::Point_3, Kernel::Vector_3>>(),
trimesh, spacing);
// How do I set the vertices and indices values?
}
Please help me on iterating trough the triangles in trimesh and setting the vertices and indices in the code above.
The class Polyhedron_3 is not indexed based so you need to provide a item class with ids like Polyhedron_items_with_id_3. You will then need to call CGAL::set_halfedgeds_items_id(trimesh) to init the ids. If you can't modify the Polyhedron type, then you can use dynamic properties and will need to init the ids.
Note that Surface_mesh is indexed based and no particular handling is needed to get indices.
Based on sloriots code from his answer:
void mesh2GLM(CGAL::Surface_mesh<Kernel::Point_3>& trimesh, std::vector<glm::vec3>& vertices, std::vector<int>& indices) {
std::map<size_t, size_t> meshIndex2Index;
// Loop over all vertices in mesh:
size_t index = 0;
for (Mesh::Vertex_index v : CGAL::vertices(trimesh)) {
CGAL::Epick::Point_3 point = trimesh.point(v);
std::size_t vi = v;
vertices.push_back(glm::vec3(point.x(), point.y(), point.z()));
meshIndex2Index[vi] = index;
index++;
}
// Loop over all triangles (faces):
for (Mesh::Face_index f : faces(trimesh)) {
for (Mesh::Vertex_index v : CGAL::vertices_around_face(CGAL::halfedge(f, trimesh), trimesh)) {
trimesh.point(v);
std::size_t vi = v;
size_t index = meshIndex2Index[vi];
indices.push_back(index);
}
}
}
Seems to work fine.

Skeletal animation bug with Assimp in DirectX 12

I am using Assimp to load an FBX model with animation (created in Blender) into my DirectX 12 game, but I'm experiencing a very frustrating bug with the animation rendered by the game application.
The test model is a simple 'flagpole' containing four bones like so:
Bone0 -> Bone1 -> Bone2 -> Bone3
The model renders correctly in its rest pose when the keyframe animation is bypassed.
The model also renders and animates properly when the animation rotates the model only by the root bone (Bone0).
However, when importing a model that rotates at the first joint (i.e. at Bone1), the vertices clustered around each joint seem 'stuck' in their original positions, while the vertices surrounding the 'bones' proper appear to follow through with the correct animation.
The result is a crappy zigzag of stretched geometry like so:
Instead the model should resemble an 'allen-key' shape at the end of its animation pose, as shown by the same model rendered in the AssimpViewer utility tool:
Since the model is rendering correctly in AssimpViewer, it's reasonable to assume there are no issues with the FBX file exported by Blender. I then checked and confirmed that the vertices 'stuck' around the joints did indeed have their vertex weights correctly assigned by the game loading code.
The C++ model loading and animation code is based on the popular OGLDev tutorial: https://ogldev.org/www/tutorial38/tutorial38.html
Now the infuriating thing is, since the AssimpViewer tool was correctly rendering the model animation, I also copied in the SceneAnimator and AnimEvaluator classes from that tool to generate the final bone transforms via that code branch as well... only to end up with exactly the same zigzag bug in the game!
I'm reasonably confident there aren't any issues with finding the bone hierarchy structure at initialization, so here are the key functions that traverse the hierarchy and interpolate key frames each frame.
VOID Mesh::ReadNodeHeirarchy(FLOAT animationTime, CONST aiNode* pNode, CONST aiAnimation* pAnim, CONST aiMatrix4x4 parentTransform)
{
std::string nodeName(pNode->mName.data);
// nodeTransform is a relative transform to parent node space
aiMatrix4x4 nodeTransform = pNode->mTransformation;
CONST aiNodeAnim* pNodeAnim = FindNodeAnim(pAnim, nodeName);
if (pNodeAnim)
{
// Interpolate scaling and generate scaling transformation matrix
aiVector3D scaling(1.f, 1.f, 1.f);
CalcInterpolatedScaling(scaling, animationTime, pNodeAnim);
// Interpolate rotation and generate rotation transformation matrix
aiQuaternion rotationQ (1.f, 0.f, 0.f, 0.f);
CalcInterpolatedRotation(rotationQ, animationTime, pNodeAnim);
// Interpolate translation and generate translation transformation matrix
aiVector3D translat(0.f, 0.f, 0.f);
CalcInterpolatedPosition(translat, animationTime, pNodeAnim);
// build the SRT transform matrix
nodeTransform = aiMatrix4x4(rotationQ.GetMatrix());
nodeTransform.a1 *= scaling.x; nodeTransform.b1 *= scaling.x; nodeTransform.c1 *= scaling.x;
nodeTransform.a2 *= scaling.y; nodeTransform.b2 *= scaling.y; nodeTransform.c2 *= scaling.y;
nodeTransform.a3 *= scaling.z; nodeTransform.b3 *= scaling.z; nodeTransform.c3 *= scaling.z;
nodeTransform.a4 = translat.x; nodeTransform.b4 = translat.y; nodeTransform.c4 = translat.z;
}
aiMatrix4x4 globalTransform = parentTransform * nodeTransform;
if (m_boneMapping.find(nodeName) != m_boneMapping.end())
{
UINT boneIndex = m_boneMapping[nodeName];
// the global inverse transform returns us to mesh space!!!
m_boneInfo[boneIndex].FinalTransform = m_globalInverseTransform * globalTransform * m_boneInfo[boneIndex].BoneOffset;
//m_boneInfo[boneIndex].FinalTransform = m_boneInfo[boneIndex].BoneOffset * globalTransform * m_globalInverseTransform;
m_shaderTransforms[boneIndex] = aiMatrixToSimpleMatrix(m_boneInfo[boneIndex].FinalTransform);
}
for (UINT i = 0u; i < pNode->mNumChildren; i++)
{
ReadNodeHeirarchy(animationTime, pNode->mChildren[i], pAnim, globalTransform);
}
}
VOID Mesh::CalcInterpolatedRotation(aiQuaternion& out, FLOAT animationTime, CONST aiNodeAnim* pNodeAnim)
{
UINT rotationKeys = pNodeAnim->mNumRotationKeys;
// we need at least two values to interpolate...
if (rotationKeys == 1u)
{
CONST aiQuaternion& key = pNodeAnim->mRotationKeys[0u].mValue;
out = key;
return;
}
UINT rotationIndex = FindRotation(animationTime, pNodeAnim);
UINT nextRotationIndex = (rotationIndex + 1u) % rotationKeys;
assert(nextRotationIndex < rotationKeys);
CONST aiQuatKey& key = pNodeAnim->mRotationKeys[rotationIndex];
CONST aiQuatKey& nextKey = pNodeAnim->mRotationKeys[nextRotationIndex];
FLOAT deltaTime = FLOAT(nextKey.mTime) - FLOAT(key.mTime);
FLOAT factor = (animationTime - FLOAT(key.mTime)) / deltaTime;
assert(factor >= 0.f && factor <= 1.f);
aiQuaternion::Interpolate(out, key.mValue, nextKey.mValue, factor);
}
I've just included the rotation interpolation here, since the scaling and translation functions are identical. For those unaware, Assimp's aiMatrix4x4 type follows a column-vector math convention, so I haven't messed with original matrix multiplication order.
About the only deviation between my code and the two Assimp-based code branches I've adopted is the requirement to convert the final transforms from aiMatrix4x4 types into a DirectXTK SimpleMath Matrix (really an XMMATRIX) with this conversion function:
Matrix Mesh::aiMatrixToSimpleMatrix(CONST aiMatrix4x4 m)
{
return Matrix
(m.a1, m.a2, m.a3, m.a4,
m.b1, m.b2, m.b3, m.b4,
m.c1, m.c2, m.c3, m.c4,
m.d1, m.d2, m.d3, m.d4);
}
Because of the column-vector orientation of aiMatrix4x4 Assimp matrices, the final bone transforms are not transposed for HLSL consumption. The array of final bone transforms are passed to the skinning vertex shader constant buffer as follows.
commandList->SetPipelineState(m_psoForwardSkinned.Get()); // set PSO
// Update vertex shader with current bone transforms
CONST std::vector<Matrix> transforms = m_assimpModel.GetShaderTransforms();
VSBonePassConstants vsBoneConstants{};
for (UINT i = 0; i < m_assimpModel.GetNumBones(); i++)
{
// We do not transpose bone matrices for HLSL because the original
// Assimp matrices are column-vector matrices.
vsBoneConstants.boneTransforms[i] = transforms[i];
//vsBoneConstants.boneTransforms[i] = transforms[i].Transpose();
//vsBoneConstants.boneTransforms[i] = Matrix::Identity;
}
GraphicsResource vsBoneCB = m_graphicsMemory->AllocateConstant(vsBoneConstants);
vsPerObjects.gWorld = m_assimp_world.Transpose(); // vertex shader per object constant
vsPerObjectCB = m_graphicsMemory->AllocateConstant(vsPerObjects);
commandList->SetGraphicsRootConstantBufferView(RootParameterIndex::VSBoneConstantBuffer, vsBoneCB.GpuAddress());
commandList->SetGraphicsRootConstantBufferView(RootParameterIndex::VSPerObjConstBuffer, vsPerObjectCB.GpuAddress());
//commandList->SetGraphicsRootDescriptorTable(RootParameterIndex::ObjectSRV, m_shaderTextureHeap->GetGpuHandle(ShaderTexDescriptors::SuzanneDiffuse));
commandList->SetGraphicsRootDescriptorTable(RootParameterIndex::ObjectSRV, m_shaderTextureHeap->GetGpuHandle(ShaderTexDescriptors::DefaultDiffuse));
for (UINT i = 0; i < m_assimpModel.GetMeshSize(); i++)
{
commandList->IASetVertexBuffers(0u, 1u, &m_assimpModel.meshEntries[i].GetVertexBufferView());
commandList->IASetIndexBuffer(&m_assimpModel.meshEntries[i].GetIndexBufferView());
commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
commandList->DrawIndexedInstanced(m_assimpModel.meshEntries[i].GetIndexCount(), 1u, 0u, 0u, 0u);
}
Please note I am using the Graphics Resource memory management helper object found in the DirectXTK12 library in the code above. Finally, here's the skinning vertex shader I'm using.
// Luna (2016) lighting model adapted from Moller
#define MAX_BONES 4
// vertex shader constant data that varies per object
cbuffer cbVSPerObject : register(b3)
{
float4x4 gWorld;
//float4x4 gTexTransform;
}
// vertex shader constant data that varies per frame
cbuffer cbVSPerFrame : register(b5)
{
float4x4 gViewProj;
float4x4 gShadowTransform;
}
// bone matrix constant data that varies per object
cbuffer cbVSBonesPerObject : register(b9)
{
float4x4 gBoneTransforms[MAX_BONES];
}
struct VertexIn
{
float3 posL : SV_POSITION;
float3 normalL : NORMAL;
float2 texCoord : TEXCOORD0;
float3 tangentU : TANGENT;
float4 boneWeights : BONEWEIGHT;
uint4 boneIndices : BONEINDEX;
};
struct VertexOut
{
float4 posH : SV_POSITION;
//float3 posW : POSITION;
float4 shadowPosH : POSITION0;
float3 posW : POSITION1;
float3 normalW : NORMAL;
float2 texCoord : TEXCOORD0;
float3 tangentW : TANGENT;
};
VertexOut VS_main(VertexIn vin)
{
VertexOut vout = (VertexOut)0.f;
// Perform vertex skinning.
// Ignore BoneWeights.w and instead calculate the last weight value
// to ensure all bone weights sum to unity.
float4 weights = vin.boneWeights;
//weights.w = 1.f - dot(weights.xyz, float3(1.f, 1.f, 1.f));
//float4 weights = { 0.f, 0.f, 0.f, 0.f };
//weights.x = vin.boneWeights.x;
//weights.y = vin.boneWeights.y;
//weights.z = vin.boneWeights.z;
weights.w = 1.f - (weights.x + weights.y + weights.z);
float4 localPos = float4(vin.posL, 1.f);
float3 localNrm = vin.normalL;
float3 localTan = vin.tangentU;
float3 objPos = mul(localPos, (float4x3)gBoneTransforms[vin.boneIndices.x]).xyz * weights.x;
objPos += mul(localPos, (float4x3)gBoneTransforms[vin.boneIndices.y]).xyz * weights.y;
objPos += mul(localPos, (float4x3)gBoneTransforms[vin.boneIndices.z]).xyz * weights.z;
objPos += mul(localPos, (float4x3)gBoneTransforms[vin.boneIndices.w]).xyz * weights.w;
float3 objNrm = mul(localNrm, (float3x3)gBoneTransforms[vin.boneIndices.x]) * weights.x;
objNrm += mul(localNrm, (float3x3)gBoneTransforms[vin.boneIndices.y]) * weights.y;
objNrm += mul(localNrm, (float3x3)gBoneTransforms[vin.boneIndices.z]) * weights.z;
objNrm += mul(localNrm, (float3x3)gBoneTransforms[vin.boneIndices.w]) * weights.w;
float3 objTan = mul(localTan, (float3x3)gBoneTransforms[vin.boneIndices.x]) * weights.x;
objTan += mul(localTan, (float3x3)gBoneTransforms[vin.boneIndices.y]) * weights.y;
objTan += mul(localTan, (float3x3)gBoneTransforms[vin.boneIndices.z]) * weights.z;
objTan += mul(localTan, (float3x3)gBoneTransforms[vin.boneIndices.w]) * weights.w;
vin.posL = objPos;
vin.normalL = objNrm;
vin.tangentU.xyz = objTan;
//vin.posL = posL;
//vin.normalL = normalL;
//vin.tangentU.xyz = tangentL;
// End vertex skinning
// transform to world space
float4 posW = mul(float4(vin.posL, 1.f), gWorld);
vout.posW = posW.xyz;
// assumes nonuniform scaling, otherwise needs inverse-transpose of world matrix
vout.normalW = mul(vin.normalL, (float3x3)gWorld);
vout.tangentW = mul(vin.tangentU, (float3x3)gWorld);
// transform to homogenous clip space
vout.posH = mul(posW, gViewProj);
// pass texcoords to pixel shader
vout.texCoord = vin.texCoord;
//float4 texC = mul(float4(vin.TexC, 0.0f, 1.0f), gTexTransform);
//vout.TexC = mul(texC, gMatTransform).xy;
// generate projective tex-coords to project shadow map onto scene
vout.shadowPosH = mul(posW, gShadowTransform);
return vout;
}
Some last tests I tried before posting:
I tested the code with a Collada (DAE) model exported from Blender, only to observe the same distorted zigzagging in the Win32 desktop application.
I also confirmed the aiScene object for the loaded model returns an identity matrix for the global root transform (also verified in AssimpViewer).
I have stared at this code for about a week and am going out of my mind! Really hoping someone can spot what I have missed. If you need more code or info, please ask!
This seems to be a bug with the published code in the tutorials / documentation. It would be great if you could open an issue-report here: Assimp-Projectpage on GitHub .
It's taken almost another two weeks of pain, but I finally found the bug. It was in my own code, and it was self-inflicted. Before I show the solution, I should explain the further troubleshooting I did to get there.
After losing faith with Assimp (even though the AssimpViewer tool was animating my model correctly), I turned to the FBX SDK. The FBX ViewScene command line utility tool that's available as part of the SDK was also showing and animating my model properly, so I had hope...
So after a few days reviewing the FBX SDK tutorials, and taking another week to write an FBX importer for my Windows desktop game, I loaded my model and... saw exactly the same zig-zag animation anomaly as the version loaded by Assimp!
This frustrating outcome meant I could at least eliminate Assimp and the FBX SDK as the source of the problem, and focus again on the vertex shader. The shader I'm using for vertex skinning was adopted from the 'Character Animation' chapter of Frank Luna's text. It was identical in every way, which led me to recheck the C++ vertex structure declared on the application side...
Here's the C++ vertex declaration for skinned vertices:
struct Vertex
{
// added constructors
Vertex() = default;
Vertex(FLOAT x, FLOAT y, FLOAT z,
FLOAT nx, FLOAT ny, FLOAT nz,
FLOAT u, FLOAT v,
FLOAT tx, FLOAT ty, FLOAT tz) :
Pos(x, y, z),
Normal(nx, ny, nz),
TexC(u, v),
Tangent(tx, ty, tz) {}
Vertex(DirectX::SimpleMath::Vector3 pos,
DirectX::SimpleMath::Vector3 normal,
DirectX::SimpleMath::Vector2 texC,
DirectX::SimpleMath::Vector3 tangent) :
Pos(pos), Normal(normal), TexC(texC), Tangent(tangent) {}
DirectX::SimpleMath::Vector3 Pos;
DirectX::SimpleMath::Vector3 Normal;
DirectX::SimpleMath::Vector2 TexC;
DirectX::SimpleMath::Vector3 Tangent;
FLOAT BoneWeights[4];
BYTE BoneIndices[4];
//UINT BoneIndices[4]; <--- YOU HAVE CAUSED ME A MONTH OF PAIN
};
Quite early on, being confused by Luna's use of BYTE to store the array of bone indices, I changed this structure element to UINT, figuring this still matched the input declaration shown here:
static CONST D3D12_INPUT_ELEMENT_DESC inputElementDescSkinned[] =
{
{ "SV_POSITION", 0u, DXGI_FORMAT_R32G32B32_FLOAT, 0u, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0u },
{ "NORMAL", 0u, DXGI_FORMAT_R32G32B32_FLOAT, 0u, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0u },
{ "TEXCOORD", 0u, DXGI_FORMAT_R32G32_FLOAT, 0u, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0u },
{ "TANGENT", 0u, DXGI_FORMAT_R32G32B32_FLOAT, 0u, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0u },
//{ "BINORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
{ "BONEWEIGHT", 0u, DXGI_FORMAT_R32G32B32A32_FLOAT, 0u, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0u },
{ "BONEINDEX", 0u, DXGI_FORMAT_R8G8B8A8_UINT, 0u, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0u },
};
Here was the bug. By declaring UINT in the vertex structure for bone indices, four bytes were being assigned to store each bone index. But in the vertex input declaration, the DXGI_FORMAT_R8G8B8A8_UINT format specified for the "BONEINDEX" was assigning one byte per index. I suspect this data type and format size mismatch was resulting in only one valid bone index being able to fit in the BONEINDEX element, and so only one index value was passed to the vertex shader each frame, instead of the whole array of four indices for correct bone transform lookups.
So now I've learned... the hard way... why Luna had declared an array of BYTE for bone indices in the original C++ vertex structure.
I hope this experience will be of value to someone else, and always be careful changing code from your original learning sources.

Best way to do object collision?

I'm trying to do wall collision for objects and I've followed a tutorial that offers one method of doing collision.
This is the tutorial: https://www.youtube.com/watch?v=yZU1QJJdxgs
Currently, if the object detects a wall, instead of moving it's full distance, it moves pixel by pixel until it's against the wall. This worked well until I started trying to rotate the object with image_rotate, because it caused objects to get stuck in walls by either sliding against them or if they rotated into them.
I fixed this by using draw_sprite_ext instead and changing the rotation of the sprite itself and not the mask, which worked for about 20 minutes until it started causing more problems.
///obj_player Step
//Initialise Variables
hor_speed = 0;
ver_speed = 0;
accelerationspeed = 0.2;
decelerationspeed = 0.2;
maxspeed = 3;
pointdirection = 0;
//Get player's input
key_right = keyboard_check(ord("D"))
key_left = -keyboard_check(ord("A"))
key_up = -keyboard_check(ord("W"))
key_down = keyboard_check(ord("S"))
pointdirection = point_direction(x,y,mouse_x,mouse_y) + 270
hor_movement = key_left + key_right;
ver_movement = key_up + key_down;
//horizontal acceleration
if !(abs(hor_speed) >= maxspeed) {
hor_speed += hor_movement * accelerationspeed;
}
//horizontal deceleration
if (hor_movement = 0) {
if !(hor_speed = 0) {
hor_speed -= (sign(hor_speed) * decelerationspeed)
}
}
//vertical acceleration
if !(abs(ver_speed) >= maxspeed) {
ver_speed += ver_movement * accelerationspeed;
}
//vertical deceleration
if (ver_movement = 0) {
if !(ver_speed = 0) {
ver_speed -= (sign(ver_speed) * decelerationspeed)
}
}
//horizontal collision
if (place_meeting(x+hor_speed,y,obj_wall)) {
while(!place_meeting(x+sign(hor_speed),y,obj_wall)) {
x += sign(hor_speed);
}
hor_speed = 0;
}
//vertical collision
if (place_meeting(x,y+ver_speed,obj_wall)) {
while(!place_meeting(x,y+sign(ver_speed),obj_wall)) {
y += sign(ver_speed);
}
ver_speed = 0;
}
//move the player
x += hor_speed;
y += ver_speed;
///obj_player Draw
//rotate to look at cursor
draw_sprite_ext(spr_player, 0, x,y,image_xscale,image_yscale, pointdirection, image_blend, image_alpha);
I think the best way to rotate objects is through image_rotate, and I'd like to do it without getting stuff stuck in walls. Can my current method of collision be adapted to do this, or should I attempt to do it in a different way?
Your code looks fine, but if you're going to be rotating objects then you would also need to consider having a "knock back mechanic." Reason being is the player could be sitting next to this wall and if you rotate the object over them so they cant move, its not a fun time being stuck.
So you 'could' have the object that's rotating do a check before rotating and if objects are in the way then either stop it or push them back so they cant be within range.

Rendering painted lines as nodes in Cocos

I'm working on a drawing app for iPad using Cocos-iOS and I'm having performance issues with drawing lines as a type of CCNode. I understand that using draw in a node causes it to be called every time the canvas is repainted and the current code is very heavy if used every time:
for (LineNodePoint *point in self.points) {
start = end;
end = point;
if (start && end) {
float distance = ccpDistance(start.point, end.point);
if (distance > 1) {
int d = (int)distance;
float difx = end.point.x - start.point.x;
float dify = end.point.y - start.point.y;
for (int i = 0; i < d; i++) {
float delta = i / distance;
[[self.brush sprite] setPosition:ccp(start.point.x + (difx * delta), start.point.y + (dify * delta))];
[[self.brush sprite] visit];
}
}
}
}
Very heavy...
I either need a better way to draw the lines or to be able to cache the drawing as a raster.
Thanks in advance for any help.
How about ccDrawLine or CCMutableTexture? CCMutableTexture is for manipulating pixels using CCRenderTexture internally as you said.
ccDrawLine
cocos2d for iPhone 1.0.0 API reference
CCMutableTexture
Fast set/getPixel for an opengl texture?
[render texture] pixel manipulation (integrated CCMutableTexture functionality)

point light illumination using Phong model

I wish to render a scene that contains one box and a point light source using the Phong illumination scheme. The following are the relevant code snippets for my calculation:
R3Rgb Phong(R3Scene *scene, R3Ray *ray, R3Intersection *intersection)
{
R3Rgb radiance;
if(intersection->hit == 0)
{
radiance = scene->background;
return radiance;
}
...
// obtain ambient term
... // this is zero for my test
// obtain emissive term
... // this is also zero for my test
// for each light in the scene, obtain calculate the diffuse and specular terms
R3Rgb intensity_diffuse(0,0,0,1);
R3Rgb intensity_specular(0,0,0,1);
for(unsigned int i = 0; i < scene->lights.size(); i++)
{
R3Light *light = scene->Light(i);
R3Rgb light_color = LightIntensity(scene->Light(i), intersection->position);
R3Vector light_vector = -LightDirection(scene->Light(i), intersection->position);
// check if the light is "behind" the surface normal
if(normal.Dot(light_vector)<=0)
continue;
// calculate diffuse reflection
if(!Kd.IsBlack())
intensity_diffuse += Kd*normal.Dot(light_vector)*light_color;
if(Ks.IsBlack())
continue;
// calculate specular reflection
... // this I believe to be irrelevant for the particular test I'm doing
}
radiance = intensity_diffuse;
return radiance;
}
R3Rgb LightIntensity(R3Light *light, R3Point position)
{
R3Rgb light_intensity;
double distance;
double denominator;
if(light->type != R3_DIRECTIONAL_LIGHT)
{
distance = (position-light->position).Length();
denominator = light->constant_attenuation +
(light->linear_attenuation*distance) +
(light->quadratic_attenuation*distance*distance);
}
switch(light->type)
{
...
case R3_POINT_LIGHT:
light_intensity = light->color/denominator;
break;
...
}
return light_intensity;
}
R3Vector LightDirection(R3Light *light, R3Point position)
{
R3Vector light_direction;
switch(light->type)
{
...
case R3_POINT_LIGHT:
light_direction = position - light->position;
break;
...
}
light_direction.Normalize();
return light_direction;
}
I believe that the error must be somewhere in either LightDirection(...) or LightIntensity(...) functions because when I run my code using a directional light source, I obtain the desired rendered image (thus this leads me to believe that the Phong illumination equation is correct). Also, in Phong(...), when I computed the intensity_diffuse and while debugging, I divided light_color by 10, I was obtaining a resulting image that looked more like what I need. Am I calculating the light_color correctly?
Thanks.
Turned out I had no error. The "final image" I was comparing my results to wasn't computed correctly.