Should I use EAV database design model or a lot of tables - sql

I started a new application and now I am looking at two paths and don't know which is good way to continue.
I am building something like eCommerce site. I have a categories and subcategories.
The problem is that there are different type of products on site and each has different properties. And site must be filterable by those product properties.
This is my initial database design:
Products{ProductId, Name, ProductCategoryId}
ProductCategories{ProductCategoryId, Name, ParentId}
CategoryProperties{CategoryPropertyId, ProductCategoryId, Name}
ProductPropertyValues{ProductId, CategoryPropertyId, Value}
Now after some analysis I see that this design is actually EAV model and I read that people usually don't recommend this design.
It seems that dynamic sql queries are required for everything.
That's one way and I am looking at it right now.
Another way that I see is probably named a LOT WORK WAY but if it's better I want to go there.
To make table
Product{ProductId, CategoryId, Name, ManufacturerId}
and to make table inheritance in database wich means to make tables like
Cpus{ProductId ....}
HardDisks{ProductId ....}
MotherBoards{ProductId ....}
erc. for each product (1 to 1 relation).
I understand that this will be a very large database and very large application domain but is it better, easier and performance better than the option one with EAV design.

EAV is rarely a win. In your case I can see the appeal of EAV given that different categories will have different attributes and this will be hard to manage otherwise. However, suppose someone wants to search for "all hard drives with more than 3 platters, using a SATA interface, spinning at 10k rpm?" Your query in EAV will be painful. If you ever want to support a query like that, EAV is out.
There are other approaches however. You could consider an XML field with extended data or, if you are on PostgreSQL 9.2, a JSON field (XML is easier to search though). This would give you a significantly larger range of possible searches without the headaches of EAV. The tradeoff would be that schema enforcement would be harder.

This questions seems to discuss the issue in greater detail.
Apart from performance, extensibility and complexity discussed there, also take into account:
SQL databases such as SQL Server have full-text search features; so if you have a single field describing the product - full text search will index it and will be able to provide advanced semantic searches
take a look at no-sql systems that are all the rage right now; scalability should be quite good with them and they provide support for non-structured data such as the one you have. Hadoop and Casandra are good starting points.

You could very well work with the EAV model.
We do something similar with a Logistics application. It is built on .net though.
Apart from the tables, your application code has to handle the objects correctly.
See if you can add generic table for each object. It works for us.

Related

Is it better to use entity-arrtibute-value model over storing various different product in single description text column? [duplicate]

It is safe to say that the EAV/CR database model is bad. That said,
Question: What database model, technique, or pattern should be used to deal with "classes" of attributes describing e-commerce products which can be changed at run time?
In a good E-commerce database, you will store classes of options (like TV resolution then have a resolution for each TV, but the next product may not be a TV and not have "TV resolution"). How do you store them, search efficiently, and allow your users to setup product types with variable fields describing their products? If the search engine finds that customers typically search for TVs based on console depth, you could add console depth to your fields, then add a single depth for each tv product type at run time.
There is a nice common feature among good e-commerce apps where they show a set of products, then have "drill down" side menus where you can see "TV Resolution" as a header, and the top five most common TV Resolutions for the found set. You click one and it only shows TVs of that resolution, allowing you to further drill down by selecting other categories on the side menu. These options would be the dynamic product attributes added at run time.
Further discussion:
So long story short, are there any links out on the Internet or model descriptions that could "academically" fix the following setup? I thank Noel Kennedy for suggesting a category table, but the need may be greater than that. I describe it a different way below, trying to highlight the significance. I may need a viewpoint correction to solve the problem, or I may need to go deeper in to the EAV/CR.
Love the positive response to the EAV/CR model. My fellow developers all say what Jeffrey Kemp touched on below: "new entities must be modeled and designed by a professional" (taken out of context, read his response below). The problem is:
entities add and remove attributes weekly (search keywords dictate future attributes)
new entities arrive weekly (products are assembled from parts)
old entities go away weekly (archived, less popular, seasonal)
The customer wants to add attributes to the products for two reasons:
department / keyword search / comparison chart between like products
consumer product configuration before checkout
The attributes must have significance, not just a keyword search. If they want to compare all cakes that have a "whipped cream frosting", they can click cakes, click birthday theme, click whipped cream frosting, then check all cakes that are interesting knowing they all have whipped cream frosting. This is not specific to cakes, just an example.
There's a few general pros and cons I can think of, there are situations where one is better than the other:
Option 1, EAV Model:
Pro: less time to design and develop a simple application
Pro: new entities easy to add (might even
be added by users?)
Pro: "generic" interface components
Con: complex code required to validate simple data types
Con: much more complex SQL for simple
reports
Con: complex reports can become almost
impossible
Con: poor performance for large data sets
Option 2, Modelling each entity separately:
Con: more time required to gather
requirements and design
Con: new entities must be modelled and
designed by a professional
Con: custom interface components for each
entity
Pro: data type constraints and validation simple to implement
Pro: SQL is easy to write, easy to
understand and debug
Pro: even the most complex reports are relatively simple
Pro: best performance for large data sets
Option 3, Combination (model entities "properly", but add "extensions" for custom attributes for some/all entities)
Pro/Con: more time required to gather requirements and design than option 1 but perhaps not as much as option 2 *
Con: new entities must be modelled and designed by a professional
Pro: new attributes might be easily added later on
Con: complex code required to validate simple data types (for the custom attributes)
Con: custom interface components still required, but generic interface components may be possible for the custom attributes
Con: SQL becomes complex as soon as any custom attribute is included in a report
Con: good performance generally, unless you start need to search by or report by the custom attributes
* I'm not sure if Option 3 would necessarily save any time in the design phase.
Personally I would lean toward option 2, and avoid EAV wherever possible. However, for some scenarios the users need the flexibility that comes with EAV; but this comes with a great cost.
It is safe to say that the EAV/CR database model is bad.
No, it's not. It's just that they're an inefficient usage of relational databases. A purely key/value store works great with this model.
Now, to your real question: How to store various attributes and keep them searchable?
Just use EAV. In your case it would be a single extra table. index it on both attribute name and value, most RDBMs would use prefix-compression to on the attribute name repetitions, making it really fast and compact.
EAV/CR gets ugly when you use it to replace 'real' fields. As with every tool, overusing it is 'bad', and gives it a bad image.
// At this point, I'd like to take a moment to speak to you about the Magento/Adobe PSD format.
// Magento/PSD is not a good ecommerce platform/format. Magento/PSD is not even a bad ecommerce platform/format. Calling it such would be an
// insult to other bad ecommerce platform/formats, such as Zencart or OsCommerce. No, Magento/PSD is an abysmal ecommerce platform/format. Having
// worked on this code for several weeks now, my hate for Magento/PSD has grown to a raging fire
// that burns with the fierce passion of a million suns.
http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11#107
The internal models are wacky at best, like someone put the schema into a boggle game, sealed that and put it in a paint shacker...
Real world: I'm working on a midware fulfilment app and here are one the queries to get address information.
CREATE OR REPLACE VIEW sales_flat_addresses AS
SELECT sales_order_entity.parent_id AS order_id,
sales_order_entity.entity_id,
CONCAT(CONCAT(UCASE(MID(sales_order_entity_varchar.value,1,1)),MID(sales_order_entity_varchar.value,2)), "Address") as type,
GROUP_CONCAT(
CONCAT( eav_attribute.attribute_code," ::::: ", sales_order_entity_varchar.value )
ORDER BY sales_order_entity_varchar.value DESC
SEPARATOR '!!!!!'
) as data
FROM sales_order_entity
INNER JOIN sales_order_entity_varchar ON sales_order_entity_varchar.entity_id = sales_order_entity.entity_id
INNER JOIN eav_attribute ON eav_attribute.attribute_id = sales_order_entity_varchar.attribute_id
AND sales_order_entity.entity_type_id =12
GROUP BY sales_order_entity.entity_id
ORDER BY eav_attribute.attribute_code = 'address_type'
Exacts address information for an order, lazily
--
Summary: Only use Magento if:
You are being given large sacks of money
You must
Enjoy pain
I'm surprised nobody mentioned NoSQL databases.
I've never practiced NoSQL in a production context (just tested MongoDB and was impressed) but the whole point of NoSQL is being able to save items with varying attributes in the same "document".
Where performance is not a major requirement, as in an ETL type of application, EAV has another distinct advantage: differential saves.
I've implemented a number of applications where an over-arching requirement was the ability to see the history of a domain object from its first "version" to it's current state. If that domain object has a large number of attributes, that means each change requires a new row be inserted into it's corresponding table (not an update because the history would be lost, but an insert). Let's say this domain object is a Person, and I have 500k Persons to track with an average of 100+ changes over the Persons life-cycle to various attributes. Couple that with the fact that rare is the application that has only 1 major domain object and you'll quickly surmize that the size of the database would quickly grow out of control.
An easy solution is to save only the differential changes to the major domain objects rather than repeatedly saving redundant information.
All models change over time to reflect new business needs. Period. Using EAV is but one of the tools in our box to use; but it should never be automatically classified as "bad".
I'm struggling with the same issue. It may be interesting for you to check out the following discussion on two existing ecommerce solutions: Magento (EAV) and Joomla (regular relational structure):
https://forum.virtuemart.net/index.php?topic=58686.0
It seems, that Magento's EAV performance is a real showstopper.
That's why I'm leaning towards a normalized structure. To overcome the lack of flexibility I'm thinking about adding some separate data dictionary in the future (XML or separate DB tables) that could be edited, and based on that, application code for displaying and comparing product categories with new attributes set would be generated, together with SQL scripts.
Such architecture seems to be the sweetspot in this case - flexible and performant at the same time.
The problem could be frequent use of ALTER TABLE in live environment. I'm using Postgres, so its MVCC and transactional DDL will hopefully ease the pain.
I still vote for modeling at the lowest-meaningful atomic-level for EAV. Let standards, technologies and applications that gear toward certain user community to decide content models, repetition needs of attributes, grains, etc.
If it's just about the product catalog attributes and hence validation requirements for those attributes are rather limited, the only real downside to EAV is query performance and even that is only a problem when your query deals with multiple "things" (products) with attributes, the performance for the query "give me all attributes for the product with id 234" while not optimal is still plenty fast.
One solution is to use the SQL database / EAV model only for the admin / edit side of the product catalog and have some process that denormalizes the products into something that makes it searchable. Since you already have attributes and hence it's rather likely that you want faceting, this something could be Solr or ElasticSearch. This approach avoids basically all downsides to the EAV model and the added complexity is limited to serializing a complete product to JSON on update.
EAV has many drawbacks:
Performance degradation over time
Once the amount of data in the application grows beyond a certain size, the retrieval and manipulation of that data is likely to become less and less efficient.
The SQL queries are very complex and difficult to write.
Data Integrity problems.
You can't define foreign keys for all the fields needed.
You have to define and maintain your own metadata.
I have a slightly different problem: instead of many attributes with sparse values (which is possibly a good reason to use EAV), I want to store something more like a spreadsheet. The columns in the sheet can change, but within a sheet all cells will contain data (not sparse).
I made a small set of tests to benchmark two designs: one using EAV, and the other using a Postgres ARRAY to store cell data.
EAV
Array
Both schemas have indexes on appropriate columns, and the indexes are used by the planner.
It turned out the array-based schema was an order of magnitude faster for both inserts and queries. From quick tests, it seemed that both scaled linearly. The tests aren't very thorough, though. Suggestions and forks welcome - they're under an MIT licence.

Normalisation and multi-valued fields

I'm having a problem with my students using multi-valued fields in access and getting confused about normalisation as a result.
Here is what I can make out. Given a 1-to-many relationship, e.g.
Articles Comments
-------- --------
artID{PK} commID{PK}
text text
artID{FK}
Access makes it possible to store this information into what appears to be one table, something like
Articles
--------
artID{PK}
text
comment
+ value
"value" referring to multiple comment values for the comment "column", which access actually stores as a separate table. The specifics of how the values are stored - table, its PK and FK - is completely hidden, but it is possible to query the multi-valued field, e.g. in the example above with the query
INSERT INTO article( [comment].Value )
VALUES ('thank you')
WHERE artID = 1;
But the query doesn't quite reveal the underlying structure of the hidden table implementing the multi-valued field.
Given this (disaster, in my view) - my problem is how to help newcomers to database design and normalisation understand what Access is offering them, why it may not be helpful, and that it is not a reason to ignore the basics of the relational model. More specifically:
Are there better ways, besides queries as above, to reveal the structure behind multi-valued fields?
Are there good examples of where the multi-valued field is not good enough, and shows the advantage of normalising explicitly?
Are there straightforward ways to obtain the multi-select visual output of Access multi-values, but based on separate, explicit tables?
Thanks!
I cannot give you advice in using this feature, because I never used it; however, I can give you reasons not to use it.
I want to have full control on what I'm doing. This is not the case for multi-valued fields, therefore I don't use them.
This feature is not expandable. What if you want to add a date field to your comments, for instance?
It is sometimes necessary to upsize an Access (backend) database to a "big" database (SQL Server, Oracle). These Databases don't offer such a feature. It is often the customer who decides which database has to be used. Recently I had to migrate an Access application (frontend) using an Oracle backend to a SQL-Server backend because my client decided to drop his Oracle server. Therefore it is a good idea to restrict yourself to use only common features.
For common tasks like editing lookup tables I created generic forms. My existing solutions will not work with multi-valued fields.
I have a (self-made) tool that synchronizes changes in the structure of the database on my developer’s site with the database on the client’s site. This tool cannot deal with multi-valued fields.
I have tools for the security management that can grant SELECT, INSERT, UPDATE and DELETE rights on tables or revoke them. Again, the management tool does not work with multi-valued fields.
Having a separate table for the comments allows you to quickly inspect all the comments (by opening the table). You cannot do this with multi-valued fields.
You will not see the 1 to n relation between the articles and the comments in a database diagram.
With a separate table you can choose whether you want to cascade deletes to the details table or not. If you don't, you will not be able to delete an article as long as there are comments attached to it. This can be desirable, if you want to protect the comments from being deleted inadvertently.
It is important to realize the difference between physical and logical relationships. Today the whole internet and web services (SOAP) quite much realizes on a data format that is multi-value in nature.
When you represent multi-value data with a relational database (such as Access), then behind the scenes you are using a traditional (and legitimate) relation. I cannot stress that as such, then the use of multi-value columns in Access is in fact a LEGITIMATE relational model.
The fact that table is not exposed does not negate this issue. In fact, if you represent an invoice (master record, and repeating details) as a XML data cube, then we see two things:
1) you can build and represent that invoice with a relational database like Access
2) such a relational data model that is normalized can ALSO be represented as a SINGLE xml string.
3) deleting the XML record (or string) means that cascade delete of the child rows (invoice details) MUST occur.
So while it is true that Multi-Value fields been added to Access to deal with SharePoint, it is MOST important to realize that such data can be mapped to a relational database (if you could not do this, then Access could not consume that XML data using relational database tables as ACCESS CURRENTLY DOES RIGHT NOW).
And with the web such as XML, and SharePoint then the need to consume and manage and utilize such data is not only widespread, but is in fact a basic staple of the internet.
As more and more data becomes of a complex nature, we find the requirement for multi-value data exploding in use. Anyone who used that so called "fad" the internet is thus relying and using data that is in fact VERY OFTEN XML and is multi-value (complex) in nature.
As long as the logical (not physical) relational data model is kept, then use of multi-value columns to represent such data is possible and this is exactly what Access is doing (it is mapping the relational data model to a complex model). Note that the complex (xml) data model does NOT necessary have to be relational in nature. However, if you ARE going to map such data to Access then the complex multi-value model MUST CONFORM TO A RELATIONAL data model.
This is EXACTLY what is occurring in Access.
The fact that such a correct and legitimate math relational model is not exposed is of little issue here. Are we to suggest that because Excel does not expose the binary codes used then users will never learn about computers? Or perhaps we all must program in assembler so we all correctly learn how computers works.
At the end of the day, who cares and why does this matter? The fact that people drive automatic cars today does not toss out the concept that they are using different gears to operate that car. The idea that we shut down all of society because someone is going to drive an automatic car or in this case use complex data would be galactic stupid on our part.
So keep in mind that extensions to SQL do exist in Access to query the multi-value data, but as well pointed out here those underlying tables are not exposed. However, as noted, exposing such tables would STILL REQUIRE one to not change or mess with cascade delete since that feature is required TO MAINTAIN A INTERSECTION OF FEATURES and a CORRECT MATH relational model between the complex data model (xml) and that of using two related tables to represent such data.
In other words, you can use related tables to represent the complex data model IF YOU REMOVE the ability of users to play with the referential integrity options. The RI options MUST remain as set in those hidden tables else such data will not be able to make the trip BACK to the XML or complex data model of which it was consumed from.
As noted, in regards to users being taught how gasoline reacts with oxygen for that of learning to drive a car, or using a word processor and being forced to learn a relational model and expose the underlying tables makes little sense here.
However, the points made here in regards to such tables being exposed are legitimate concerns.
The REAL problem is SQL server and Oracle etc. cannot consume or represent that complex data WHILE ACCESS CAN CONSUME such data.
As noted, the complex data ship has LONG ago sailed! XML, soap, and the basic technologies of the internet are based on this complex data model.
In effect, SQL server, Oracle and most databases cannot that consume this multi-value data represent it without users having to create and model such data in a relational fashion is a BIG shortcoming of SQL server etc.
Access stands alone in this ability to consume this data.
So, for anyone who used a smartphone, iPad or the web, you are using basic technologies that are built around using complex data, something that Access now allows.
It is likely that the rest of the industry will have to follow suit given that more and more data is complex in nature. If the database industry does not change, then the mainstream traditional relational database system will NOT be the resting place of such data.
A trend away from storing data in related tables is occurring at a rapid pace right now and products like SharePoint, or even Google docs is proof of this concept. So Access is only reacting to market pressures and it is likely that other database vendors will have to follow suit or simply give up on being part of the "fad" called the internet.
XML and complex data structures are STAPLE and fact of our industry right now – this is not an issue we all should run away from, but in fact embrace.
Albert D. Kallal (Access MVP)
Edmonton, Alberta Canada
kallal#msn.com
The technical discussion is interesting. I think the real problem lies in student understanding. Because it is available in Access students will use it, and initially it will probably provide a simple solution to some design problems. The negatives will occur later when they try and use the data. Maybe a simple example demonstrating the problems would persuade some students to avoid using multi-valued fields ? Maybe an example of storing the data in another, more usable format would help ?
Good luck !
Peter Bullard
MS Access does a great job of simplifying database management and abstracting out a lot of complexity. This however makes the learning of dbms concepts a bit difficult. Have you tried using other 'standard' dbms tools like MySQL (or even sqlite). From a learning perspective they may be better.
I know this post is old. But, it's not quite the same as every other post I've seen on this topic. This one has someone making a good case for using Multi Valued Fields...
As someone who is trying who is still trying very hard to get their head around Access, I find the discussion for and against using the Multi Valued Fields incredibly frustrating.
I'm trying to sort through it all, but if everyone is so against them, what is an alternative method? It seems that in every search result I find everyone is either telling you how to use Multi Valued Fields and Controls or telling you how horrible and what a mistake they are. Many people refer to an alternative to them, but nobody says "Here's an example". I'm here to learn about these things. And while I know that this is a simpler concept for a lot of people in these forums, I could really use some examples to take a look at.
I'm at a point where I have to decide which way to go. It would be wonderful to compare examples of using Multi Valued Fields and alternatives and using a control to select multiple values.
Or am I wrong and the functionality of a combobox where you can select multiple items is only available through Access?
I want to address the last of your questions first. There is a way of providing a visual presentation of a parent child relationship. It's called subforms. If you get help about subforms in Access, it will explain the concept.
I have used subforms in a project where I wanted to display the transaction header in a form and the transaction details in a subform. There is nothing to hinder this construct even when the data is stored in two normalized tables.
Of course, this affects the screen, not the database. That's the whole point. Normalization is relevant to storage and retrieval, not to other uses of data.

Entity Attribute Value Database vs. strict Relational Model Ecommerce

It is safe to say that the EAV/CR database model is bad. That said,
Question: What database model, technique, or pattern should be used to deal with "classes" of attributes describing e-commerce products which can be changed at run time?
In a good E-commerce database, you will store classes of options (like TV resolution then have a resolution for each TV, but the next product may not be a TV and not have "TV resolution"). How do you store them, search efficiently, and allow your users to setup product types with variable fields describing their products? If the search engine finds that customers typically search for TVs based on console depth, you could add console depth to your fields, then add a single depth for each tv product type at run time.
There is a nice common feature among good e-commerce apps where they show a set of products, then have "drill down" side menus where you can see "TV Resolution" as a header, and the top five most common TV Resolutions for the found set. You click one and it only shows TVs of that resolution, allowing you to further drill down by selecting other categories on the side menu. These options would be the dynamic product attributes added at run time.
Further discussion:
So long story short, are there any links out on the Internet or model descriptions that could "academically" fix the following setup? I thank Noel Kennedy for suggesting a category table, but the need may be greater than that. I describe it a different way below, trying to highlight the significance. I may need a viewpoint correction to solve the problem, or I may need to go deeper in to the EAV/CR.
Love the positive response to the EAV/CR model. My fellow developers all say what Jeffrey Kemp touched on below: "new entities must be modeled and designed by a professional" (taken out of context, read his response below). The problem is:
entities add and remove attributes weekly (search keywords dictate future attributes)
new entities arrive weekly (products are assembled from parts)
old entities go away weekly (archived, less popular, seasonal)
The customer wants to add attributes to the products for two reasons:
department / keyword search / comparison chart between like products
consumer product configuration before checkout
The attributes must have significance, not just a keyword search. If they want to compare all cakes that have a "whipped cream frosting", they can click cakes, click birthday theme, click whipped cream frosting, then check all cakes that are interesting knowing they all have whipped cream frosting. This is not specific to cakes, just an example.
There's a few general pros and cons I can think of, there are situations where one is better than the other:
Option 1, EAV Model:
Pro: less time to design and develop a simple application
Pro: new entities easy to add (might even
be added by users?)
Pro: "generic" interface components
Con: complex code required to validate simple data types
Con: much more complex SQL for simple
reports
Con: complex reports can become almost
impossible
Con: poor performance for large data sets
Option 2, Modelling each entity separately:
Con: more time required to gather
requirements and design
Con: new entities must be modelled and
designed by a professional
Con: custom interface components for each
entity
Pro: data type constraints and validation simple to implement
Pro: SQL is easy to write, easy to
understand and debug
Pro: even the most complex reports are relatively simple
Pro: best performance for large data sets
Option 3, Combination (model entities "properly", but add "extensions" for custom attributes for some/all entities)
Pro/Con: more time required to gather requirements and design than option 1 but perhaps not as much as option 2 *
Con: new entities must be modelled and designed by a professional
Pro: new attributes might be easily added later on
Con: complex code required to validate simple data types (for the custom attributes)
Con: custom interface components still required, but generic interface components may be possible for the custom attributes
Con: SQL becomes complex as soon as any custom attribute is included in a report
Con: good performance generally, unless you start need to search by or report by the custom attributes
* I'm not sure if Option 3 would necessarily save any time in the design phase.
Personally I would lean toward option 2, and avoid EAV wherever possible. However, for some scenarios the users need the flexibility that comes with EAV; but this comes with a great cost.
It is safe to say that the EAV/CR database model is bad.
No, it's not. It's just that they're an inefficient usage of relational databases. A purely key/value store works great with this model.
Now, to your real question: How to store various attributes and keep them searchable?
Just use EAV. In your case it would be a single extra table. index it on both attribute name and value, most RDBMs would use prefix-compression to on the attribute name repetitions, making it really fast and compact.
EAV/CR gets ugly when you use it to replace 'real' fields. As with every tool, overusing it is 'bad', and gives it a bad image.
// At this point, I'd like to take a moment to speak to you about the Magento/Adobe PSD format.
// Magento/PSD is not a good ecommerce platform/format. Magento/PSD is not even a bad ecommerce platform/format. Calling it such would be an
// insult to other bad ecommerce platform/formats, such as Zencart or OsCommerce. No, Magento/PSD is an abysmal ecommerce platform/format. Having
// worked on this code for several weeks now, my hate for Magento/PSD has grown to a raging fire
// that burns with the fierce passion of a million suns.
http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11#107
The internal models are wacky at best, like someone put the schema into a boggle game, sealed that and put it in a paint shacker...
Real world: I'm working on a midware fulfilment app and here are one the queries to get address information.
CREATE OR REPLACE VIEW sales_flat_addresses AS
SELECT sales_order_entity.parent_id AS order_id,
sales_order_entity.entity_id,
CONCAT(CONCAT(UCASE(MID(sales_order_entity_varchar.value,1,1)),MID(sales_order_entity_varchar.value,2)), "Address") as type,
GROUP_CONCAT(
CONCAT( eav_attribute.attribute_code," ::::: ", sales_order_entity_varchar.value )
ORDER BY sales_order_entity_varchar.value DESC
SEPARATOR '!!!!!'
) as data
FROM sales_order_entity
INNER JOIN sales_order_entity_varchar ON sales_order_entity_varchar.entity_id = sales_order_entity.entity_id
INNER JOIN eav_attribute ON eav_attribute.attribute_id = sales_order_entity_varchar.attribute_id
AND sales_order_entity.entity_type_id =12
GROUP BY sales_order_entity.entity_id
ORDER BY eav_attribute.attribute_code = 'address_type'
Exacts address information for an order, lazily
--
Summary: Only use Magento if:
You are being given large sacks of money
You must
Enjoy pain
I'm surprised nobody mentioned NoSQL databases.
I've never practiced NoSQL in a production context (just tested MongoDB and was impressed) but the whole point of NoSQL is being able to save items with varying attributes in the same "document".
Where performance is not a major requirement, as in an ETL type of application, EAV has another distinct advantage: differential saves.
I've implemented a number of applications where an over-arching requirement was the ability to see the history of a domain object from its first "version" to it's current state. If that domain object has a large number of attributes, that means each change requires a new row be inserted into it's corresponding table (not an update because the history would be lost, but an insert). Let's say this domain object is a Person, and I have 500k Persons to track with an average of 100+ changes over the Persons life-cycle to various attributes. Couple that with the fact that rare is the application that has only 1 major domain object and you'll quickly surmize that the size of the database would quickly grow out of control.
An easy solution is to save only the differential changes to the major domain objects rather than repeatedly saving redundant information.
All models change over time to reflect new business needs. Period. Using EAV is but one of the tools in our box to use; but it should never be automatically classified as "bad".
I'm struggling with the same issue. It may be interesting for you to check out the following discussion on two existing ecommerce solutions: Magento (EAV) and Joomla (regular relational structure):
https://forum.virtuemart.net/index.php?topic=58686.0
It seems, that Magento's EAV performance is a real showstopper.
That's why I'm leaning towards a normalized structure. To overcome the lack of flexibility I'm thinking about adding some separate data dictionary in the future (XML or separate DB tables) that could be edited, and based on that, application code for displaying and comparing product categories with new attributes set would be generated, together with SQL scripts.
Such architecture seems to be the sweetspot in this case - flexible and performant at the same time.
The problem could be frequent use of ALTER TABLE in live environment. I'm using Postgres, so its MVCC and transactional DDL will hopefully ease the pain.
I still vote for modeling at the lowest-meaningful atomic-level for EAV. Let standards, technologies and applications that gear toward certain user community to decide content models, repetition needs of attributes, grains, etc.
If it's just about the product catalog attributes and hence validation requirements for those attributes are rather limited, the only real downside to EAV is query performance and even that is only a problem when your query deals with multiple "things" (products) with attributes, the performance for the query "give me all attributes for the product with id 234" while not optimal is still plenty fast.
One solution is to use the SQL database / EAV model only for the admin / edit side of the product catalog and have some process that denormalizes the products into something that makes it searchable. Since you already have attributes and hence it's rather likely that you want faceting, this something could be Solr or ElasticSearch. This approach avoids basically all downsides to the EAV model and the added complexity is limited to serializing a complete product to JSON on update.
EAV has many drawbacks:
Performance degradation over time
Once the amount of data in the application grows beyond a certain size, the retrieval and manipulation of that data is likely to become less and less efficient.
The SQL queries are very complex and difficult to write.
Data Integrity problems.
You can't define foreign keys for all the fields needed.
You have to define and maintain your own metadata.
I have a slightly different problem: instead of many attributes with sparse values (which is possibly a good reason to use EAV), I want to store something more like a spreadsheet. The columns in the sheet can change, but within a sheet all cells will contain data (not sparse).
I made a small set of tests to benchmark two designs: one using EAV, and the other using a Postgres ARRAY to store cell data.
EAV
Array
Both schemas have indexes on appropriate columns, and the indexes are used by the planner.
It turned out the array-based schema was an order of magnitude faster for both inserts and queries. From quick tests, it seemed that both scaled linearly. The tests aren't very thorough, though. Suggestions and forks welcome - they're under an MIT licence.

Many-to-many relationship: use associative table or delimited values in a column?

Update 2009.04.24
The main point of my question is not developer confusion and what to do about it.
The point is to understand when delimited values are the right solution.
I've seen delimited data used in commercial product databases (Ektron lol).
SQL Server even has an XML datatype, so that could be used for the same purpose as delimited fields.
/end Update
The application I'm designing has some many-to-many relationships. In the past, I've often used associative tables to represent these in the database. This has caused some confusion to the developers.
Here's an example DB structure:
Document
---------------
ID (PK)
Title
CategoryIDs (varchar(4000))
Category
------------
ID (PK)
Title
There is a many-to-many relationship between Document and Category.
In this implementation, Document.CategoryIDs is a big pipe-delimited list of CategoryIDs.
To me, this is bad because it requires use of substring matching in queries -- which cannot make use of indexes. I think this will be slow and will not scale.
With that model, to get all Documents for a Category, you would need something like the following:
select * from documents where categoryids like '%|' + #targetCategoryId + '|%'
My solution is to create an associative table as follows:
Document_Category
-------------------------------
DocumentID (PK)
CategoryID (PK)
This is confusing to the developers. Is there some elegant alternate solution that I'm missing?
I'm assuming there will be thousands of rows in Document. Category may be like 40 rows or so. The primary concern is query performance. Am I over-engineering this?
Is there a case where it's preferred to store lists of IDs in database columns rather than pushing the data out to an associative table?
Consider also that we may need to create many-to-many relationships among documents. This would suggest an associative table Document_Document. Is that the preferred design or is it better to store the associated Document IDs in a single column?
Thanks.
This is confusing to the developers.
Get better developers. That is the right approach.
Your suggestion IS the elegant, powerful, best practice solution.
Since I don't think the other answers said the following strongly enough, I'm going to do it.
If your developers 1) can't understand how to model a many-to-many relationship in a relational database, and 2) strongly insist on storing your CategoryIDs as delimited character data,
Then they ought to immediately lose all database design privileges. At the very least, they need an actual experienced professional to join their team who has the authority to stop them from doing something this unwise and can give them the database design training they are completely lacking.
Last, you should not refer to them as "database developers" again until they are properly up to speed, as this is a slight to those of us who actually are competent developers & designers.
I hope this answer is very helpful to you.
Update
The main point of my question is not developer confusion and what to do about it.
The point is to understand when delimited values are the right solution.
Delimited values are the wrong solution except in extremely rare cases. When individual values will ever be queried/inserted/deleted/updated this proves it was the wrong decision, because you have to parse and touch all the other values just to work with the desired one. By doing this you're violating first (!!!) normal form (this phrase should sound to you like an unbelievably vile expletive). Using XML to do the same thing is wrong, too. Storing delimited values or multi-value XML in a column could make sense when it is treated as an indivisible and opaque "property bag" that is NOT queried on by the database but is always sent whole to another consumer (perhaps a web server or an EDI recipient).
This takes me back to my initial comment. Developers who think violating first normal form is a good idea are very inexperienced developers in my book.
I will grant there are some pretty sophisticated non-relational data storage implementations out there using text property bags (such as Facebook(?) and other multi-million user sites running on thousands of servers). Well, when your database, user base, and transactions per second are big enough to need that, you'll have the money to develop it. In the meantime, stick with best practice.
It's almost always a big mistake to use comma separated IDs.
RDBMS are designed to store relationships.
My solution is to create an
associative table as follows: This is
confusing to the developers
Really? this is database 101, if this is confusing to them then maybe they need to step away from their wizard generated code and learn some basic DB normalization.
What you propose is the right solution!!
The Document_Category table in your design is certainly the correct way to approach the problem. If it's possible, I would suggest that you educate the developers instead of coming up with a suboptimal solution (and taking a performance hit, and not having referential integrity).
Your other options may depend on the database you're using. For example, in SQL Server you can have an XML column that would allow you to store your array in a pre-defined schema and then do joins based on the contents of that field. Other database systems may have something similar.
The many-to-many mapping you are doing is fine and normalized. It also allows for other data to be added later if needed. For example, say you wanted to add a time that the category was added to the document.
I would suggest having a surrogate primary key on the document_category table as well. And a Unique(documentid, categoryid) constraint if that makes sense to do so.
Why are the developers confused?
The 'this is confusing to the developers' design means you have under-educated developers. It is the better relational database design - you should use it if at all possible.
If you really want to use the list structure, then use a DBMS that understands them. Examples of such databases would be the U2 (Unidata, Universe) DBMS, which are (or were, once upon a long time ago) based on the Pick DBMS. There are likely to be other similar DBMS providers.
This is the classic object-relational mapping problem. The developers are probably not stupid, just inexperienced or unaccustomed to doing things the right way. Shouting "3NF!" over and over again won't convince them of the right way.
I suggest you ask your developers to explain to you how they would get a count of documents by category using the pipe-delimited approach. It would be a nightmare, whereas the link table makes it quite simple.
The number one reason that my developers try this "comma-delimited values in a database column" approach is that they have a perception that adding a new table to address the need for multiple values will take too long to add to the data model and the database.
Most of them know that their work around is bad for all kinds of reasons, but they choose this suboptimal method because they just can. They can do this and maybe never get caught, or they will get caught much later in the project when it is too expensive and risky to fix it. Why do they do this? Because their performance is measured solely on speed and not on quality or compliance.
It could also be, as on one of my projects, that the developers had a table to put the multi values in but were under the impression that duplicating that data in the parent table would speed up performance. They were wrong and they were called out on it.
So while you do need an answer to how to handle these costly, risky, and business-confidence damaging tricks, you should also try to find the reason why the developers believe that taking this course of action is better in the short and the long run for the project and company. Then fix both the perception and the data structures.
Yes, it could just be laziness, malicious intent, or cluelessness, but I'm betting most of the time developers do this stuff because they are constantly being told "just get it done". We on the data model and database design sides need to ensure that we aren't sending the wrong message about how responsive we can be to requests to fulfill a business requirement for a new entity/table/piece of information.
We should also see that data people need to be constantly monitoring the "as-built" part of our data architectures.
Personally, I never authorize the use of comma delimited values in a relational database because it is actually faster to build a new table than it is to build a parsing routine to create, update, and manage multiple values in a column and deal with all the anomalies introduced because sometimes that data has embedded commas, too.
Bottom line, don't do comma delimited values, but find out why the developers want to do it and fix that problem.

MySQL design question - which is better, long tables or multiple databases?

So I have an interesting problem that's been the fruit of lots of good discussion in my group at work.
We have some scientific software producing SQLlite files, and this software is basically a black box. We don't control its table designs, formats, etc. It's entirely conceivable that this black box's output could change, and our design needs to be able to handle that.
The SQLlite files are entire databases which our user would like to query across. There are two ways (we see) of implementing this, one, to create a single database and a backend in Python that appends tables from each database to the master database, and two, querying across separate databases' tables and unifying the results in Python.
Both methods run into trouble when the black box produces alters its table structures, say for example renaming a column, splitting up a table, etc. We have to take this into account, and we've discussed translation tables that translate queries of columns from one table format to another.
We're interested in ease of implementation, how well the design handles a change in database/table layout, and speed. Also, a last dimension is how well it would work with existing Python web frameworks (Django doesn't support cross-database queries, and neither does SQLAlchemy, so we know we are in for a lot of programming.)
If you find yourself querying across databases, you should look into consolidating. Cross-database queries are evil.
If your queries are essentially relegated to individual databases, then you may want to stick with multiple databases, as clearly their separation is necessary.
You cannot accommodate arbitrary changes in a database's schema without categorizing and anticipating that change in some way. In the very best case with nontrivial changes, you can sometimes simply ignore new data or tables, in the worst case, your interpretation of the data will entirely break down.
I've encountered similar issues where users need data pivoted out of a normalized schema. The schema does NOT change. However, their required output format requires a fixed number of hierarchical levels. Thus, although the database design accommodates all the changes they want to make, their chosen view of that data cannot be maintained in the face of their changes. Thus it is impossible to maintain the output schema in the face of data change (not even schema change). This is not to say that it's not a valid output or input schema, but that there are limits beyond which their chosen schema cannot be used. At this point, they have to revise the output contract, the pivoting program (which CAN anticipate this and generate new columns) can then have a place to put the data in the output schema.
My point being: the semantics and interpretation of new columns and new tables (or removal of columns and tables which existing logic may depend on) is nontrivial unless new columns or tables can be anticipated in some way. However, in these cases, there are usually good database designs which eliminate those strategies in the first place:
For instance, a particular database schema can contain any number of tables, all with the same structure (although there is no theoretical reason they could not be consolidated into a single table). A particular kind of table could have a set of columns all similarly named (although this "array" violates normalization principles and could be normalized into a commonkey/code/value schema).
Even in a data warehouse ETL situation, a new column is going to have to be determined whether it is a fact or a dimensional attribute, and then if it is a dimensional attribute, which dimension table it is best assigned to. This could somewhat be automated for facts (obvious candidates would be scalars like decimal/numeric) by inspecting the metadata for unmapped columns, altering the DW table (yikes) and then loading appropriately. But for dimensions, I would be very leery of automating somethings like this.
So, in summary, I would say that schema changes in a good normalized database design are the least likely to be able to be accommodated because: 1) the database design already anticipates and accommodates a good deal of change and flexibility and 2) schema changes to such a database design are unlikely to be able to be anticipated very easily. Conversely, schema changes in a poorly normalized database design are actually more easy to anticipate as shortcomings in the database design are more visible.
So, my question to you is: How well-designed is the database you are working from?
You say that you know that you are in for a lot of programming...
I'm not sure about that. I would go for a quick and dirty solution not a 'generic' solution because generic solutions like the entity attribute value model often have a bad performance. Don't do client side joining (unifying the results) inside your Python code because that is very slow. Use SQL for joining, it is designed for that purpose. Users can also make their own reports with all kind of reporting tools that generate sql statements. You don't have to do everything in your app, just start with solving 80% of the problems, not 100%.
If something breaks because something inside the black box changes you can define views for backward compatibility that keeps your app functioning.
Maybe the scientific software will add a lot of new features and maybe it will change its datamodel because of those new features..? That is possible but then you will have to change your application anyways to take profit from those new features.
It sounds to me as if your problem isn't really about MySQL or SQLlite. It's about the sharing of data, and the contract that needs to exist between the supplier of data and the user of the same data.
To the extent that databases exist so that data can be shared, that contract is fundamental to everything about databases. When databases were first being built, and database theory was first being solidified, in the 1960s and 1970s, the sharing of data was the central purpose in building databases. Today, databases are frequently used where files would have served equally well. Your situation may be a case in point.
In your situation, you have a beggar's contract with your data suppliers. They can change the format of the data, and maybe even the semantics, and all you can do is suck it up and deal wth it. This situation is by no means uncommon.
I don't know the specifics of your situation, so what follows could be way off target.
If it was up to me, I would want to build a database that was as generic, as flexible, and as stable as possible, without losing the essential features of structured and managed data. Maybe, some design like star schema would make sense, but I might adopt a very different design if I were actually in your shoes.
This leaves the problem of extracting the data from the databases you are given, transforming the data into the stable format the central database supports, and loading it into the central database. You are right in guessing that this involves a lot of programming. This process, known as "ETL" in data warehousing texts, is not the simplest of programming challenges.
At least ETL collects all the hard problems in one place. Once you have the data loaded into a database that's built for your needs, and not for the needs of your suppliers, turning the data into valuable information should be relatively easy, at least at the programming or SQL level. There are even OLAP tools that make using the data as simple as a video game. There are challenges at that level, but they aren't the same kind of challenges I'm talking about here.
Read up on data warehousing, and especially data marts. The description may seem daunting to you at first, but it can be scaled down to meet your needs.