How to print the route of a packet in hwmp ns3 - ns-3

I would like to know how can i print the route of a packet in a mesh topology that implements hwmp. I don't mean the entire routing table but the intermediate nodes that a packet has traverse in order to reach the destination.
Thanks in advance,
Mary

You can do something like this :
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
....
....
....
....
AsciiTraceHelper ascii;
wifiPhy.EnableAsciiAll (ascii.CreateFileStream ("wifi-simple-adhoc-grid.tr"));
This will create a trace file named wifi-simple-adhoc-grid.tr, which you can analyse to determine the route of each packet. See example in examples/wireless/wifi-simple-adhoc-grid.cc

I am not sure where, but you must be able to track packets through log files!
In the other hand, if you are interested by the number of hops, you can fetch that from FlowMonitor (timeForwarded metric).
How?
AvrgHopCount= 1 + (flowmon.timesForwarded/flowmon.rxPackets)

You can print routing table using :
Ipv4GlobalRoutingHelper globalRouting;
Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper> ("result/leapstar2.routes", std::ios::out);
globalRouting.PrintRoutingTableAllAt (Seconds(0.1), routingStream );

Related

Ryu controller drop packets after fixed number of packets or time

I am trying to block tcp packets of a specific user/session after some threshold is reached.
Currently I am able to write a script that drops tcp packets.
#set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):
tcp_match = self.drop_tcp_packets_to_specfic_ip(parser)
self.add_flow_for_clear(datapath, 2, tcp_match)
def drop_tcp_packets_to_specfic_ip(self, parser):
tcp_match = parser.OFPMatch(eth_type=0x0800, ip_proto=6, ipv4_src=conpot_ip)
return tcp_match
Thanks.
You need to set some rule to match the packets flow.
After, you need to create an loop to get statistics about this rule.
Finally, you read each statistic and verify the number of packets. So, if the number of packets reach your threshold, you send the rule to block packets.

Ryu Controller Drop Packet

How do I send a flow entry to drop a package using Ryu? I've learned from tutorials how to send package out flow entry:
I define the action:
actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
Then the entry itself:
out = ofp_parser.OFPPacketOut(datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,actions=actions)
Send the message to the switch:
dp.send_msg(out)
I'm trying to find the documentation to make this code drop the package instead of flooding, without success. I imagine I'll have to change actions on the first step and fp_parser.OFPPacketOut on the second step. I need someone more experienced on Ryu and developing itself to point me to the right direction. Thank you.
The default disposition of a packet in OpenFlow is to drop the packet. Therefore if you have a Flow Rule that when it matches you want to drop the packet, you should simply have an instruction to CLEAR_ACTIONS and then no other instruction, which means that no other tables will be processed since there is no instruction to process (go to) another table and no actions on it.
Remember to keep in mind your flow priorities. If you have more than one flow rule that will match the packet, the one with the highest priority will be the one to take effect. So your "drop packet" could be hidden behind a higher priority flow rule.
Here is some code that I have that will drop all traffic that matches a given EtherType, assuming that no higher priority packet matches. The function is dependent on a couple of instance variables, namely datapath, proto, and parser.
def dropEthType(self,
match_eth_type = 0x0800):
parser = self.parser
proto = self.proto
match = parser.OFPMatch(eth_type = match_eth_type)
instruction = [
parser.OFPInstructionActions(proto.OFPIT_CLEAR_ACTIONS, [])
]
msg = parser.OFPFlowMod(self.datapath,
table_id = OFDPA_FLOW_TABLE_ID_ACL_POLICY,
priority = 1,
command = proto.OFPFC_ADD,
match = match,
instructions = instruction
)
self._log("dropEthType : %s" % str(msg))
reply = api.send_msg(self.ryuapp, msg)
if reply:
raise Exception

WPA_supplicant authentication implementation

I need help from someone that have some experience in playing with wpa_supplicant code.
What i understand is that wpa_supplicant dose everything in order for a supplicant to connect to an AP (if that what you what). Hence the steps are as:
Scan
Get scan results
AUTH
ASSOC
4-hand shake
data exchange
As i understand this then the first 4 steps are only managed by wpa_supplicant. That is, wpa_supplicant simply calls the under laying driver to perform these steps and after the main event loop receives the EVENT_ASSOC msg. it starts the 4-handshake.
For my part, it is fine with the first two steps are carried out at the driver, ie., wpa_supplicant send a scan req, the driver perform the scan and feed the scan results.
My question is, is it correct that wpa_supplicant cannot generate the necessary packet and use, e.g., layer 2 (rawsocket) to send authentication request to the AP ? and followed by an associate request ?... shall one simply provides these as a handle from the driver layer ?
as i can see from the code in wpa_supplicant.c
(void wpa_supplicant_associate(struct wpa_supplicant *wpa_s,
struct wpa_bss *bss, struct wpa_ssid *ssid))
that this function calls a function pointer to the selected driver eg. ".associate = wpa_driver_nl80211_associate" and here the driver then send this down to the udnerlaying nl80211 driver code ? .... so wpa_supplicant can not generate these packet by it self ?
I hope that this make any sens, if not please ask :)
Yes, your understanding is correct. To send auth/assoc req, the wpa_supplicant should construct the corresponding NL80211 commands in following different scenarios:
a) in case the SME is maintained in wpa_supplicant
NL80211_CMD_AUTHENTICATE
NL80211_CMD_ASSOCIATE
b) in case the SME is maintained by driver
NL80211_CMD_CONNECT
And these commands will trigger the corresponding cfg80211_ops hooks (.auth, .assoc, .connect) registered by the wifi driver to be called to construct the frames and then send out the frames.

Load Runner Session ID Changes Indefinitely

Good day
I'm trying to perform load testing with LoadRunner 11. Here's an issue:
I've got automatically generated script after actions recording
Need to catch Session ID. I do it with web_reg_save_param() in the next way:
web_reg_save_param("S_ID",
"LB=Set-Cookie: JSESSIONID=",
"RB=; Path=/app/;",
LAST);
web_add_cookie("S_ID; DOMAIN={host}");
I catch ID from the response (Tree View):
D2B6F5B05A1366C395F8E86D8212F324
Compare it with Replay Log and see:
"S_ID = 75C78912AE78D26BDBDE73EBD9ADB510".
Compare 2 IDs above with the next request ID and see 3rd ID (Tree View):
80FE367101229FA34EB6429F4822E595
Why do I have 3 different IDs?
Let me know if I have to provide extra information.
You should Use(Search=All) below Code. Provided your Right and left boundary is correct:
web_reg_save_param("S_ID",
"LB=Set-Cookie: JSESSIONID=",
"RB=; Path=/app/;",
"Search=All",
LAST);
web_add_cookie("{S_ID}; DOMAIN={host}");
For Details refer HP Mannual for web_reg_save_param function.
I do not see what the conflict or controversy is here. Yes, items related to state or session will definitely change from user to user, one recording session to the next. They may even change from one request to the next. You may need to record several times to identify the change and use pattern for when you need to collect and when you need to reuse the collected data from a response in a subsequent request.
Take a listen to this podcast. It should help
http://www.perfbytes.com/dynamic-data-correlation

GWT-RPC, Apache, Tomcat server data size checking

Following up on this GWT-RPC question (and answer #1) re. field size checking, I would like to know the right way to check pre-deserialization for max data size sent to server, something like if request data size > X then abort the request. Valuing simplicity and based on answer on aforementioned question/answer, I am inclined to believe checking for max overall request size would suffice, finer grained checks (i.e., field level checks) could be deferred to post-deserialization, but I am open to any best-practice suggestion.
Tech stack of interest: GWT-RPC client-server communication with Apache-Tomcat front-end web-server.
I suppose a first step would be to globally limit the size of any request (LimitRequestBody in httpd.conf or/and others?).
Are there finer-grained checks like something that can be set per RPC request? If so where, how? How much security value do finer grain checks bring over one global setting?
To frame the question more specifically with an example, let's suppose we have the two following RPC request signatures on the same servlet:
public void rpc1(A a, B b) throws MyException;
public void rpc2(C c, D d) throws MyException;
Suppose I approximately know the following max sizes:
a: 10 kB
b: 40 kB
c: 1 M B
d: 1 kB
Then I expect the following max sizes:
rpc1: 50 kB
rpc2: 1 MB
In the context of this example, my questions are:
Where/how to configure the max size of any request -- i.e., 1 MB in my above example? I believe it is LimitRequestBody in httpd.conf but not 100% sure whether it is the only parameter for this purpose.
If possible, where/how to configure max size per servlet -- i.e., max size of any rpc in my servlet is 1 MB?
If possible, where/how to configure/check max size per rpc request -- i.e., max rpc1 size is 50 kB and max rpc2 size is 1 MB?
If possible, where/how to configure/check max size per rpc request argument -- i.e., a is 10 kB, b is 40 kB, c is 1 MB, and d is 1 kB. I suspect it makes practical sense to do post-deserialization, doesn't it?
For practical purposes based of cost/benefit, what level of pre-deserialization checking is generally recommended -- 1. global, 2. servlet, 3. rpc, 4. object-argument? Stated differently, what is roughly the cost-complexity on one hand and the added value on the other hand of each of the above pre-deserialization level checks?
Thanks much in advance.
Based on what I have learned since I asked the question, my own answer and strategy until someone can show me better is:
First line of defense and check is Apache's LimitRequestBody set in httpd.conf. It is the overall max for all rpc calls across all servlets.
Second line of defense is servlet pre-deserialization by overriding GWT AbstractRemoteServiceServlet.readContent. For instance, one could do it as shown further below I suppose. This was the heart of what I was fishing for in this question.
Then one can further check each rpc call argument post-deserialization. One could conveniently use the JSR 303 validation both on the server and client side -- see references StackOverflow and gwt r.e. client side.
Example on how to override AbstractRemoteServiceServlet.readContent:
#Override
protected String readContent(HttpServletRequest request) throws ServletException, IOException
{
final int contentLength = request.getContentLength();
// _maxRequestSize should be large enough to be applicable to all rpc calls within this servlet.
if (contentLength > _maxRequestSize)
throw new IOException("Request too large");
final String requestPayload = super.readContent(request);
return requestPayload;
}
See this question in case the max request size if > 2GB.
From a security perspective, this strategy seems quite reasonable to me to control the size of data users send to server.