When subclassing an object, what is the appropriate method to handle functions that don't make sense on the child? - oop

Before I jump into the meat of the question, let me note that this is a purely theoretical query. I'm not interested in this for practical reasons, I'm interested in the underlying OOP theory on how to handle this type of situation.
In a project I'm working on, I have two closely related classes. One is the generic 'user' class. The other is subclassed, and adds additional features used by certain users -- for a generic example, think a 'moderator' class.
How do I handle public methods that are available on the user class that don't make sense for the child to have called?
For example, it makes perfect sense to call User::getUserWithId(id) (this method retrieves data from the DB and initializes and returns the user class with that data); it doesn't make as much sense (if any) to use that method with the moderator class.
Should I just ignore it -- if a user calls moderator::getUserWithId(id), they're still getting a user, exactly what they asked for. Should I override it to return a moderator, despite the method name? Or is there something in OOP land I'm not familiar with that lets me 'block' the call?

If you have methods in your base class that don't make sense in your subclass, then I think you need to re-evaluate if you should model these classes via an inheritance relationship. Needing to hide members of a base class in a subclass is a red flag that indicates modeling this via an inheritance relationship is problematic.
An inheritance relationship should indicate an "is a" relationship. For your example, a moderator object "is a" user object and thus should have the same methods and properties as the user object. If it does not, then it would appear that it does not have a true inheritance relationship with its base user class.
In this case, you might want to consider using interfaces instead of inheritance. You can factor the common functionality between the User and Moderator classes into an interface. If there is common code that they can share, then you can use composition to achieve this, by creating a common implementation of the interface and then passing it to the classes that need to reuse this code. For further information, see here and here.
As the author in the second link above puts it:
Does TypeB want to expose the complete interface (all public methods no less) of TypeA such that TypeB can be used where TypeA is expected? Indicates Inheritance.
Does TypeB only want only some/part of the behavior exposed by TypeA? Indicates need for Composition.
From your need to hide a member of the base class, it seems that you are in the second category, and might want to explore using composition and an interface.

Yesterday I left a response, that somehow got lost. I think, #Joe Alfano has a very good explanation that addresses your "theoretical" and also particular questions.
Beside that, In my opinion, one source of your problem might be that you are doing database access in your Domain Object. In general, unless there is a compelling reason, this is not a good practice. If you remove that database access into a separate layer like Data Access Layer (DAL) this problem goes away. You won't have User::getUserWithId(id) things in your classes, they will be handled in DAL. Like
class UserDao {
User getById(id)
}
Class ModeratorDao {
Moderator getById(id)
}
If you go with DAL-like approach, then you will also find ways to re-factoring code, which is a separate thing.

Related

Does MVC break encapsulation?

Let's say I have an class to model a city. Its characteristics are the following:
It has only two properties "name" and "population", both private, that are set in the constructor.
It has getters for these properties, but not setters.
I don't want any user of this class to set the properties, I want them to use a public .edit() method.
This method needs opens up a form to input the new name of the city and population, i.e.: a view. Then, if I have a view, I would like to implement the MVC pattern, so the idea would be that the controller receives the .edit() call, renders the view, retrieves the data back, and sends it to the view so that it changes its state.
But, if I do so, I have to change the properties of the city model from private to public. So, if any user instantiates my class, she/he can directly change the properties.
So, the philosophical question: Isn't that breaking the encapsulation?
EDIT Just to make it more explicit:
This city_instance.edit() method should be the only way to mutate the object.
Besides, I see that part of my problems comes from the misunderstanding that a model is an object (you can read that on php mvc frameworks), when it is actually a different abstraction, it's a layer that groups the business logic (domain objects + I guess more things)
Disclaimer: I don't really understand where are you proposing the .edit() method to be implemented, so it would help if you could clarify that a little bit there.
The first thing to consider here is that in the bulleted list of your question you seem to imply that a City instance acts like an immutable object: it takes its instance variables in the constructor and doesn't allow anybody in the outside to change them. However, you later state that you actually want to create a way to visually edit a City instance. This two requirements are clearly going to create some tension, since they are kind of opposites.
If you go the MVC approach, by separating the view from the model you have two main choices:
Treat your City objects as immutable and, instead of editing an instance when the values are changed in the form, throw away the original object and create a new one.
Provide a way to mutate an existing City instance.
The first approach keeps your model intact if you actually consider a City as an immutable object. For the second one there are many different ways to go:
The most standard way is to provide, in the City class, a mutator. This can have the shape of independent setters for each property or a common message (I think this is the .edit() method you mentioned) to alter many properties at once by taking an array. Note that here you don't take a form object as a parameter, since models should not be aware of the views. If you want your view to take note of internal changes in the model, you use the Observer pattern.
Use "friend" classes for controllers. Some languages allow for friend classes to access an object's internals. In this case you could create a controller that is a friend class of your model that can make the connection between the model and the view without having to add mutators to your model.
Use reflection to accomplish something similar to the friend classes.
The first of this three approaches is the only language agnostic choice. Whether that breaks encapsulation or not is kind of difficult to say, since the requirements themselves would be conflicting (It would basically mean wanting to have a model separated from the view that can be altered by the user but that doesn't allow the model itself to be changed for the outside). I would however agree that separating the model from the view promotes having an explicit mutation mechanism if you want mutable instances.
HTH
NOTE: I'm referring to MVC as it applies to Web applications. MVC can apply to many kinds of apps, and it's implemented in many kinds of ways, so it's really hard to say MVC does or does not do any specific thing unless you are talking strictly about something defined by the pattern, and not a particular implementation.
I think you have a very specific view of what "encapsulation" is, and that view does not agree with the textbook definition of encapsulation, nor does it agree with the common usage of it. There is no definition of "Encapsulation" I can find that requires that there be no setters. In fact, since Setters are in and of themselves methods that be used to "edit" the object, it's kind of a silly argument.
From the Wikipedia entry (note where it says "like getter and setter"):
In general, encapsulation is one of the four fundamentals of OOP (object-oriented programming). Encapsulation is to hide the variables or something inside a class, preventing unauthorized parties to use. So the public methods like getter and setter access it and the other classes call these methods for accessing.
http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
Now, that's not to say that MVC doesn't break encapsulation, I'm just saying that your idea of what Encapsulation is is very specific and not particularly canonical.
Certainly, there are a number of problems that using Getters and Setters can cause, such as returning lists that you can then change directly outside of the object itself. You have to be careful (if you care) to keep your data hidden. You can also replace a collection with another collection, which is probably not what you intend.
The Law of Demeter is more relevant here than anything else.
But all of this is really just a red herring anyways. MVC is only about the GUI, and the GUI should be as simple as possible. It should have almost no logic in either the view or the controller. You should be using simple view models to deserialize your form data into a simple structure, which can the be used to apply to any business architecture you like (if you don't want setters, then create your business layer with objects that don't use setters and use mutattors.).
There is little need for complex architecture in the UI layer. The UI layer is more of a boundary and gateway that translates the flat form and command nature of HTTP to whatever business object model you choose. As such, it's not going to be purely OO at the UI level, because HTTP isn't.
This is called an Impedance Mismatch, which is often associated with ORM's, because Object models do not map easily to relational models. The same is true of HTTP to Business objects. You can think of MVC as a corollary to an ORM in that respect.

Should I store common functions in a Parent/Base class

I have common functions, such as syntactic sugar for calling the database, logging or site-wide information such as a look-up tables.
If I put these in a site-wide base class I will have access to them, however it just seems intuitively wrong to use a parent class this way. It would make more sense to use the base class as a 'has a' relationship rather than an 'is a'.
Or perhaps this is good design? Is there any problem doing this?
Parent classes should instantiate some base functionality and a child should instantiate the differentiating code.
IMNSHO, what you are describing is a bastardization of that process.
Ideally you would only want to serializable POCO classes, because they only contain properties and no methods.
Having a baseclass for common functionality might be a good idea, if you place code it in, that will be same in every childpage and if there is no other good place.
For instance you could place Helper-methods inside a baseclass, but that breaks OOP in my opinion.
In my opinion, having a class that derives from System.Web.UI.Page and replaces some logic in the OnInit event or other events is a very good strategy. I've used this approach in various projects, but I limited the code in the baseblass to globalization and logic for memberpages (like redirects to non public pages).
I believe that what you are doing is wrong.
First of all, object should be dedicated to one task. Having db connection handling, logging or look-up tables in the same class seems very ugly, regardless of whether these funcitonalities are inherited or not.
Moreover, the functionalities you described seem like fitting the exact idea of an object, just as described above. So, to answer your question: yes, has-a relationship seems like a much better solution.
In general, I tend to try to put program-wide accessible functions in separate classes. If possible, I try to use static methods. Behind these sometimes are singletons, sometimes there is some kind of queue, and sometimes something entirely different. Still, having one single point of origin for such functionalities the code is very flexible. If static methods are not applicable, especially when there is a need to store some information in such helper class, only then do I instantiate an object for each instance of other class. Even then factory/pool single point of origin static methods are often a good idea.

Reasons to use private instead of protected for fields and methods

This is a rather basic OO question, but one that's been bugging me for some time.
I tend to avoid using the 'private' visibility modifier for my fields and methods in favor of protected.
This is because, generally, I don't see any use in hiding the implementation between base class and child class, except when I want to set specific guidelines for the extension of my classes (i.e. in frameworks). For the majority of cases I think trying to limit how my class will be extended either by me or by other users is not beneficial.
But, for the majority of people, the private modifier is usually the default choice when defining a non-public field/method.
So, can you list use cases for private? Is there a major reason for always using private? Or do you also think it's overused?
There is some consensus that one should prefer composition over inheritance in OOP. There are several reasons for this (google if you're interested), but the main part is that:
inheritance is seldom the best tool and is not as flexible as other solutions
the protected members/fields form an interface towards your subclasses
interfaces (and assumptions about their future use) are tricky to get right and document properly
Therefore, if you choose to make your class inheritable, you should do so conciously and with all the pros and cons in mind.
Hence, it's better not to make the class inheritable and instead make sure it's as flexible as possible (and no more) by using other means.
This is mostly obvious in larger frameworks where your class's usage is beyond your control. For your own little app, you won't notice this as much, but it (inheritance-by-default) will bite you in the behind sooner or later if you're not careful.
Alternatives
Composition means that you'd expose customizability through explicit (fully abstract) interfaces (virtual or template-based).
So, instead of having an Vehicle base class with a virtual drive() function (along with everything else, such as an integer for price, etc.), you'd have a Vehicle class taking a Motor interface object, and that Motor interface only exposes the drive() function. Now you can add and re-use any sort of motor anywhere (more or less. :).
There are two situations where it matters whether a member is protected or private:
If a derived class could benefit from using a member, making the member `protected` would allow it to do so, while making it `private` would deny it that benefit.
If a future version of the base class could benefit by not having the member behave as it does in the present version, making the member `private` would allow that future version to change the behavior (or eliminate the member entirely), while making it `protected` would require all future versions of the class to keep the same behavior, thus denying them the benefit that could be reaped from changing it.
If one can imagine a realistic scenario where a derived class might benefit from being able to access the member, and cannot imagine a scenario where the base class might benefit from changing its behavior, then the member should be protected [assuming, of course, that it shouldn't be public]. If one cannot imagine a scenario where a derived class would get much benefit from accessing the member directly, but one can imagine scenarios where a future version of the base class might benefit by changing it, then it should be private. Those cases are pretty clear and straightforward.
If there isn't any plausible scenario where the base class would benefit from changing the member, I would suggest that one should lean toward making it protected. Some would say the "YAGNI" (You Ain't Gonna Need It) principle favors private, but I disagree. If you're is expecting others to inherit the class, making a member private doesn't assume "YAGNI", but rather "HAGNI" (He's Not Gonna Need It). Unless "you" are going to need to change the behavior of the item in a future version of the class, "you" ain't gonna need it to be private. By contrast, in many cases you'll have no way of predicting what consumers of your class might need. That doesn't mean one should make members protected without first trying to identify ways one might benefit from changing them, since YAGNI isn't really applicable to either decision. YAGNI applies in cases where it will be possible to deal with a future need if and when it is encountered, so there's no need to deal with it now. A decision to make a member of a class which is given to other programmers private or protected implies a decision as to which type of potential future need will be provided for, and will make it difficult to provide for the other.
Sometimes both scenarios will be plausible, in which case it may be helpful to offer two classes--one of which exposes the members in question and a class derived from that which does not (there's no standard idiomatic was for a derived class to hide members inherited from its parent, though declaring new members which have the same names but no compilable functionality and are marked with an Obsolete attribute would have that effect). As an example of the trade-offs involved, consider List<T>. If the type exposed the backing array as a protected member, it would be possible to define a derived type CompareExchangeableList<T> where T:Class which included a member T CompareExchangeItem(index, T T newValue, T oldvalue) which would return Interlocked.CompareExchange(_backingArray[index], newValue, oldValue); such a type could be used by any code which expected a List<T>, but code which knew the instance was a CompareExchangeableList<T> could use the CompareExchangeItem on it. Unfortunately, because List<T> does not expose the backing array to derived classes, it is impossible to define a type which allows CompareExchange on list items but which would still be useable by code expecting a List<T>.
Still, that's not to imply that exposing the backing array would have been completely without cost; even though all extant implementations of List<T> use a single backing array, Microsoft might implement future versions to use multiple arrays when a list would otherwise grow beyond 84K, so as to avoid the inefficiencies associated with the Large Object Heap. If the backing array was exposed as protected member, it would be impossible to implement such a change without breaking any code that relied upon that member.
Actually, the ideal thing might have been to balance those interests by providing a protected member which, given a list-item index, will return an array segment which contains the indicated item. If there's only one array, the method would always return a reference to that array, with an offset of zero, a starting subscript of zero, and a length equal to the list length. If a future version of List<T> split the array into multiple pieces, the method could allow derived classes to efficiently access segments of the array in ways that would not be possible without such access [e.g. using Array.Copy] but List<T> could change the way it manages its backing store without breaking properly-written derived classes. Improperly-written derived classes could get broken if the base implementation changes, but that's the fault of the derived class, not the base.
I just prefer private than protected in the default case because I'm following the principle to hide as much as possibility and that's why set the visibility as low as possible.
I am reaching here. However, I think that the use of Protected member variables should be made conciously, because you not only plan to inherit, but also because there is a solid reason derived classed shouldn't use the Property Setters/Getters defined on the base class.
In OOP, we "encapsulate" the member fields so that we can excercise control over how they properties the represent are accessed and changed. When we define a getter/setter on our base for a member variable, we are essentially saying that THIS is how I want this variable to be referenced/used.
While there are design-driven exceptions in which one might need to alter the behavior created in the base class getter/setter methods, it seems to me that this would be a decision made after careful consideration of alternatives.
For Example, when I find myself needing to access a member field from a derived class directly, instead of through the getter/setter, I start thinking maybe that particular Property should be defined as abstract, or even moved to the derived class. This depends upon how broad the hierarchy is, and any number of additional considerations. But to me, stepping around the public Property defined on the base class begins to smell.
Of course, in many cases, it "doesn't matter" because we are not implementing anything within the getter/setter beyond access to the variable. But again, if this is the case, the derived class can just as easily access through the getter/setter. This also protects against hard-to-find bugs later, if employed consistently. If the behgavior of the getter/setter for a member field on the base class is changed in some way, and a derived class references the Protected field directly, there is the potential for trouble.
You are on the right track. You make something private, because your implementation is dependant on it not being changed either by a user or descendant.
I default to private and then make a conscious decision about whether and how much of the inner workings I'm going to expose, you seem to work on the basis, that it will be exposed anyway, so get on with it. As long as we both remember to cross all the eyes and dot all the tees, we are good.
Another way to look at it is this.
If you make it private, some one might not be able to do what they want with your implementation.
If you don't make it private, someone may be able to do something you really don't want them to do with your implementation.
I've been programming OOP since C++ in 1993 and Java in 1995. Time and again I've seen a need to augment or revise a class, typically adding extra functionality tightly integrated with the class. The OOP way to do so is to subclass the base class and make the changes in the subclass. For example a base class field originally referred to only elsewhere in the base class is needed for some other action, or some other activity must change a value of the field (or one of the field's contained members). If that field is private in the base class then the subclass cannot access it, cannot extend the functionality. If the field is protected it can do so.
Subclasses have a special relationship to the base class that other classes elsewhere in the class hierarchy don't have: they inherit the base class members. The purpose of inheritance is to access base class members; private thwarts inheritance. How is the base class developer supposed to know that no subclasses will ever need to access a member? In some cases that can be clear, but private should be the exception rather than the rule. Developers subclassing the base class have the base class source code, so their alternative is to revise the base class directly (perhaps just changing private status to protected before subclassing). That's not clean, good practice, but that's what private makes you do.
I am a beginner at OOP but have been around since the first articles in ACM and IEEE. From what I remember, this style of development was more for modelling something. In the real world, things including processes and operations would have "private, protected, and public" elements. So to be true to the object .....
Out side of modelling something, programming is more about solving a problem. The issue of "private, protected, and public" elements is only a concern when it relates to making a reliable solution. As a problem solver, I would not make the mistake of getting cough up in how others are using MY solution to solve their own problems. Now keep in mind that a main reason for the issue of ...., was to allow a place for data checking (i.e., verifying the data is in a valid range and structure before using it in your object).
With that in mind, if your code solves the problem it was designed for, you have done your job. If others need your solution to solve the same or a simular problem - Well, do you really need to control how they do it. I would say, "only if you are getting some benefit for it or you know the weaknesses in your design, so you need to protect some things."
In my idea, if you are using DI (Dependency Injection) in your project and you are using it to inject some interfaces in your class (by constructor) to use them in your code, then they should be protected, cause usually these types of classes are more like services not data keepers.
But if you want to use attributes to save some data in your class, then privates would be better.

Doubt in using the interface?

Whenever i hear about interfaces i have the following doubt.
i have the following interface
interface Imammals
{
walk();
eat();
run();
}
and i have two classes Human and Cat that implements this interface.
Anyway, the functionality of the methods are going to be different in both the Classes.
For Eg: walk(), the functionality differs as cat uses four legs and human uses two legs
Then, Why do i need to have a common interface which ONLY declares these methods? Is my design here faulty?
If the functionality of the methods are going to be same in both the classes, i could go for a class based inheritance where the parent implements the complete functionality and the child inherits and uses the parent class methods.
But here the interfaces help us just to consolidate the methods declarations or is there anything more inside?
EDIT: walking(), eating(), running() was changed to walk(), eat(), run() and mammals was changes to Imammals.
In your scenario, either type-inheritance or interface-implementation would work - but interface based abstraction allows types outside of your existing type model to provide the functionality. It could be a mock object, or it could be some kind of super killer robot, that can walk run and eat but isn't really a mammal (so having it inherit from a Mammal class could be confusing or just impossible).
In particular, interfaces allow us to express this relationship neatly, while avoiding the subtle points from C# having single (type-)inheritance.
Using the interface you can have the following:
public void walkMyAnimal(Animal animal) {
animal.walk();
}
without the need to know what animal exactly is passed.
Interface allows you to define behavior for inheriting classes so if you have Donkey in future then you simply implement this interface and be sure that you donkey will walk,run and eat.
Also you can use composition instead of concrete implementation if some of your objects have common behaviour.
Read a bit about Strategy pattern I think that will help.
One big advantage of interfaces is that even in languages like Java and C# where multiple inheritance is not allowed, a class can take on more than one interface. Something can be both Closable, for instance, and a List, but could not inherit from both (hypothetical) abstract base classes AbstractClosable and AbstractList.
It is also suitable for cases where you are writing a library or a plugin interface and want to provide a way for your code to use objects provided by library users or plugin writers, but you don't want (nor should you) any say in the implementation. Think of the Listener interfaces in Java, for instance. Without those, there would be no possibility of an event model, since Java doens't support callbacks.
In general, interfaces are good for cases where you want objects that have particular functionality, but the way that functionality is implemented can vary widely, and might not be the only thing a class does.
The reason you want an interface is to be able to treat them all alike when commanding them.
Whoever calls walking() (which is a rather odd name btw, it should probably be walk()) is just interested in telling your animal to do just that. The actual implementation will vary but that is not something the caller would care about.
Well, sometimes you'd want to be able to do something to "anything capable of running" without necessarily knowing at design time whether you're talking about a human or a cat or whatever. For instance, imagine a function mammal raceWinner(mammal m1, mammal m2){...}
to calculate which mammal would win in a race. To determine who wins, perhaps the function needs to call m1.running() and m2.running(). Of course, the mammals we pass in will really be cats or humans or whatever, and this class supplies the actual implementation of running(). But all raceWinner needs to know is that they have a running() method with the expected signature.
If we only defined running() on cat and human, we couldn't call m1.running() (because the compiler is not guaranteed that m1 has a running() method, as it only knows it's a m1 implements mammal). So instead we'd have to implement a raceWinner(human m1, cat m2) and likewise for two humans, two cats, or any other pair of mammals we had in mind, leading to a lot more work on our part.
An interface provides a contract. It doesn't provide an implementation. It's good practice to interface out your classes.
Of course, walking(), eating() will have different implementation in different animals. But they all walk, run, etc. That is all the interface is saying.
You could model this using inheritance, which would allow you to give default implementations for some or all of the methods. However, interfaces are really useful for declaring a set of features that apply to many unrelated types.
To continue your example, you could imagine a type Alien, which would probably have the same methods, but would not fit in your inheritance hierarchy.
The purpose of interfaces is to tell you what a class does, not how it does it.
This is especially important for accepting things that work differently -- each printer we attach to the PC works differently, so does each scanner, so does each external drive. If all programs needed to care about how each of them worked, you would need to recompile, say, Microsoft Office, for every model of printer that comes out.
One way to develop interfaces is to define an interface and a relative class which implements te interface a common reasonable way. Having both interface and class, you could use the interface in the case the class alreay derives from another class, otherwise a class could derived derivctly to the interface implementation.
It's not always possible, but it solves many problem.
Having a common interface is used to use different object using only the interface (collecting them to a generic list, for example).
There isn't much difference between an entirely abstract class and an interface if you only have one base type. Interfaces can't have any implementation code, but abstract classes can. In this case, abstract classes can be more flexible.
Where interfaces are really useful is that you can assign multiple interfaces to a single implementation, but you can only assign one base class.
for instance, you could have:
class Cat : IMammal, IFourLeggedAnimal
{
}
class Human: IMammal, ITwoLeggedAnimal
{
}
Now you can treat both of them as Mammals, with a "walk()" method, or you can treat them as Four or two legged animals (not necessarily mammals).
What is really useful with an interface like mammal is that you can treat an array of objects (Humans and Cats) as of being of the same type when you want them to walk, eat or run.
For instance if you ware creating a game where you have a number (objects would be created dynamically, but just for example lets say 10 cats and 1 human) of mammals on the screen (saved in a collection), and just wanted them to walk on every turn, you could simply do:
foreach(mammals m in MamalsArrayList){
{
m.walking();
}
note: I suggest you follow naming conventions and name your interfaces with "I" in front of them, so your example should be named IMammals.
without having to know weather any particular m is either a cat or a human.
Interfaces are hard to show on any particular snippet - but when you really need one you can see how useful they can be.
Of course they have other uses to (that are mentioned in other answers), I just focused on your example.
There are two issues here that are often confused. Inherited behaviour allows different 'commands' to be responded to in the same way e.g Man.walk() === Woman.walk(). Polymorphic behaviour allows the same 'command' to be responded to in different ways e.g. Animal.move() for one object may be different for Animal.move() for another, the bird will choose to fly while the slug will slide.
Now, I would argue the second of these is good while the first is not. Why? Because in OOP we should be encapsulating functionality into objects, which in turn promotes code reuse and all the other nicenesses of OOP. So rather than inheriting behaviour we should delegate it out to a shared object. If you know patterns then this is what State and Strategy are doing.
The problem lies in the fact that normally when you inherit , you get both of these behaviours mixed together. I suggest that this is more trouble than its worth and we should only be using interfaces, though sometimes we do have to make do with whatever the framework provides.
In your specific example Mammal is probably a bad interface name because it doesn't really tell me what it does and it has the potential to blowout to thousands of methods. It's better to divide interfaces into very specific cases. If you were modelling animals you might have a Moveable interface with one method, move(), to which each animal could respond by walking, running, flying, or crawling as appropriate.

Why should you prevent a class from being subclassed?

What can be reasons to prevent a class from being inherited? (e.g. using sealed on a c# class)
Right now I can't think of any.
Because writing classes to be substitutably extended is damn hard and requires you to make accurate predictions of how future users will want to extend what you've written.
Sealing your class forces them to use composition, which is much more robust.
How about if you are not sure about the interface yet and don't want any other code depending on the present interface? [That's off the top of my head, but I'd be interested in other reasons as well!]
Edit:
A bit of googling gave the following:
http://codebetter.com/blogs/patricksmacchia/archive/2008/01/05/rambling-on-the-sealed-keyword.aspx
Quoting:
There are three reasons why a sealed class is better than an unsealed class:
Versioning: When a class is originally sealed, it can change to unsealed in the future without breaking compatibility. (…)
Performance: (…) if the JIT compiler sees a call to a virtual method using a sealed types, the JIT compiler can produce more efficient code by calling the method non-virtually.(…)
Security and Predictability: A class must protect its own state and not allow itself to ever become corrupted. When a class is unsealed, a derived class can access and manipulate the base class’s state if any data fields or methods that internally manipulate fields are accessible and not private.(…)
I want to give you this message from "Code Complete":
Inheritance - subclasses - tends to
work against the primary technical
imperative you have as a programmer,
which is to manage complexity.For the sake of controlling complexity, you should maintain a heavy bias against inheritance.
The only legitimate use of inheritance is to define a particular case of a base class like, for example, when inherit from Shape to derive Circle. To check this look at the relation in opposite direction: is a Shape a generalization of Circle? If the answer is yes then it is ok to use inheritance.
So if you have a class for which there can not be any particular cases that specialize its behavior it should be sealed.
Also due to LSP (Liskov Substitution Principle) one can use derived class where base class is expected and this is actually imposes the greatest impact from use of inheritance: code using base class may be given an inherited class and it still has to work as expected. In order to protect external code when there is no obvious need for subclasses you seal the class and its clients can rely that its behavior will not be changed. Otherwise external code needs to be explicitly designed to expect possible changes in behavior in subclasses.
A more concrete example would be Singleton pattern. You need to seal singleton to ensure one can not break the "singletonness".
This may not apply to your code, but a lot of classes within the .NET framework are sealed purposely so that no one tries to create a sub-class.
There are certain situations where the internals are complex and require certain things to be controlled very specifically so the designer decided no one should inherit the class so that no one accidentally breaks functionality by using something in the wrong way.
#jjnguy
Another user may want to re-use your code by sub-classing your class. I don't see a reason to stop this.
If they want to use the functionality of my class they can achieve that with containment, and they will have much less brittle code as a result.
Composition seems to be often overlooked; all too often people want to jump on the inheritance bandwagon. They should not! Substitutability is difficult. Default to composition; you'll thank me in the long run.
I am in agreement with jjnguy... I think the reasons to seal a class are few and far between. Quite the contrary, I have been in the situation more than once where I want to extend a class, but couldn't because it was sealed.
As a perfect example, I was recently creating a small package (Java, not C#, but same principles) to wrap functionality around the memcached tool. I wanted an interface so in tests I could mock away the memcached client API I was using, and also so we could switch clients if the need arose (there are 2 clients listed on the memcached homepage). Additionally, I wanted to have the opportunity to replace the functionality altogether if the need or desire arose (such as if the memcached servers are down for some reason, we could potentially hot swap with a local cache implementation instead).
I exposed a minimal interface to interact with the client API, and it would have been awesome to extend the client API class and then just add an implements clause with my new interface. The methods that I had in the interface that matched the actual interface would then need no further details and so I wouldn't have to explicitly implement them. However, the class was sealed, so I had to instead proxy calls to an internal reference to this class. The result: more work and a lot more code for no real good reason.
That said, I think there are potential times when you might want to make a class sealed... and the best thing I can think of is an API that you will invoke directly, but allow clients to implement. For example, a game where you can program against the game... if your classes were not sealed, then the players who are adding features could potentially exploit the API to their advantage. This is a very narrow case though, and I think any time you have full control over the codebase, there really is little if any reason to make a class sealed.
This is one reason I really like the Ruby programming language... even the core classes are open, not just to extend but to ADD AND CHANGE functionality dynamically, TO THE CLASS ITSELF! It's called monkeypatching and can be a nightmare if abused, but it's damn fun to play with!
From an object-oriented perspective, sealing a class clearly documents the author's intent without the need for comments. When I seal a class I am trying to say that this class was designed to encapsulate some specific piece of knowledge or some specific service. It was not meant to be enhanced or subclassed further.
This goes well with the Template Method design pattern. I have an interface that says "I perform this service." I then have a class that implements that interface. But, what if performing that service relies on context that the base class doesn't know about (and shouldn't know about)? What happens is that the base class provides virtual methods, which are either protected or private, and these virtual methods are the hooks for subclasses to provide the piece of information or action that the base class does not know and cannot know. Meanwhile, the base class can contain code that is common for all the child classes. These subclasses would be sealed because they are meant to accomplish that one and only one concrete implementation of the service.
Can you make the argument that these subclasses should be further subclassed to enhance them? I would say no because if that subclass couldn't get the job done in the first place then it should never have derived from the base class. If you don't like it then you have the original interface, go write your own implementation class.
Sealing these subclasses also discourages deep levels of inheritence, which works well for GUI frameworks but works poorly for business logic layers.
Because you always want to be handed a reference to the class and not to a derived one for various reasons:
i. invariants that you have in some other part of your code
ii. security
etc
Also, because it's a safe bet with regards to backward compatibility - you'll never be able to close that class for inheritance if it's release unsealed.
Or maybe you didn't have enough time to test the interface that the class exposes to be sure that you can allow others to inherit from it.
Or maybe there's no point (that you see now) in having a subclass.
Or you don't want bug reports when people try to subclass and don't manage to get all the nitty-gritty details - cut support costs.
Sometimes your class interface just isn't meant to be inheirited. The public interface just isn't virtual and while someone could override the functionality that's in place it would just be wrong. Yes in general they shouldn't override the public interface, but you can insure that they don't by making the class non-inheritable.
The example I can think of right now are customized contained classes with deep clones in .Net. If you inherit from them you lose the deep clone ability.[I'm kind of fuzzy on this example, it's been a while since I worked with IClonable] If you have a true singelton class, you probably don't want inherited forms of it around, and a data persistence layer is not normally place you want a lot of inheritance.
Not everything that's important in a class is asserted easily in code. There can be semantics and relationships present that are easily broken by inheriting and overriding methods. Overriding one method at a time is an easy way to do this. You design a class/object as a single meaningful entity and then someone comes along and thinks if a method or two were 'better' it would do no harm. That may or may not be true. Maybe you can correctly separate all methods between private and not private or virtual and not virtual but that still may not be enough. Demanding inheritance of all classes also puts a huge additional burden on the original developer to foresee all the ways an inheriting class could screw things up.
I don't know of a perfect solution. I'm sympathetic to preventing inheritance but that's also a problem because it hinders unit testing.
I exposed a minimal interface to interact with the client API, and it would have been awesome to extend the client API class and then just add an implements clause with my new interface. The methods that I had in the interface that matched the actual interface would then need no further details and so I wouldn't have to explicitly implement them. However, the class was sealed, so I had to instead proxy calls to an internal reference to this class. The result: more work and a lot more code for no real good reason.
Well, there is a reason: your code is now somewhat insulated from changes to the memcached interface.
Performance: (…) if the JIT compiler sees a call to a virtual method using a sealed types, the JIT compiler can produce more efficient code by calling the method non-virtually.(…)
That's a great reason indeed. Thus, for performance-critical classes, sealed and friends make sense.
All the other reasons I've seen mentioned so far boil down to "nobody touches my class!". If you're worried someone might misunderstand its internals, you did a poor job documenting it. You can't possibly know that there's nothing useful to add to your class, or that you already know every imaginable use case for it. Even if you're right and the other developer shouldn't have used your class to solve their problem, using a keyword isn't a great way of preventing such a mistake. Documentation is. If they ignore the documentation, their loss.
Most of answers (when abstracted) state that sealed/finalized classes are tool to protect other programmers against potential mistakes. There is a blurry line between meaningful protection and pointless restriction. But as long as programmer is the one who is expected to understand the program, I see no hardly any reasons to restrict him from reusing parts of a class. Most of you talk about classes. But it's all about objects!
In his first post, DrPizza claims that designing inheritable class means anticipating possible extensions. Do I get it right that you think that class should be inheritable only if it's likely to be extended well? Looks as if you were used to design software from the most abstract classes. Allow me a brief explanation of how do I think when designing:
Starting from the very concrete objects, I find characteristics and [thus] functionality that they have in common and I abstract it to superclass of those particular objects. This is a way to reduce code duplicity.
Unless developing some specific product such as a framework, I should care about my code, not others (virtual) code. The fact that others might find it useful to reuse my code is a nice bonus, not my primary goal. If they decide to do so, it's their responsibility to ensure validity of extensions. This applies team-wide. Up-front design is crucial to productivity.
Getting back to my idea: Your objects should primarily serve your purposes, not some possible shoulda/woulda/coulda functionality of their subtypes. Your goal is to solve given problem. Object oriented languages uses fact that many problems (or more likely their subproblems) are similar and therefore existing code can be used to accelerate further development.
Sealing a class forces people who could possibly take advantage of existing code WITHOUT ACTUALLY MODIFYING YOUR PRODUCT to reinvent the wheel. (This is a crucial idea of my thesis: Inheriting a class doesn't modify it! Which seems quite pedestrian and obvious, but it's being commonly ignored).
People are often scared that their "open" classes will be twisted to something that can not substitute its ascendants. So what? Why should you care? No tool can prevent bad programmer from creating bad software!
I'm not trying to denote inheritable classes as the ultimately correct way of designing, consider this more like an explanation of my inclination to inheritable classes. That's the beauty of programming - virtually infinite set of correct solutions, each with its own cons and pros. Your comments and arguments are welcome.
And finally, my answer to the original question: I'd finalize a class to let others know that I consider the class a leaf of the hierarchical class tree and I see absolutely no possibility that it could become a parent node. (And if anyone thinks that it actually could, then either I was wrong or they don't get me).