I have this class, which creates a document and saves it:
public class DocCreator
{
private IDocumentStore _documentStore;
public DocCreator(IDocumentStore documentStore)
{
_documentStore = documentStore;
}
public void CreateAndSave()
{
var doc = new Document();
doc.Title = "this is a title";
doc.Content = whateverStream;
doc.Hash = CalculateHash(doc.Content);
//[do more things to create a doc]
_documentStore.PersistToDisk(doc);
}
}
I think it's decent, as the code to save things is hidden in DocumentStore. But we can take it one step further, and remove the call _documentStore.PersistToDisk(doc); to another class, like this:
public class DocCreatorWorkflow
{
private IDocumentStore _documentStore;
public DocCreatorWorkflow(IDocumentStore documentStore)
{
_documentStore = documentStore;
}
public void CreateAndSave()
{
var docCreator = new DocCreator();
var doc = docCreator.Create();
_documentStore.PersistToDisk(doc);
}
}
In the example above I've created another class, which calls two lower classes, and so becomes responsible for the 'workflow'. It might be cleaner, but it also complicates things more. Doesn't it?
Or should I always go for the second option?
I would go with Option 2. You would need to modify the DocCreatorClass, though, since it is no longer responsible for saving it to disk:
public static class DocCreatorClass
{
public static Document Create()
{
Document doc = new Document();
// Property assignment code here.
return doc;
}
}
It would be static so that you would not need to instantiate a DocCreatorClass. I would also create separate functions for Create and Save in the DocCreatorWorkflow class:
public class DocCreatorWorkflow
{
public IDocumentStore _documentStore;
public DocCreateWorkflow(IDocumentStore documentStore)
{
}
public void Document Create()
{
return DocCreatorClass.Create();
}
public void Save(Document doc)
{
_documentStore.PersistToDisk(doc);
}
public void CreateAndSave()
{
Save(Create());
}
}
This way, you don't always have to immediately save to disk the newly-created document. CreateAndSave() would be a convenience function that calls both Save() and Create() inside it, in case your program wants to immediately save a new document often enough.
This type of design is definitely more coding which may come across as more complicated. In the long run, it's easier to look at and maintain because each function does only one thing.
I personally stick with (most of the time, since there may be exceptions) the one class, one responsibility rule. This makes it easier to locate a part of your project when you notice that a functionality doesn't work. When you work on fixing it, you can be rest assured that the rest of your application (the other tasks, thus classes) is untouched. For functions, I like to create them in such a way that within a class, no code blocks will be repeated in two or more different places. This way, you won't have to hunt down all of those identical code blocks to update.
Option two looks better, based on the information available (although there might be other info that may change this judgement).
But, in general, how do you determine which one is better? I think, it is better to start with conceptualizing the concerns, at first, without involving the code. For example, in this case, in my opinion, there are three concerns. 1) creating a document 2) persisting a document 3) performing the logic (some unit of work) that involves creating and saving a document. The key point is, that this third concern is separate from the first two. Neither DocCreator, nor DocumentStore, know that they are being called in this way, or some other way for that matter. Hence, it is not their concern.
Related
I am looking for a way to dynamically select the correct dependency during runtime using google guice.
My usecase is a kotlin application which can work with either sqlite or h2 databases depending on the configuration file provided.
The file is read when the application is executed and if the database is not found, the correct one is created and migrated into.
My database structure contains the Database (Interface), H2Database: Database, SQLiteDatabase: Database and the module binding class which looks like this:
class DatabaseModule: KotlinModule() {
override fun configure() {
bind<Database>().annotatedWith<configuration.H2>().to<H2Database>()
bind<Database>().annotatedWith<configuration.SQLite>().to<SQLiteDatabase>()
}
}
So far, with SQlite alone, I would simply request the dependency using:
#Inject
#SQLite
private lateinit var database: Database
How would I make this selection during runtime?
Without knowing too much about the specific of your code, I'll offer three general approaches.
(Also, I have never used Kotlin. I hope Java samples are enough for you to figure things out.)
First Approach
It sounds like you need some non-trivial logic to determine which Database implementation is the right one to use. This is a classic case for a ProviderBinding. Instead binding Database to a specific implementation, you bind Database to a class that is responsible providing instances (a Provider). For example, you might have this class:
public class MyDatabaseProvider.class implements Provider<Database> {
#Inject
public MyDatabaseProvider.class(Provider<SQLiteDatabase> sqliteProvider, Provider<H2Database> h2Provider) {
this.sqliteProvider = sqliteProvider;
this.h2Provider = h2Provider;
}
public Database get() {
// Logic to determine database type goes here
if (isUsingSqlite) {
return sqliteProvider.get();
} else if (isUsingH2) {
return h2Provider.get();
} else {
throw new ProvisionException("Could not determine correct database implementation.");
}
}
}
(Side note: This sample code gets you a new instance every time. It is fairly straightforward to make this also return a singleton instance.)
Then, to use it, you have two options. In your module, you would bind Database not to a specific implementation, but to your DatabaseProvider. Like this:
protected void configure() {
bind(Database.class).toProvider(MyDatabaseProvider.class);
}
The advantage of this approach is that you don't need to know the correct database implementation until Guice tries to construct an object that requires Database as one of its constructor args.
Second Approach
You could create a DatabaseRoutingProxy class which implements Database and then delegates to the correct database implementation. (I've used this pattern professionally. I don't think there's an "official" name for this design pattern, but you can find a discussion here.) This approach is based on lazy loading with Provider using the Providers that Guice automatically creates(1) for every bound type.
public class DatabaseRoutingProxy implements Database {
private Provider<SqliteDatabse> sqliteDatabaseProvider;
private Provider<H2Database> h2DatabaseProvider;
#Inject
public DatabaseRoutingProxy(Provider<SqliteDatabse> sqliteDatabaseProvider, Provider<H2Database> h2DatabaseProvider) {
this.sqliteDatabaseProvider = sqliteDatabaseProvider;
this.h2DatabaseProvider = h2DatabaseProvider;
}
// Not an overriden method
private Database getDatabase() {
boolean isSqlite = // ... decision logic, or maintain a decision state somewhere
// If these providers don't return singletons, then you should probably write some code
// to call the provider once and save the result for future use.
if (isSqlite) {
return sqliteDatabaseProvider.get();
} else {
return h2DatabaseProvider.get();
}
}
#Override
public QueryResult queryDatabase(QueryInput queryInput) {
return getDatabase().queryDatabase(queryInput);
}
// Implement rest of methods here, delegating as above
}
And in your Guice module:
protected void configure() {
bind(Database.class).to(DatabaseRoutingProxy.class);
// Bind these just so that Guice knows about them. (This might not actually be necessary.)
bind(SqliteDatabase.class);
bind(H2Database.class);
}
The advantage of this approach is that you don't need to be able to know which database implementation to use until you actually make a database call.
Both of these approaches have been assuming that you cannot instantiate an instance of H2Database or SqliteDatabase unless the backing database file actually exists. If it's possible to instantiate the object without the backing database file, then your code becomes much simpler. (Just have a router/proxy/delegator/whatever that takes the actual Database instances as the constructor args.)
Third Approach
This approach is completely different then the last two. It seems to me like your code is actually dealing with two questions:
Does a database actually exist? (If not, then make one.)
Which database exists? (And get the correct class to interact with it.)
If you can solve question 1 before even creating the guice injector that needs to know the answer to question 2, then you don't need to do anything complicated. You can just have a database module like this:
public class MyDatabaseModule extends AbstractModule {
public enum DatabaseType {
SQLITE,
H2
}
private DatabaseType databaseType;
public MyDatabaseModule(DatabaseType databaseType) {
this.databaseType = databaseType;
}
protected void configure() {
if (SQLITE.equals(databaseType)) {
bind(Database.class).to(SqliteDatabase.class);
} else if (H2.equals(databaseType)) {
bind(Database.class).to(H2Database.class);
}
}
}
Since you've separated out questions 1 & 2, when you create the injector that will use the MyDatabaseModule, you can pass in the appropriate value for the constructor argument.
Notes
The Injector documentation states that there will exist a Provider<T> for every binding T. I have successfully created bindings without creating the corresponding provider, therefore Guice must be automatically creating a Provider for configured bindings. (Edit: I found more documentation that states this more clearly.)
When doing IoC, I (think that I) understand its use for getting the desired application level functionality by composing the right parts, and the benefits for testability. But at the microlevel, I don't quite understand how to make sure that an object gets dependencies injected that it can actually work with. My example for this is a BackupMaker for a database.
To make a backup, the database needs to be exported in a specific format, compressed using a specific compression algorithm, and then packed together with some metadata to form the final binary. Doing all of these tasks seems to be far from a single responsibility, so I ended up with two collaborators: a DatabaseExporter and a Compressor.
The BackupMaker doesn't really care how the database is exported (e.g. using IPC to a utility that comes with the database software, or by doing the right API calls) but it does care a lot about the result, i.e. it needs to be a this-kind-of-database backup in the first place, in the transportable (version agnostic) format, either of which I don't really know how to wrap in a contract. Neither does it care if the compressor does the compression in memory or on disk, but it has to be BZip2.
If I give the BackupMaker the wrong kinds of exporter or compressor, it will still produce a result, but it will be corrupt - it'll look like a backup, but it won't have the format that it should have. It feels like no other part of the system can be trusted to give it those collaborators, because the BackupMaker won't be able to guarantee to do the right thing itself; its job (from my perspective) is to produce a valid backup and it won't if the circumstances ain't right, and worse, it won't know about it. At the same time, even when writing this, it seems to me that I'm saying something stupid now, because the whole point of single responsibilities is that every piece should do its job and not worry about the jobs of others. If it were that simple though, there would be no need for contracts - J.B. Rainsberger just taught me there is. (FYI, I sent him this question directly, but I haven't got a reply yet and more opinions on the matter would be great.)
Intuitively, my favorite option would be to make it impossible to combine classes/objects in an invalid way, but I don't see how to do that. Should I write horrendously specific interface names, like IDatabaseExportInSuchAndSuchFormatProducer and ICompressorUsingAlgorithmXAndParametersY and assume that no classes implement these if they don't behave as such, and then call it a day since nothing can be done about outright lying code? Should I go as far as the mundane task of dissecting the binary format of my database's exports and compression algorithms to have contract tests to verify not only syntax but behavior as well, and then be sure (but how?) to use only tested classes? Or can I somehow redistribute the responsibilities to make this issue go away? Should there be another class whose responsibility it is to compose the right lower level elements? Or am I even decomposing too much?
Rewording
I notice that much attention is given to this very particular example. My question is more general than that, however. Therefore, for the final day of the bounty, I will try to summarize is as follows.
When using dependency injection, by definition, an object depends on other objects for what it needs. In many book examples, the way to indicate compatibility - the capability to provide that need - is by using the type system (e.g. implementing an interface). Beyond that, and especially in dynamic languages, contract tests are used. The compiler (if present) checks the syntax, and the contract tests (that the programmer needs to remember about) verify the semantics. So far, so good. However, sometimes the semantics are still too simple to ensure that some class/object is usable as a dependency to another, or too complicated to be described properly in a contract.
In my example, my class with a dependency on a database exporter considers anything that implements IDatabaseExportInSuchAndSuchFormatProducer and returns bytes as valid (since I don't know how to verify the format). Is very specific naming and such a very rough contract the way to go or can I do better than that? Should I turn the contract test into an integration test? Perhaps (integration) test the composition of all three? I'm not really trying to be generic but am trying to keep responsibilities separate and maintain testability.
What you have discovered in your question is that you have 2 classes that have an implicit dependency on one another. So, the most practical solution is to make the dependency explicit.
There are a number of ways you could do this.
Option 1
The simplest option is to make one service depend on the other, and make the dependent service explicit in its abstraction.
Pros
Few types to implement and maintain.
The compression service could be skipped for a particular implementation just by leaving it out of the constructor.
The DI container is in charge of lifetime management.
Cons
May force an unnatural dependency into a type where it is not really needed.
public class MySqlExporter : IExporter
{
private readonly IBZip2Compressor compressor;
public MySqlExporter(IBZip2Compressor compressor)
{
this.compressor = compressor;
}
public void Export(byte[] data)
{
byte[] compressedData = this.compressor.Compress(data);
// Export implementation
}
}
Option 2
Since you want to make an extensible design that doesn't directly depend on a specific compression algorithm or database, you can use an Aggregate Service (which implements the Facade Pattern) to abstract the more specific configuration away from your BackupMaker.
As pointed out in the article, you have an implicit domain concept (coordination of dependencies) that needs to be realized as an explicit service, IBackupCoordinator.
Pros
The DI container is in charge of lifetime management.
Leaving compression out of a particular implementation is as easy as passing the data through the method.
Explicitly implements a domain concept that you are missing, namely coordination of dependencies.
Cons
Many types to build and maintain.
BackupManager must have 3 dependencies instead of 2 registered with the DI container.
Generic Interfaces
public interface IBackupCoordinator
{
void Export(byte[] data);
byte[] Compress(byte[] data);
}
public interface IBackupMaker
{
void Backup();
}
public interface IDatabaseExporter
{
void Export(byte[] data);
}
public interface ICompressor
{
byte[] Compress(byte[] data);
}
Specialized Interfaces
Now, to make sure the pieces only plug together one way, you need to make interfaces that are specific to the algorithm and database used. You can use interface inheritance to achieve this (as shown) or you can just hide the interface differences behind the facade (IBackupCoordinator).
public interface IBZip2Compressor : ICompressor
{}
public interface IGZipCompressor : ICompressor
{}
public interface IMySqlDatabaseExporter : IDatabaseExporter
{}
public interface ISqlServerDatabaseExporter : IDatabaseExporter
{}
Coordinator Implementation
The coordinators are what do the job for you. The subtle difference between implementations is that the interface dependencies are explicitly called out so you cannot inject the wrong type with your DI configuration.
public class BZip2ToMySqlBackupCoordinator : IBackupCoordinator
{
private readonly IMySqlDatabaseExporter exporter;
private readonly IBZip2Compressor compressor;
public BZip2ToMySqlBackupCoordinator(
IMySqlDatabaseExporter exporter,
IBZip2Compressor compressor)
{
this.exporter = exporter;
this.compressor = compressor;
}
public void Export(byte[] data)
{
this.exporter.Export(byte[] data);
}
public byte[] Compress(byte[] data)
{
return this.compressor.Compress(data);
}
}
public class GZipToSqlServerBackupCoordinator : IBackupCoordinator
{
private readonly ISqlServerDatabaseExporter exporter;
private readonly IGZipCompressor compressor;
public BZip2ToMySqlBackupCoordinator(
ISqlServerDatabaseExporter exporter,
IGZipCompressor compressor)
{
this.exporter = exporter;
this.compressor = compressor;
}
public void Export(byte[] data)
{
this.exporter.Export(byte[] data);
}
public byte[] Compress(byte[] data)
{
return this.compressor.Compress(data);
}
}
BackupMaker Implementation
The BackupMaker can now be generic as it accepts any type of IBackupCoordinator to do the heavy lifting.
public class BackupMaker : IBackupMaker
{
private readonly IBackupCoordinator backupCoordinator;
public BackupMaker(IBackupCoordinator backupCoordinator)
{
this.backupCoordinator = backupCoordinator;
}
public void Backup()
{
// Get the data from somewhere
byte[] data = new byte[0];
// Compress the data
byte[] compressedData = this.backupCoordinator.Compress(data);
// Backup the data
this.backupCoordinator.Export(compressedData);
}
}
Note that even if your services are used in other places than BackupMaker, this neatly wraps them into one package that can be passed to other services. You don't necessarily need to use both operations just because you inject the IBackupCoordinator service. The only place where you might run into trouble is if using named instances in the DI configuration across different services.
Option 3
Much like Option 2, you could use a specialized form of Abstract Factory to coordinate the relationship between concrete IDatabaseExporter and IBackupMaker, which will fill the role of the dependency coordinator.
Pros
Few types to maintain.
Only 1 dependency to register in the DI container, making it simpler to deal with.
Moves lifetime management into the BackupMaker service, which makes it impossible to misconfigure DI in a way that will cause a memory leak.
Explicitly implements a domain concept that you are missing, namely coordination of dependencies.
Cons
Leaving compression out of a particular implementation requires you implement the Null object pattern.
The DI container is not in charge of lifetime management and each dependency instance is per request, which may not be ideal.
If your services have many dependencies, it may become unwieldy to inject them through the constructor of the CoordinationFactory implementations.
Interfaces
I am showing the factory implementation with a Release method for each type. This is to follow the Register, Resolve, and Release pattern which makes it effective for cleaning up dependencies. This becomes especially important if 3rd parties could implement the ICompressor or IDatabaseExporter types because it is unknown what kinds of dependencies they may have to clean up.
Do note however, that the use of the Release methods is totally optional with this pattern and excluding them will simplify the design quite a bit.
public interface IBackupCoordinationFactory
{
ICompressor CreateCompressor();
void ReleaseCompressor(ICompressor compressor);
IDatabaseExporter CreateDatabaseExporter();
void ReleaseDatabaseExporter(IDatabaseExporter databaseExporter);
}
public interface IBackupMaker
{
void Backup();
}
public interface IDatabaseExporter
{
void Export(byte[] data);
}
public interface ICompressor
{
byte[] Compress(byte[] data);
}
BackupCoordinationFactory Implementation
public class BZip2ToMySqlBackupCoordinationFactory : IBackupCoordinationFactory
{
public ICompressor CreateCompressor()
{
return new BZip2Compressor();
}
public void ReleaseCompressor(ICompressor compressor)
{
IDisposable disposable = compressor as IDisposable;
if (disposable != null)
{
disposable.Dispose();
}
}
public IDatabaseExporter CreateDatabaseExporter()
{
return new MySqlDatabseExporter();
}
public void ReleaseDatabaseExporter(IDatabaseExporter databaseExporter)
{
IDisposable disposable = databaseExporter as IDisposable;
if (disposable != null)
{
disposable.Dispose();
}
}
}
public class GZipToSqlServerBackupCoordinationFactory : IBackupCoordinationFactory
{
public ICompressor CreateCompressor()
{
return new GZipCompressor();
}
public void ReleaseCompressor(ICompressor compressor)
{
IDisposable disposable = compressor as IDisposable;
if (disposable != null)
{
disposable.Dispose();
}
}
public IDatabaseExporter CreateDatabaseExporter()
{
return new SqlServerDatabseExporter();
}
public void ReleaseDatabaseExporter(IDatabaseExporter databaseExporter)
{
IDisposable disposable = databaseExporter as IDisposable;
if (disposable != null)
{
disposable.Dispose();
}
}
}
BackupMaker Implementation
public class BackupMaker : IBackupMaker
{
private readonly IBackupCoordinationFactory backupCoordinationFactory;
public BackupMaker(IBackupCoordinationFactory backupCoordinationFactory)
{
this.backupCoordinationFactory = backupCoordinationFactory;
}
public void Backup()
{
// Get the data from somewhere
byte[] data = new byte[0];
// Compress the data
byte[] compressedData;
ICompressor compressor = this.backupCoordinationFactory.CreateCompressor();
try
{
compressedData = compressor.Compress(data);
}
finally
{
this.backupCoordinationFactory.ReleaseCompressor(compressor);
}
// Backup the data
IDatabaseExporter exporter = this.backupCoordinationFactory.CreateDatabaseExporter();
try
{
exporter.Export(compressedData);
}
finally
{
this.backupCoordinationFactory.ReleaseDatabaseExporter(exporter);
}
}
}
Option 4
Create a guard clause in your BackupMaker class to prevent non-matching types from being allowed, and throw an exception in the case they are not matched.
In C#, you can do this with attributes (which apply custom metadata to the class). Support for this option may or may not exist in other platforms.
Pros
Seamless - no extra types to configure in DI.
The logic for comparing whether types match could be expanded to include multiple attributes per type, if needed. So a single compressor could be used for multiple databases, for example.
100% of invalid DI configurations will cause an error (although you may wish to make the exception specify how to make the DI configuration work).
Cons
Leaving compression out of a particular backup configuration requires you implement the Null object pattern.
The business logic for comparing types is implemented in a static extension method, which makes it testable but impossible to swap with another implementation.
If the design is refactored so that ICompressor or IDatabaseExporter are not dependencies of the same service, this will no longer work.
Custom Attribute
In .NET, an attribute can be used to attach metadata to a type. We make a custom DatabaseTypeAttribute that we can compare the database type name with two different types to ensure they are compatible.
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public DatabaseTypeAttribute : Attribute
{
public DatabaseTypeAttribute(string databaseType)
{
this.DatabaseType = databaseType;
}
public string DatabaseType { get; set; }
}
Concrete ICompressor and IDatabaseExporter Implementations
[DatabaseType("MySql")]
public class MySqlDatabaseExporter : IDatabaseExporter
{
public void Export(byte[] data)
{
// implementation
}
}
[DatabaseType("SqlServer")]
public class SqlServerDatabaseExporter : IDatabaseExporter
{
public void Export(byte[] data)
{
// implementation
}
}
[DatabaseType("MySql")]
public class BZip2Compressor : ICompressor
{
public byte[] Compress(byte[] data)
{
// implementation
}
}
[DatabaseType("SqlServer")]
public class GZipCompressor : ICompressor
{
public byte[] Compress(byte[] data)
{
// implementation
}
}
Extension Method
We roll the comparison logic into an extension method so every implementation of IBackupMaker automatically includes it.
public static class BackupMakerExtensions
{
public static bool DatabaseTypeAttributesMatch(
this IBackupMaker backupMaker,
Type compressorType,
Type databaseExporterType)
{
// Use .NET Reflection to get the metadata
DatabaseTypeAttribute compressorAttribute = (DatabaseTypeAttribute)compressorType
.GetCustomAttributes(attributeType: typeof(DatabaseTypeAttribute), inherit: true)
.SingleOrDefault();
DatabaseTypeAttribute databaseExporterAttribute = (DatabaseTypeAttribute)databaseExporterType
.GetCustomAttributes(attributeType: typeof(DatabaseTypeAttribute), inherit: true)
.SingleOrDefault();
// Types with no attribute are considered invalid even if they implement
// the corresponding interface
if (compressorAttribute == null) return false;
if (databaseExporterAttribute == null) return false;
return (compressorAttribute.DatabaseType.Equals(databaseExporterAttribute.DatabaseType);
}
}
BackupMaker Implementation
A guard clause ensures that 2 classes with non-matching metadata are rejected before the type instance is created.
public class BackupMaker : IBackupMaker
{
private readonly ICompressor compressor;
private readonly IDatabaseExporter databaseExporter;
public BackupMaker(ICompressor compressor, IDatabaseExporter databaseExporter)
{
// Guard to prevent against nulls
if (compressor == null)
throw new ArgumentNullException("compressor");
if (databaseExporter == null)
throw new ArgumentNullException("databaseExporter");
// Guard to prevent against non-matching attributes
if (!DatabaseTypeAttributesMatch(compressor.GetType(), databaseExporter.GetType()))
{
throw new ArgumentException(compressor.GetType().FullName +
" cannot be used in conjunction with " +
databaseExporter.GetType().FullName)
}
this.compressor = compressor;
this.databaseExporter = databaseExporter;
}
public void Backup()
{
// Get the data from somewhere
byte[] data = new byte[0];
// Compress the data
byte[] compressedData = this.compressor.Compress(data);
// Backup the data
this.databaseExporter.Export(compressedData);
}
}
If you decide on one of these options, I would appreciate if you left a comment as to which one you go with. I have a similar situation in one of my projects, and I am leaning toward Option 2.
Response to your Update
Is very specific naming and such a very rough contract the way to go or can I do better than that? Should I turn the contract test into an integration test? Perhaps (integration) test the composition of all three? I'm not really trying to be generic but am trying to keep responsibilities separate and maintain testability.
Creating an integration test is a good idea, but only if you are certain that you are testing the production DI configuration. Although it also makes sense to test it all as a unit to verify it works, it doesn't do you much good for this use case if the code that ships is configured differently than the test.
Should you be specific? I believe I have already given you a choice in that matter. If you go with the guard clause, you don't have to be specific at all. If you go with one of the other options, you have a good compromise between specific and generic.
I know you stated that you are not intentionally trying to be generic, and it is good to draw the line somewhere to ensure a solution is not over-engineered. On the other hand, if the solution has to be redesigned because an interface was not generic enough that is not a good thing either. Extensibility is always a requirement whether it is specified up front or not because you never really know how business requirements will change in the future. So, having a generic BackupMaker is definitely the best way to go. The other classes can be more specific - you just need one seam to swap implementations if future requirements change.
My first suggestion would be to critically think if you need to be that generic: You have a concrete problem to solve, you want to backup a very specific database into a specific format. Is there any benefit you get by solving the problem for arbitary databases and arbitary formats? What you surely get of a generic solution is boilerplate code and increased complexity (people understand concrete problems, not generic ones).
If this applies to you, then my suggestion would be to not let your DatabaseExporter accept interfaces, but instead only concrete implementations. There are enough modern tools out there which will also allow you mocking concrete classes, so testability is not an argument for using interfaces here aswell.
on the other hand, if you do have to backup several databases with different strategies, then I would probably introduce something like a
class BackupPlan {
public DatabaseExporter exporter() {/**...*/}
public Compressor compressor() {/** ... */}
}
then your BackupMaker will get passed one BackupPlan, specifying which database to be compressed with which algorithm.
Your question is emphasizing the fact that object composition is very important and that the entity that is responsible for such composition (wiring) has a big responsibility.
Since you already have a generic BackupMaker, I would suggest that you keep it this way, and push the big responsibility of making sure that the right composition of objects (to solve the specific problem) is done in the composition root.
Readers of your application source code (you and your team members), would have a single place (the composition root) to understand how you compose your objects to solve your specific problem by using the generic classes (e.g. BackupMaker).
Put in other words, the composition root is where you decide on the specifics. Its where you use the generic to create the specific.
To reply on the comment:
which should know what about those dependencies?
The composition root needs to know about everything (all the dependencies) since it is creating all the objects in the application and wiring them together. The composition root knows what each piece of the puzzle does and it connects them together to create a meaningful application.
For the BackupMaker, it should only care about just enough to be able to do its single responsibility. In your example, its single (simple) responsibility (as it seems to me) is to orchestrate the consumption of other objects to create a backup.
As long as you are using DI, a class will never be sure that its collaborator will behave correctly, only the composition root will. Consider this simple and extreme example of an IDatabaseExporter implementation (assume that the developer actually gave this class this name, and that he intentionally implemented it this way):
public class StupidDisastrousDatabaseExporter : IDatabaseExporter
{
public ExportedData Export()
{
DoSomethingStupidThatWillDeleteSystemDataAndMakeTheEnterpriseBroke();
...
}
private void DoSomethingStupidThatWillDeleteSystemDataAndMakeTheEnterpriseBroke()
{
//do it
...
}
}
Now, the BackupMaker will never know that it is consuming a stupid and disastrous database exporter, only the composition root does. We can never blame the programmer that wrote the BackupMaker class for this disastrous mistake (or the programmer who designed the IDatabaseExporter contract). But the programmer(s) that are composing the application in the composition root are blamed if they inject a StupidDisastrousDatabaseExporter instance into the constructor of BackupMaker.
Of course, no one should have written the StupidDisastrousDatabaseExporter class in the first place, but I gave you an extreme example to show you that a contract (interface) can never (and should never) guarantee every aspect about its implementors. It should just say enough.
Is there a way to express IDatabaseExporter in such a way that guarantees that implementors of such interface will not make stupid or disastrous actions? No.
Please note that while the BackupMaker is dealing with contracts (no 100% guarantees), the composition root is actually dealing with concrete implementation classes. This gives it the great power (and thus the great responsibility) to guarantee the composition of the correct object graph.
how do I make sure that I'm composing in a sensible way?
You should create automated end-to-end tests for the object graph created by the composition root. Here you are making sure that the composition root has done its big responsibility of composing the objects in a correct way. Here you can test the exact details that you wanted (like that the backup result was in some exact format/details).
Take a look at this article for an approach to automated testing using the Composition Root.
I believe this may be a problem that occurs when focusing too much on object models, at the exclusion of function compositions. Consider the first step in a naive function decomposition (function as in f : a -> b):
exporter: data -> (format, memory), or exception
compressor: memory -> memory, or exception
writer: memory -> side-effect, or exception
backup-maker: (data, exporter, compressor, writer) -> backup-result
So backup-maker, the last function, can be parametized with those three functions, assuming I've considered your use-case correctly, and if the three parameters have the same input and output types, e.g. format, and memory, despite their implementation.
Now, "the guts", or a possible decomposition (read right to left) of backup-maker, with all functions bound, taking data as the argument, and using the composition operator ".":
backup-maker: intermediate-computation . writer . intermediate-computation . compressor . intermediate-computation . exporter
I especially want to note that this model of architecture can be expressed later as either object interfaces, or as first-class functions, e.g. c++ std::function.
Edit: It can also be refined to terms of generics, where memory is a generic type argument, to provide type safety where wanted. E.g.
backup-maker<type M>: (data, exporter<M>, compressor<M>, writer<M>) -> ..
More information about the technique and benefits of Function Decomposition can be found here:
http://jfeltz.com/posts/2015-08-30-cost-decreasing-software-architecture.html
Your requirements seem contradictory:
You want to be specific (allowing only a subset (or only one ?) of combinations)
But you also want to be generic by using interfaces, DI, etc.
My advice is to keep things simple (in your case it means don't try to be generic) until your code evolve.
Only when your code will evolve, refactor in a more generic way. The code below shows a compromise between generic/specific:
public interface ICompressor {
public byte[] compress(byte[] source); //Note: the return type and type argument may not be revelant, just for demonstration purpose
}
public interface IExporter {
public File export(String connectionString); //Note: the return type and type argument may not be revelant, just for demonstration purpose
}
public final class Bzip2 implements ICompressor {
#Override
public final byte[] compress(byte[] source) {
//TODO
}
}
public final class MySQL implements IExporter {
#Override
public final File export(String connnectionString) {
//TODO
}
}
public abstract class ABackupStrategy {
private final ICompressor compressor;
private final IExporter exporter;
public ABackupStrategy(final ICompressor compressor, final IExporter exporter) {
this.compressor = compressor;
this.exporter = exporter;
}
public final void makeBackup() {
//TODO: compose with exporter and compressor to make your backup
}
}
public final class MyFirstBackupStrategy extends ABackupStrategy {
public MyFirstBackupStrategy(final Bzip2 compressor, final MySQL exporter) {
super(compressor, exporter);
}
}
With ICompressor and IExporter, you can easily add other compression algorithm, other database from which to export.
With ABackupStrategy, you can easily define a new allowed combination of concrete compressor/exporter by inheriting it.
Drawback: I had to make ABackupStrategy abstract without declaring any abstract method, which is in contradiction with the OOP-principles.
I'm trying to recreate Hearthstone cards as objects in Java, but I'm having trouble doing this in a good and efficient way.
All cards have some common properties like a 'name'. But the problem is that there is about 300 cards to generate, and there is about 30 different abilities that each card may or may not have. Now, do I have to create a basic card class with all the possible abilities set to false and then set all its specific ability parameters to true? This approach seems to get very messy with all the getters and all the extra information that some abilities needs to specify... So my question is if there's there a better way to solve this kind of problem?
I would like to create these card objects so that I'm only 'adding' the specific abilities as fields, but I can't figure out how to do this in a good way.
Thankful for help!
Like Dave said, it's a little difficult to be sure what the best solution to your problem is without more context. However, from what I can gather, your problem is a pretty common one. For common problems, programmers often create efficient solutions that can be used over and over again called design patterns.
Design patterns aren't needed in every case, so be careful not to overuse them, but it seems like they could help you here. Both solutions mentioned by Dave may work, but the problem with making each ability an object is that it requires you to make as many classes as you have abilities. Furthermore, if each ability is a simple variable, it may be overkill to create classes for all of them, particularly since so many classes can become difficult to maintain. Although having these abilities inherit from an interface somewhat helps with maintainability, I think an easier solution can probably be found in the builder pattern.
I won't explain it in detail here, but here's a tutorial that seems reasonably simple. It's basic purpose is to
For your particular example it would look something like this:
public class Card
{
private final String name;
private final Ability soundAbility;
private final Ability animationAbility;
private final Ability customMessageAbility;
private final String technology;
// The constructor is private in this case to restrict instantiation to the builder.
private Card(CardBuilder builder)
{
this.name = builder.name;
this.soundAbility = builder.soundAbility;
this.animationAbility = builder.animationAbility;
this.customMessageAbility = builder.customMessageAbility;
this.technology = builder.technology;
}
// Getters
public String getName()
{
return this.name;
}
public Ability getSoundAbility()
{
return this.soundAbility;
}
// ... More getters and stuff ...
#Override
public String toString()
{
String text = "";
text += this.name + ":";
text += "\n\t" + this.soundAbility;
text += "\n\t" + this.animationAbility;
text += "\n\t" + this.customMessageAbility;
text += "\n\tI have the ability of " + this.technology + "!";
return text;
}
// Nested builder class
public static class CardBuilder
{
private final String name;
private Ability soundAbility;
private Ability animationAbility;
private Ability customMessageAbility;
private String technology;
public CardBuilder(String name)
{
this.name = name;
}
public CardBuilder soundAbility(Ability soundAbility)
{
this.soundAbility = soundAbility;
return this;
}
public CardBuilder animationAbility(Ability animationAbility)
{
this.animationAbility = animationAbility;
return this;
}
public CardBuilder customMessageAbility(Ability customMessageAbility)
{
this.customMessageAbility = customMessageAbility;
return this;
}
public CardBuilder technology(String technology)
{
this.technology = technology;
return this;
}
public Card build()
{
return new Card(this);
}
}
}
Then to run the program:
package builderTest;
class BuilderMain
{
public static void main(String[] args)
{
// Initialize ability objects.
Ability a1 = new SoundAbility();
Ability a2 = new AnimationAbility();
Ability a3 = new CustomMessageAbility();
// Build card
Card card = new Card.CardBuilder("Birthday Card")
.soundAbility(a1)
.animationAbility(a2)
.customMessageAbility(a3)
.technology("Flash")
.build();
System.out.println(card);
}
}
The output would be something along the lines of:
Birthday Card:
I have the ability of sound!
I have the ability of animation!
I have the ability of customizing messages!
I have the ability of Flash!
Keep in mind that I'm working without much context, so what you need might be significantly different.
Although previous answers are very good, there is still another way of achieve this Object creation
with very many optional fields
I found myself in similar situation when dealing with DB complexity and Command design pattern. As you know some table columns values are mandatory - some are not. I'm using this Effective Java book
for such cases.
So, useful here is the Consider a builder when faced with many constructor parameters. By doing so, you avoid
first, the Telescoping constructor pattern (does not scale well) - it works, but it is hard to write client code when there are many parameters, and harder still to read it.
second, the JavaBeans Pattern, which is good, but allows inconsistency and mandates mutability. It may be in an inconsistent state partway through its construction and precludes the possibility of making a class immutable too.
The Builder pattern as used simulates named optional parameters as found in Ada and Python.Like a constructor, a builder can impose invariants on its parameters. But it is critical that they be checked after copying the parameters from the builder to the object, and that they be checked on
the object fields rather than the builder fields.
Cheers.
I have a base class where all common functions are written. I many classes which override this functions by virtual keyword. Like,
public class Base
{
public virtual void sample()
{
..............
}
}
public class a : Base
{
public override sample()
{
}
}
public class implement
{
public void ToSample()
{
Base baseclass = new Base();
Switch(test)
{
case a: baseclass = a();
break;
case b: baseclass = b();
break;
}
baseclass.sample();
}
}
This perfect code for current situation but now I have more class to be assign in switch case. It is not good practice for adding huge amount of cases so I want something that automatically assign child class.
Is anybody know something to be implement ?
As stated in the comment, you can decouple the implementation by using dependency injection. Note however, that in some cases you have no choice but doing that kind of switch (e.g. when you need to create a class based on a text received in a socket). In such cases the important thing is to always keep the switch statement encapsulated in one method and make your objects rely on it (or, in other words, don't copy-and-paste it everywhere :)). The idea here is too keep your system isolated from a potentially harmful code. Of course that if you add a new class you will have to go and modify that method, however you will only have to do it in one time and in one specific place.
Another approach that I have seen (and sometimes used) is to build a mapping between values an classes. So, if your class-creation switch depends on an integer code, you basically create a mapping between codes and classes. What you are doing here is turning a "static" switch into a dynamic behavior, since you can change the mappings contents at any time and thus alter the way your program behaves. A typical implementation would be something like (sorry for the pseudocode, I'm not familiar with C#):
public class implement
{
public void ToSample()
{
class = this.mapping.valueForKey(test);
Base baseclass = new class();
baseclass.sample();
}
}
Note however that for this example to work you need reflection support, which varies according to the language you are using (again, sorry but I don't know the C# specifics).
Finally, you can also check the creational family of patterns for inspiration regarding object creation issues and some well known forms of solving them.
HTH
Suppose we have an object that represents the configuration of a piece of hardware. For the sake of argument, a temperature controller (TempController). It contains one property, the setpoint temperature.
I need to save this configuration to a file for use in some other device. The file format (FormatA) is set in stone. I don't want the TempController object to know about the file format... it's just not relevant to that object. So I make another object, "FormatAExporter", that transforms the TempController into the desired output.
A year later we make a new temperature controller, let's call it "AdvancedTempController", that not only has a setpoint but also has rate control, meaning one or two more properties. A new file format is also invented to store those properties... let's call it FormatB.
Both file formats are capable of representing both devices ( assume AdvancedTempController has reasonable defaults if it lacks settings ).
So here is the problem: Without using 'isa' or some other "cheating" way to figure out what type of object I have, how can FormatBExporter handle both cases?
My first instinct is to have a method in each temperature controller that can provide a customer exporter for that class, e.g., TempController.getExporter() and AdvancedTempController.getExporter(). This doesn't support multiple file formats well.
The only other approach that springs to mind is to have a method in each temperature controller that returns a list of properties and their values, and then the formatter can decide how to output those. It'd work, but that seems convoluted.
UPDATE: Upon further work, that latter approach doesn't really work well. If all your types are simple it might, but if your properties are Objects then you end up just pushing the problem down a level... you are forced to return a pair of String,Object values, and the exporter will have to know what the Objects actually are to make use of them. So it just pushes the problem to another level.
Are there any suggestions for how I might keep this flexible?
What you can do is let the TempControllers be responsible for persisting itself using a generic archiver.
class TempController
{
private Temperature _setPoint;
public Temperature SetPoint { get; set;}
public ImportFrom(Archive archive)
{
SetPoint = archive.Read("SetPoint");
}
public ExportTo(Archive archive)
{
archive.Write("SetPoint", SetPoint);
}
}
class AdvancedTempController
{
private Temperature _setPoint;
private Rate _rateControl;
public Temperature SetPoint { get; set;}
public Rate RateControl { get; set;}
public ImportFrom(Archive archive)
{
SetPoint = archive.Read("SetPoint");
RateControl = archive.ReadWithDefault("RateControl", Rate.Zero);
}
public ExportTo(Archive archive)
{
archive.Write("SetPoint", SetPoint);
archive.Write("RateControl", RateControl);
}
}
By keeping it this way, the controllers do not care how the actual values are stored but you are still keeping the internals of the object well encapsulated.
Now you can define an abstract Archive class that all archive classes can implement.
abstract class Archive
{
public abstract object Read(string key);
public abstract object ReadWithDefault(string key, object defaultValue);
public abstract void Write(string key);
}
FormatA archiver can do it one way, and FormatB archive can do it another.
class FormatAArchive : Archive
{
public object Read(string key)
{
// read stuff
}
public object ReadWithDefault(string key, object defaultValue)
{
// if store contains key, read stuff
// else return default value
}
public void Write(string key)
{
// write stuff
}
}
class FormatBArchive : Archive
{
public object Read(string key)
{
// read stuff
}
public object ReadWithDefault(string key, object defaultValue)
{
// if store contains key, read stuff
// else return default value
}
public void Write(string key)
{
// write stuff
}
}
You can add in another Controller type and pass it whatever formatter. You can also create another formatter and pass it to whichever controller.
In C# or other languages that support this you can do this:
class TempController {
int SetPoint;
}
class AdvancedTempController : TempController {
int Rate;
}
class FormatAExporter {
void Export(TempController tc) {
Write(tc.SetPoint);
}
}
class FormatBExporter {
void Export(TempController tc) {
if (tc is AdvancedTempController) {
Write((tc as AdvancedTempController).Rate);
}
Write(tc.SetPoint);
}
}
I'd have the "temp controller", through a getState method, return a map (e.g. in Python a dict, in Javascript an object, in C++ a std::map or std::hashmap, etc, etc) of its properties and current values -- what's convoluted about it?! Could hardly be simpler, it's totally extensible, and totally decoupled from the use it's put to (displaying, serializing, &c).
Well, a lot of that depends on the file formats you're talking about.
If they're based on key/value combinations (including nested ones, like xml), then having some kind of intermediate memory object that's loosely typed that can be thrown at the appropriate file format writer is a good way to do it.
If not, then you've got a scenario where you've got four combinations of objects and file formats, with custom logic for each scenario. In that case, it may not be possible to have a single representation for each file format that can deal with either controller. In other words, if you can't generalize the file format writer, you can't generalize it.
I don't really like the idea of the controllers having exporters - I'm just not a fan of objects knowing about storage mechanisms and whatnot (they may know about the concept of storage, and have a specific instance given to them via some DI mechanism). But I think you're in agreement with that, and for pretty much the same reasons.
If FormatBExporter takes an AdvancedTempController, then you can make a bridge class that makes TempController conform to AdvancedTempController. You may need to add some sort of getFormat() function to AdvancedTempController though.
For example:
FormatBExporter exporterB;
TempController tempController;
AdvancedTempController bridged = TempToAdvancedTempBridge(tempController);
exporterB.export(bridged);
There is also the option of using a key-to-value mapping scheme. FormatAExporter exports/imports a value for key "setpoint". FormatBExporter exports/imports a values for keys "setpoint" and "ratecontrol". This way, old FormatAExporter can still read the new file format (it just ignores "ratecontrol") and FormatBExporter can read the old file format (if "ratecontrol" is missing, it uses a default).
In the OO model, the object methods as a collective is the controller. It's more useful to separate your program in to the M and V and not so much the C if you're programming using OO.
I guess this is the where the Factory method pattern would apply