Supress automatic messages in cmake custom targets - cmake

I want to add custom targets with cmake but, some of them must be "silent", because it isn't neccesary. For example, for clean custom commands:
// In CMakeLists.txt
add_custom_target(clean-temporaries
${CMAKE_COMMAND} -P clean-temporaries.cmake
COMMENT "Deleting temporary files"
)
// clean-temporaries.cmake
file(GLOB_RECURSE temporary_files "*[~#]")
file(REMOVE ${temporary_files})
$ cmake .
$ make clean-temporals
[100%] Deleting temporary files
[100%] Built target clean-temporaries
$ make clean
$
We can see that CMake prepares "make clean" to not show messages, but, how can I say to CMake I don't want messages in a custom target?

Try adding a minus at the beginning of the command you want to hide from the console.
-make clean

To deal with temporary files littering your source tree:
Encourage contributors to configure their editors so that temporary files end up in a common directory under their $HOME (eg: vim, emacs).
Encourage contributors to configure their global version control ignore files to always ignore the temporary files for their own work environment (eg. for git: vim, emacs).
Additionally exclude well known temporary file patterns in the version control's ignore file of each project, to be friendly to contributors who haven't yet implemented the two previous steps.
If you do that, it's likely that you don't have to put an additional 'optional' (ie. highly environment specific) step into your build system and you end up with a more generally applicable solution to the problem.
As an additional comment on your example code, I'd avoid building in the source tree and use out-of-source builds instead.

Related

Is it possible to force CMake to run add_compile_definitions() each time?

I have an embedded project (using ESP-IDF which builds projects with CMake), where I have a props.json file that contains several settings (e.g. "device type"). For example based on the actual value of "deviceType" the CMake open and read props.json by calling execute_process() and jq, then defines C preprocessor macros, such as: DEVICE_TYPE_A by using add_compile_definitions().
The problem is that, this will run only when I modify the CMakeLists.txt or clean the whole project, but I don't want to recompile each components when I change the props.json only the files that I wrote (so, depend on the settings). I'd like to make CMake read the file each time I build the project without cleaning it.
I did my research, so I know there are add_custom_target() and add_custom_command() that behave that way, however add_compile_definitions() cannot be called in a script. Is there a solution to achieve this or should I just use a header file configured by configure_file() and leave add_compile_definitions() alone?
This is actually pretty easy and you don't need to manually reconfigure CMake. Just add the following to the CMakeLists.txt in the directory containing your props.json file:
set_property(DIRECTORY . APPEND PROPERTY CMAKE_CONFIGURE_DEPENDS props.json)
This will add props.json to the list of files that the CMake-generated build scans when determining whether to re-run the CMake configure step. See the docs on CMAKE_CONFIGURE_DEPENDS for more detail.
In general, you should never need to manually re-run CMake1 after the first configure. If you do, it is an indication that you have not communicated all of the necessary information for CMake to generate a correct build system.
1 There is one notable exception: Xcode is known to be buggy when re-running the CMake configure step automatically.

How to use glib-compile-resources with CMake

As any GTK project grows, GTK applications tend to be bundled with gresources to separate out code and UI design. This is very useful because UI/UX designers don't need to know code in order to... well design and ultimately contribute their skills and effort to the project.
Not only designers but programmers too benefit a lot! Because code becomes heavily "logic or problem solving" instead of maintaining both UI and logic code together in one single file.
However, to compile our GResource we need glib-compile-resources utility tool. The command usually goes like this:
glib-compile-resources --generate-source --target=<output-file> <input-file>
But how do I create a build script that compiles our gresource files and link it with our target project? I'm still a newbie learning CMake and I've gotten far enough to know what a target is, how to set a variable, how to link a target, and also how to pull in the required GTK packages for linking. But I don't have any clue how to proceed ahead with solving this :(
A solution to this is using add_custom_command() to compile your gresources. But first here's a breakdown of what you need for your CMake script:
Pull in glib-compile-resources as executable program - find_program()
Define how to compile your gresource - add_custom_command()
Then define your custom target - add_custom_target()
Tell CMake that resource is a generated file - set_source_files_properties()
Finally, add your custom target to your project target as a dependency - add_dependencies()
Here's a sample CMake script:
cmake_minimum_required(VERSION 3.15)
project(dummy)
# Step 1:
find_program(GLIB_COMPILE_RESOURCES NAMES glib-compile-resources REQUIRED)
set(GRESOURCE_C test.gresource.c)
set(GRESOURCE_XML test.gresource.xml)
# Step 2:
add_custom_command(
OUTPUT ${GRESOURCE_C}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
COMMAND ${GLIB_COMPILE_RESOURCES}
ARGS
--target=${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C}
${GRESOURCE_XML}
VERBATIM
MAIN_DEPENDENCY ${GRESOURCE_XML}
DEPENDS
for.glade
bar.glade
)
# Step 3:
add_custom_target(
dummy-resource
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C}
)
# Step 4:
add_executable(${PROJECT_NAME} dummy.c ${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C})
set_source_files_properties(
${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C}
PROPERTIES GENERATED TRUE
)
# Step 5:
add_dependencies(${PROJECT_NAME} dummy-resource)
Brief explanation
add_custom_command()
OUTPUT - This is your generated resource file
WORKING_DIRECTORY - Where your XML and glade files are located
VERBATIM - Makes sure our COMMAND receives ARGS unchanged
MAIN_DEPENDENCY - for glib-compile-resources <input-file>
DEPENDS - Your glade file(s). If any of the file changes then your target build is triggered :)
add_custom_target()
dummy-resource - That's your custom target name
DEPENDS - The output your custom target needs in order to trigger your custom command
set_source_files_properties()
When you first generate your build files using cmake command, your resource file isn't generated yet. So CMake will run into error because it doesn't know where your resource file is or where it's coming from. We need to tell CMake "Don't fail, our resource file is generated later"
Use --generate-dependencies instead of hard-coding
Now you might notice we are duplicating our effort ie., when we add new glade files or remove existing ones (or any other resources such as icon, sounds, css files, etc) we have to edit both our XML and CMake script files. glib-compile-resources already provide dependency generation so we can use that in our CMake script and make it smart.
The trick is to change your .xml file to .xml.in as a configuration file. So when that configuration file changes, you call glib tool with --generate-dependencies, get new dependency output values, and send that to add_custom_command(... DEPENDS). Now we have an intelligent CMake :)
If you want to approach this method then the below post would be really helpful:
Use list as dependencies on add_custom_command
Good luck :)

Creating a library in CMake depending on source files not available when generating build files

I have a CMake configuration file building two libraries:
a third-party library (here called ThirdPartyLib) containing a real-time OS / board support package from a supplier. It is built outside CMake using the autotools toolchain.
an extended version of the former library (here called ExtendedThirdPartyLib)
Unfortunately, some source code that I need (various tools) are not built in the ordinary build script for (1). Since I don't want to mess with the suppliers build script I want to add another library (2), building the missing files and thus extending the library from the supplier.
I want to able to do something like this in CMakeFiles.txt:
cmake_minimum_required(VERSION 3.2)
project(bsp)
include(ExternalProject)
ExternalProject_Add(
ThirdPartyLib
URL <http://some.url/bsp.tar.bz2
BUILD_COMMAND make -C ../external/ThirdPartyLib/src
)
set_target_properties(ThirdPartyLib PROPERTIES EXCLUDE_FROM_ALL TRUE)
add_library(ExtendedThirdPartyLib
${CMAKE_CURRENT_BINARY_DIR}/some/path/missing_file1.c
${CMAKE_CURRENT_BINARY_DIR}/some/path/missing_file2.c
)
add_dependencies(ExtendedThirdPartyLib ThirdPartyLib)
target_include_directories(ExtendedThirdPartyLib PUBLIC
${CMAKE_CURRENT_BINARY_DIR}/some/path/include
)
target_link_libraries(ExtendedThirdPartyLib ThirdPartyLib)
The problem here is that the path to missing_file1.c and missing_file2.c are not valid when CMake is generating the build files (they are extracted from the tarball from the supplier). CMake exits with an error output saying: "Cannot find source file".
Is there a neat way to make this work? I.e. is it possible to convince CMake that certain non-existant input files will exist when building of the library begins? Or is there any other recommended way to solve this issue?
(I have temporary made local copies of the files I need to build from the suppliers tarball, but that is of course not a good solution. If those files are changed in future versions of the suppliers package and I forget to overwrite my local copies it could be a horrible mess...
Another "solution" would be to create a small makefile outside CMake and use another ExternalProject_Add in the CMakeFiles.txt somehow. But that's not a good solution either, e.g. if compile and linker flags are modified I need to remember to change the makefile too.)
Personally, I dislike the ExternalProject_Add command, because it does way too many things for my taste, but I've digressed.
What if you do something like this, where bar is simulating your ExtendedThirdPartyLib target, since it depends on generated files
cmake_minimum_required(VERSION 3.11)
project(lol C)
set(SOURCES lol.c) # only this file exists
add_library(lol ${SOURCES})
set(FOO_FILES "foo1.c" "foo2.c")
add_custom_command(OUTPUT ${FOO_FILES}
COMMAND ${CMAKE_COMMAND} -E touch ${FOO_FILES}
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}"
COMMENT "Creating ${FOO_FILES}"
VERBATIM)
add_custom_target(foo DEPENDS ${FOO_FILES})
add_library(bar ${FOO_FILES})
add_dependencies(bar foo)
target_link_libraries(lol bar)
The whole approach hinges on the fact that the method, where produced/generated files are procured, is explicitly defined via the custom command and associated custom target.
You should modify the custom command to extract the required files (e.g. could even call some external script) from the tarball (which might require downloading with curl or something similar).

Retrieve all link flags in CMake

In CMake, is it possible to programmatically retrieve the complete list of linker flags that will be used for a given target? The only way I can see to do this is to inspect the link.txt file in the target's CMakeFiles directory. Not ideal.
The use case that I'm interested in is to collect the data to include in something like a pkg-config file. I'm writing a library, and it includes a couple executable utilities that use the library. Building the executables (especially when the library is build statically) requires a non-trivial link line to link to my library and its dependencies. So I'd like to write out the link line necessary for building these executables to a data file included with the package such that other clients can know how to link.
As #Tsyvarev has commented there is no build-in command or property "to programmatically retrieve the complete list of linker flags" in CMake.
But inspired by your hint "so I'd like to write out the link line necessary for building these executables to a data file" I think I found a feasible solution (at least for makefile generators).
And if I understand your request correctly, we are not talking about simple verbose outputs like you get with e.g. CMAKE_VERBOSE_MAKEFILE, which would still need you to copy things manually.
So taking the following into account:
You need to run the generator first to get the real link line
CMake allows you to invent any linker language by name
You can define the link line with CMAKE_>LANG<_LINK_EXECUTABLE using variables and expansion rules
I came up with adding an LinkLine executable using my ECHO "linker" with the single purpose to create a link line file of my choosing:
set(CMAKE_ECHO_STANDARD_LIBRARIES ${CMAKE_CXX_STANDARD_LIBRARIES})
set(CMAKE_ECHO_FLAGS ${CMAKE_CXX_FLAGS})
set(CMAKE_ECHO_LINK_FLAGS ${CMAKE_CXX_LINK_FLAGS})
set(CMAKE_ECHO_IMPLICIT_LINK_DIRECTORIES ${CMAKE_CXX_IMPLICIT_LINK_DIRECTORIES})
set(
CMAKE_ECHO_LINK_EXECUTABLE
"<CMAKE_COMMAND> -E echo \"<FLAGS> <LINK_FLAGS> <LINK_LIBRARIES>\" > <TARGET>"
)
add_executable(LinkLine "")
target_link_libraries(LinkLine MyLibraryTarget)
set_target_properties(
LinkLine
PROPERTIES
LINKER_LANGUAGE ECHO
SUFFIX ".txt"
)
The nice thing about this approach is, that the output of my LinkLine target can be used as any other "officially generated" executable output (e.g. in install() commands or post-build steps with generator expressions):
add_custom_command(
TARGET LinkLine
POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy $<TARGET_FILE:LinkLine> PackageCfg/$<TARGET_FILE_NAME:LinkLine>
)
References
Recursive list of LINK_LIBRARIES in CMake
add_custom_command is not generating a target

Ninja equivalent of Make's "build from this directory down" feature (with CMake)?

When building a project using CMake and Make, you can execute make from a subdirectory of your build tree (i.e. from a directory below whatever directory contains your top-level Makefile), and make will (as far as I can tell) build all targets at or below that directory. This is because CMake generates a Makefile for every directory that contains targets, so when you're in a directory with targets, make finds the Makefile for building those targets.
When CMake generates Ninja files, however, it only generates one build.ninja file, which is at the top level of the build tree. So calling ninja from a directory other than the top-level directory fails (even the -f option doesn't work because ninja can't find the rules.ninja file).
Is there any way to emulate the "make-like" behavior of building targets at and below a directory? As far as I can tell, there are no Ninja targets that correspond to "all targets at and below a particular directory." (This could be emulated using phony targets named after each directory that depend on all targets at and below that directory, but CMake does not generate such targets by default.)
ninja <DIR>/all works with recent versions of Ninja (1.7.2). Version 1.3.4 does not allow this.
I could not find a reference to this on the manual. However, CMake has this documented here:
Recent versions of the ninja program can build the project through the “all” target. An “install” target is also provided.
For each subdirectory sub/dir of the project, additional targets are generated:
sub/dir/all
Depends on all targets required by the subdirectory.
sub/dir/install
Runs the install step in the subdirectory, if any.
sub/dir/test
Runs the test step in the subdirectory, if any.
sub/dir/package
Runs the package step in the subdirectory, if any.
This worked for me:
cd <build-root>
DIRECTORY=<path-relative-to-build-root>
ninja -t targets all | egrep "^${DIRECTORY}/" | egrep CXX_EXECUTABLE_LINKER | \
sed -e 's/:.*//g' | xargs ninja
ninja -t targets all - lists all targets (including target type)
egrep "^${DIRECTORY}/" - filters list of targets to only include those in desired directory
egrep CXX_EXECUTABLE_LINKER - limits the targets to just C++ executables. You can remove or tweak this to get the set of targets you're interested in.
sed -e 's/:.*//g' - removes the target type e.g. ": CXX_EXECUTABLE_LINKER"
xargs ninja - invokes ninja to build the targets
Good question. I would like to know the answer if you find it.
I am just in the process of transitioning to cmake+ninja myself.
I found that I could not create targets with the same name at different levels
(if there is a way I would be interested to know).
So I adopted a naming convention for different targets
E.g.
name - builds program or library
test.name - runs tests for the named program or library
doxygen.name - build doxygen for the named program or library
For deeper hierarchies you can do something like:
doxygen.subproject
doxygen.subproject.name
Using this pattern you can control precisely what is built but you have to issue the command from the top-level build directory.
I think after I get used to this I will find it more productive as there is no need to change directory before you build or run something and though there is sometimes a little extra typing required the shell history generally has it covered.
This is implemented under the hood by using add_custom_target() and adding appropriate dependencies. I use a macro to do this automatically so that
a macro "add_doxygen()" will add the doxygen target for the program and make the doxygen target at each higher level depend on it using add_dependencies().