I am pulling financial data into Matlab from SQL, where it is unfortunately stored as a 'Real' (which is an approximate data-type).
For example, a value got loaded into SQL as "96.194" which is the correct value (this could have any number of decimals 1-5). I know in SQL it is stored as something like 96.19400024 because it is an approximation, but SQL Server somehow knows to display it as 96.194.
When I pull it into matlab, it gets pulled in as 96.194, which is what I want. Unfortunately, it turns out it's not actually 96.194, as demonstrated:
>>price
price =
96.194
>> price==96.194
ans =
0
>> class(price)
ans =
single
>> double(price)
ans =
96.1940002441406
So my question is, is there a way to convert a single to a double exactly as it appears as a single (i.e. truncate all the decimals which are the approximation? Note: I cannot just round it because I don't know how many decimals it's supposed to have.
The vpa function lets you specify a number of significant (nonzero) digits that is different from the current digits setting. For example:
vpa(price, num_of_digits_required)
or in your case:
vpa(double(price),7)
(6 or 8 significant digits will yield the same result)
Edit
To use vpa you'll need the Symbolic Math Toolbox, there are alternatives found on the web, such as this FEX file.
Single precision floating point values have only about 7 digits of precision (23 bit fractional component, log10(2^24) ≈ 7.225 decimal digits) so you could round off all but the 7 most significant digits.
Related
I have created a column with
day_endnav double precision
When I insert a number: 58.320856084100 in database its stored as 58.3208560841 .
The 2 zeros at the end are removed.
Is there any way to say to mariadb to keep what is entered as it is. Not to roundof or removed zeros at the end?
The two zeros were not "removed". DOUBLE has 53 significant bits, which is about 16 significant decimal digits. The display of the number probably decided they were irrelevant. What tool displayed them?
Whether you insert 58.320856084100 or 58.32085608410000000000000, you will get the same value stored into DOUBLE.
Trailing zeros (at least after the decimal point) have no mathematical meaning to FLOAT or DOUBLE. If you have some meaning, then I guess you need to store it as a string, or DECIMAL.
DECIMAL(mm, 12) will store and display 58.320856084100 (if mm >= 14). However, DECIMAL is "fixed-point". That is, DECIMAL(20,12) will always have exactly 12 decimal places, no more, no fewer.
Please state your goal; maybe I have not touched on that point yet.
Quick Aside: I'm going to use the word "Float" to refer to both a .Net float and a SQL float with only 7 significant digits. I will use the word "Double" to refer to a .Net double and a SQL float with 15 significant digits. I also realize that this is very similar to some other posts regarding decimals/doubles, but the answers on those posts are really inconsistent, and I really want some recommendations for my specific circumstance...
I am part of a team that is rewriting an old application. The original app used floats (7 digits). This of course caused issues since the app conducted a lot of calculations and rounding errors accumulated very quickly. At some point, many of these floats were changed to decimals. Later, the floats (7) in the database all became doubles (15). After that we had several more errors with calculations involving doubles, and they too were changed to decimals.
Today about 1/3 of all of our floating point numbers in the database are decimals, the rest are doubles. My team wants to "standardize" all of our floating-point numbers in the database (and the new .Net code) to use either exclusively decimals or doubles except in cases where the other MUST be used. The majority of the team is set on using decimals; I'm the only person on my team advocating using doubles instead of decimals. Here's why...
Most of the numbers in the database are still doubles (though much of the application code still uses floats), and it would be a lot more effort to change all of the floats/doubles to decimals
For our app, none of the fields stored are "exact" decimal quantities. None of them are monetary quantities, and most represent some sort of "natural" measurement (e.g. mass, length, volume, etc.), so a double's 16 significant digits are already way more precise than even our initial measurements.
Many tables have measurements stored in two columns: 1 for the value; 1 for the unit of measure. This can lead to a HUGE difference in scale between the values in a single column. For example, one column can store a value in terms of pCi/g or Ci/m3 (1 Ci = 1000000000000 pCi). Since all the values in a single decimal columns must have the same scale (that is... an allocated number of digits both before and after the decimal point), I'm concerned that we will have overflow and rounding issues.
My teammates argue that:
Doubles are not as accurate nor as precise as decimals due to their inability to exactly represent 1/10 and that they only have 16 significant digits.
Even though we are not tracking money, the app is a inventory system that keeps track of material (mostly gram quantities) and it needs to be "as accurate as possible".
Even after the floats were changed to doubles, we continued to have bad results from calculations that used doubles. Changing these columns (and the application code) to decimals caused these calculations to produce the expected results.
It is my strong belief that the original issues where caused due to floats only having 7 significant digits and that simple arithmetic (e.g. 10001 * 10001) caused them to the data to quickly use up the few significant digits that they had. I do not believe this had anything to do with how binary-floating point numbers can only approximate decimal values, and I believe that using doubles would have fixed this issue.
I believe that the issue with doubles arose because doubles were used along side decimals in calculations that values were be converted back and forth between data types. Many of these calculations would round between intermediary steps in the calculation!
I'm trying to convince my team not to make everything under the sun into a decimal. Most values in the database don't have more than 5 or 6 significant digits anyway. Unfortunately, I am out-ranked by other members of my team that see things rather differently.
So, my question then is...
Am I worrying over nothing? Is there any real harm done by using almost exclusively decimals instead of doubles in an application with nearly 200 database tables, hundreds of transactions, and a rewrite schedule of 5 to 6 years?
Is using decimals actually solving an issue that doubles could not? From my research, both decimals and doubles are susceptible to rounding errors involving arbitrary fractions (adding 1/3 for example) and that the only way to account for this is to consider any value within a certain tolerance as being "equal" when comparing doubles and/or decimals.
If it is more appropriate to use doubles, what arguments could I make (other than what I have already made) could convince my team to not change everything to decimals?
Use decimal when you need perfect accuracy as a base-10 number (financial data, grades)
Use double or float when you are storing naturally imprecise data (measurements, temperature), want much faster mathematical operations, and can sacrifice a minute amount of imprecision.
Since you seem to be only storing various measurements (which have some precision anyways), float would be the logical choice (or double if you need more than 7 digits of precision).
Is using decimals actually solving an issue that doubles could not?
Not really - The data is only going to be as accurate as the measurements used to generate the data. Can you really say that a measured quantity is 123.4567 grams? Does the equipment used to measure it have that level of precision?
To deal with "rounding errors" I would argue that you can't really say whether a measurement of 1234.5 grams is exactly halfway - it could just as easily be 1234.49 grams, which would round down anyways.
What you need to decide is "what level of precision is acceptable" and always round to that precision as a last step. Don't round your data or intermediate calculations.
If it is more appropriate to use doubles, what arguments could I make (other than what I have already made) could convince my team to not change everything to decimals?
Other than the time spent switching, the only thing you're really sacrificing is speed. The only way to know how much speed is to try it both ways and measure the difference.
You'd better try your best not to lose precision. I guess my fault may convince you to choose double.
===> I did some wrong arithmetic, and it returns something very weird:
given 0.60, it returns 5
int get_index(double value) {
if (value < 0 || value > 1.00)
return -1;
return value / 0.10;
}
and I fixed it:
int get_index(double value) {
if (value < 0 || value > 1.00)
return -1;
return (value * 100000000) / (0.10 * 100000000);
}
Say I have test results values for a lab procedure that come in as 103. What would be the best way to store this in SQL Server? I would think since this is numerical data it would be improper to just store it as string text and then program around calculating the data value from the string.
If you want to use your data in numeric calculations, it is probably best to represent your data using once of SQL servers native numeric data type. Since you show scientific notation, it is likely you will want to use either REAL or FLOAT.
Real is basically 7 decimal digits of precision and float has 15 digits of precision (at least this is how they are normally used). You can actually specify reduced precision for FLOAT, but in practice most people just use REAL in that case. REAL takes 4 bytes of storage, and FLOAT requires 8 bytes.
The other numeric types are for fixed decimal point arithmetic.
Numbers in scientific notation like this have three pieces of information:
The significand
The precision of the significand
The exponent of 10
Presuming we want to keep all this information as exact as possible, it may be best to store these in three non-floating point columns (floating-point values are inexact):
DECIMAL significand
INT precision (# of decimal places)
INT exponent
The downside to the approach of separating these parts out, of course, is that you'll have to put the values back together when doing calculations -- but by doing that you'll know the correct number of significant figures for the result. Storing these three parts will also take up 25 bytes per value (17 for the DECIMAL, and 4 each for the two INTs), which may be a concern if you're storing a very large quantity of values.
Update per explanatory comments:
Given that your goal is to store an exponent from 1-8, you really only need to store the exponent, since you know the mantissa is always 10. Therefore, if your value is always going to be a whole number, you can just use a single INT column; if it will have decimal places, you can use a FLOAT or REAL per Gary Walker, or use a DECIMAL to store a precise decimal to a specified number of places.
If you specify a DECIMAL, you can provide two arguments in the column type; the first is the total number of digits to be stored, while the second is the number of digits to the right of the decimal point. So if your values are going to be accurate to the tenths place, you might create a column of DECIMAL(2,1). SQL Server MSDN documentation: DECIMAL and NUMERIC types
I have tried to find information and how.
But it did not contain any information that would help.
With T-SQL, I want to convert negative decimal to binary
and convert it back.
Sample value: -9223372036854775543
I try in convert with Calculater this value to Bin result is ...
1000000000000000000000000000000000000000000000000000000100001001
and Convert back to Dec. It's OK.
How i can Convert like this with T-SQL(SQL2008) Script/Function ?
Long time to find information for how to.
Anyone who knows about this, please help.
There is no build in functionality.
for INT and BIGINT you can use CONVERT(VARCHAR(100),CAST(3 AS VARBINARY(100)),2) to get the hex representation as a string. then you can do a simple search replace as every hex digit represents exactly 4 binary digits. However, with values outside of the BIGINT range there is no standard as to how they are represented internally. You might get the right result or not and that behavior might even change between versions.
There is also no standard as to how negative numbers are represented. Most implementations of integers use the two's-complement representation. In that representation the top most bit indicates the sign of the number. How many bits you have is a metter of convention and fully dependent on your environment.
In mathematics -3 woud be -11 in binary and not 11111101.
To solve your problem you can either use a CLR function or you go through your number the old fashioned way:
Is it odd? -> output a 1
Is it even? -> output a 0
integer divide by 2
repeat until the value is 0
This will give you the digits in opposite order, so you have to flip the result. To get the two's-complement representation of a negative number n calculate 1-n, convert the result to binary using the above algorithm but with reversed digits (0 instead of 1 and vice versa). After flipping the digits into the right order prepend with enough 1s to fill your "box".
I have an sql:
SELECT Sum(Field1), Sum(Field2), Sum(Field1)+Sum(Field2)
FROM Table
GROUP BY DateField
HAVING Sum(Field1)+Sum(Field2)<>0;
Problem is sometimes Sum of field1 and field2 is value like: 9.5-10.3 and the result is -0,800000000000001. Could anybody explain why this happens and how to solve it?
Problem is sometimes Sum of field1 and
field2 is value like: 9.5-10.3 and the
result is -0.800000000000001. Could
anybody explain why this happens and
how to solve it?
Why this happens
The float and double types store numbers in base 2, not in base 10. Sometimes, a number can be exactly represented in a finite number of bits.
9.5 → 1001.1
And sometimes it can't.
10.3 → 1010.0 1001 1001 1001 1001 1001 1001 1001 1001...
In the latter case, the number will get rounded to the closest value that can be represented as a double:
1010.0100110011001100110011001100110011001100110011010 base 2
= 10.300000000000000710542735760100185871124267578125 base 10
When the subtraction is done in binary, you get:
-0.11001100110011001100110011001100110011001100110100000
= -0.800000000000000710542735760100185871124267578125
Output routines will usually hide most of the "noise" digits.
Python 3.1 rounds it to -0.8000000000000007
SQLite 3.6 rounds it to -0.800000000000001.
printf %g rounds it to -0.8.
Note that, even on systems that display the value as -0.8, it's not the same as the best double approximation of -0.8, which is:
- 0.11001100110011001100110011001100110011001100110011010
= -0.8000000000000000444089209850062616169452667236328125
So, in any programming language using double, the expression 9.5 - 10.3 == -0.8 will be false.
The decimal non-solution
With questions like these, the most common answer is "use decimal arithmetic". This does indeed get better output in this particular example. Using Python's decimal.Decimal class:
>>> Decimal('9.5') - Decimal('10.3')
Decimal('-0.8')
However, you'll still have to deal with
>>> Decimal(1) / 3 * 3
Decimal('0.9999999999999999999999999999')
>>> Decimal(2).sqrt() ** 2
Decimal('1.999999999999999999999999999')
These may be more familiar rounding errors than the ones binary numbers have, but that doesn't make them less important.
In fact, binary fractions are more accurate than decimal fractions with the same number of bits, because of a combination of:
The hidden bit unique to base 2, and
The suboptimal radix economy of decimal.
It's also much faster (on PCs) because it has dedicated hardware.
There is nothing special about base ten. It's just an arbitrary choice based on the number of fingers we have.
It would be just as accurate to say that a newborn baby weighs 0x7.5 lb (in more familiar terms, 7 lb 5 oz) as to say that it weighs 7.3 lb. (Yes, there's a 0.2 oz difference between the two, but it's within tolerance.) In general, decimal provides no advantage in representing physical measurements.
Money is different
Unlike physical quantities which are measured to a certain level of precision, money is counted and thus an exact quantity. The quirk is that it's counted in multiples of 0.01 instead of multiples of 1 like most other discrete quantities.
If your "10.3" really means $10.30, then you should use a decimal number type to represent the value exactly.
(Unless you're working with historical stock prices from the days when they were in 1/16ths of a dollar, in which case binary is adequate anyway ;-) )
Otherwise, it's just a display issue.
You got an answer correct to 15 significant digits. That's correct for all practical purposes. If you just want to hide the "noise", use the SQL ROUND function.
I'm certain it is because the float data type (aka Double or Single in MS Access) is inexact. It is not like decimal which is a simple value scaled by a power of 10. If I'm remembering correctly, float values can have different denominators which means that they don't always convert back to base 10 exactly.
The cure is to change Field1 and Field2 from float/single/double to decimal or currency. If you give examples of the smallest and largest values you need to store, including the smallest and largest fractions needed such as 0.0001 or 0.9999, we can possibly advise you better.
Be aware that versions of Access before 2007 can have problems with ORDER BY on decimal values. Please read the comments on this post for some more perspective on this. In many cases, this would not be an issue for people, but in other cases it might be.
In general, float should be used for values that can end up being extremely small or large (smaller or larger than a decimal can hold). You need to understand that float maintains more accurate scale at the cost of some precision. That is, a decimal will overflow or underflow where a float can just keep on going. But the float only has a limited number of significant digits, whereas a decimal's digits are all significant.
If you can't change the column types, then in the meantime you can work around the problem by rounding your final calculation. Don't round until the very last possible moment.
Update
A criticism of my recommendation to use decimal has been leveled, not the point about unexpected ORDER BY results, but that float is overall more accurate with the same number of bits.
No contest to this fact. However, I think it is more common for people to be working with values that are in fact counted or are expected to be expressed in base ten. I see questions over and over in forums about what's wrong with their floating-point data types, and I don't see these same questions about decimal. That means to me that people should start off with decimal, and when they're ready for the leap to how and when to use float they can study up on it and start using it when they're competent.
In the meantime, while it may be a tad frustrating to have people always recommending decimal when you know it's not as accurate, don't let yourself get divorced from the real world where having more familiar rounding errors at the expense of very slightly reduced accuracy is of value.
Let me point out to my detractors that the example
Decimal(1) / 3 * 3 yielding 1.999999999999999999999999999
is, in what should be familiar words, "correct to 27 significant digits" which is "correct for all practical purposes."
So if we have two ways of doing what is practically speaking the same thing, and both of them can represent numbers very precisely out to a ludicrous number of significant digits, and both require rounding but one of them has markedly more familiar rounding errors than the other, I can't accept that recommending the more familiar one is in any way bad. What is a beginner to make of a system that can perform a - a and not get 0 as an answer? He's going to get confusion, and be stopped in his work while he tries to fathom it. Then he'll go ask for help on a message board, and get told the pat answer "use decimal". Then he'll be just fine for five more years, until he has grown enough to get curious one day and finally studies and really grasps what float is doing and becomes able to use it properly.
That said, in the final analysis I have to say that slamming me for recommending decimal seems just a little bit off in outer space.
Last, I would like to point out that the following statement is not strictly true, since it overgeneralizes:
The float and double types store numbers in base 2, not in base 10.
To be accurate, most modern systems store floating-point data types with a base of 2. But not all! Some use or have used base 10. For all I know, there are systems which use base 3 which is closer to e and thus has a more optimal radix economy than base 2 representations (as if that really mattered to 99.999% of all computer users). Additionally, saying "float and double types" could be a little misleading, since double IS float, but float isn't double. Float is short for floating-point, but Single and Double are float(ing point) subtypes which connote the total precision available. There are also the Single-Extended and Double-Extended floating point data types.
It is probably an effect of floating point number implementations. Sometimes numbers cannot be exactly represented, and sometimes the result of operations is slightly off what we may expect for the same reason.
The fix would be to use a rounding function on the values to cut off the extraneous digits. Like this (I've simply rounded to 4 significant digits after the decimal, but of course you should use whatever precision is appropriate for your data):
SELECT Sum(Field1), Sum(Field2), Round(Sum(Field1)+Sum(Field2), 4)
FROM Table
GROUP BY DateField
HAVING Round(Sum(Field1)+Sum(Field2), 4)<>0;