Find 3D point along the line at given distance - line

I have a problem and please let me know if my solution is correct.
I have a known point, at location A(x1,y1,z1) and the origin O(0,0,0) and I would like to find the coordinates of a point B(x2,y2,z2) that is located on the line OA, and the distance OB is 1.2 times greater then OA.
So, my idea is to obtain the equation of the line formed by points O and A.
The direction of OA is (-x1, -y1, -z1), so the equation of the line is:
x = -x1*t;
y = -y1*t;
z = -z1*t;
Distance OA is sqrt( (x1-0)^2 + (y1-0)^2 + (z1-0)^2). KNOWN
Distance OB is sqrt( (x2-0)^2 + (y2-0)^2 + (z2-0)^2). UNKNOWN
I can replace the x, y, z points determined for the line equation in the distance OB, and the result should be 1.2 times greater then the distance OA.
So, sqrt( (-x1*t-0)^2 + (-y1*t-0)^2 + (-z1*t-0)^2) = 1.2 * dist(OA).
I find t from here, solving the quadratic equation and I obtain the coordinates of the point by replacing the t in the equation of the line.
Is this correct?
Thank you for your time.
EDIT:
This is my code:
rangeRatio = 1.114;
norm = sqrt((P2(1) - P1(1))^2 + (P2(2) - P1(2))^2 + (P2(3) - P1(3))^2);
P3(1) = P1(1) + ((P2(1,1) - P1(1)) /norm) * rangeRatio;
P3(2) = P1(2) + ((P2(1,2) - P1(2)) /norm) * rangeRatio;
P3(3) = P1(3) + ((P2(1,3) - P1(3)) /norm) * rangeRatio;
I tried also norm = 1, and i get slightly different results but still not always colinear.
Thank you

It is even a lot easier; you can just multiply a, b and c by 1.2. This gives a line that is 1.2 times the size of the original line.

Related

Numerically stable calculation of invariant mass in particle physics?

In particle physics, we have to compute the invariant mass a lot, which is for a two-body decay
When the momenta (p1, p2) are sometimes very large (up to a factor 1000 or more) compared to the masses (m1, m2). In that case, there is large cancellation happening between the last two terms when the calculation is carried out with floating point numbers on a computer.
What kind of numerical tricks can be used to compute this accurately for any inputs?
The question is about suitable numerical tricks to improve the accuracy of the calculation with floating point numbers, so the solution should be language-agnostic. For demonstration purposes, implementations in Python are preferred. Solutions which reformulate the problem and increase the amount of elementary operations are acceptable, but solutions which suggest to use other number types like decimal or multi-precision floating point numbers are not.
Note: The original question presented a simplified 1D dimensional problem in form of a Python expression, but the question is for the general case where the momenta are given in 3D dimensions. The question was reformulated in this way.
With a few tricks listed on Stackoverflow and the transformation described by Jakob Stark in his answer, it is possible to rewrite the equation into a form that does not suffer anymore from catastrophic cancellation.
The original question asked for a solution in 1D, which has a simple solution, but in practice, we need the formula in 3D and then the solution is more complicated. See this notebook for a full derivation.
Example implementation of numerically stable calculation in 3D in Python:
import numpy as np
# numerically stable implementation
#np.vectorize
def msq2(px1, py1, pz1, px2, py2, pz2, m1, m2):
p1_sq = px1 ** 2 + py1 ** 2 + pz1 ** 2
p2_sq = px2 ** 2 + py2 ** 2 + pz2 ** 2
m1_sq = m1 ** 2
m2_sq = m2 ** 2
x1 = m1_sq / p1_sq
x2 = m2_sq / p2_sq
x = x1 + x2 + x1 * x2
a = angle(px1, py1, pz1, px2, py2, pz2)
cos_a = np.cos(a)
if cos_a >= 0:
y1 = (x + np.sin(a) ** 2) / (np.sqrt(x + 1) + cos_a)
else:
y1 = -cos_a + np.sqrt(x + 1)
y2 = 2 * np.sqrt(p1_sq * p2_sq)
return m1_sq + m2_sq + y1 * y2
# numerically stable calculation of angle
def angle(x1, y1, z1, x2, y2, z2):
# cross product
cx = y1 * z2 - y2 * z1
cy = x1 * z2 - x2 * z1
cz = x1 * y2 - x2 * y1
# norm of cross product
c = np.sqrt(cx * cx + cy * cy + cz * cz)
# dot product
d = x1 * x2 + y1 * y2 + z1 * z2
return np.arctan2(c, d)
The numerically stable implementation can never produce a negative result, which is a commonly occurring problem with naive implementations, even in double precision.
Let's compare the numerically stable function with a naive implementation.
# naive implementation
def msq1(px1, py1, pz1, px2, py2, pz2, m1, m2):
p1_sq = px1 ** 2 + py1 ** 2 + pz1 ** 2
p2_sq = px2 ** 2 + py2 ** 2 + pz2 ** 2
m1_sq = m1 ** 2
m2_sq = m2 ** 2
# energies of particles 1 and 2
e1 = np.sqrt(p1_sq + m1_sq)
e2 = np.sqrt(p2_sq + m2_sq)
# dangerous cancelation in third term
return m1_sq + m2_sq + 2 * (e1 * e2 - (px1 * px2 + py1 * py2 + pz1 * pz2))
For the following image, the momenta p1 and p2 are randomly picked from 1 to 1e5, the values m1 and m2 are randomly picked from 1e-5 to 1e5. All implementations get the input values in single precision. The reference in both cases is calculated with mpmath using the naive formula with 100 decimal places.
The naive implementation loses all accuracy for some inputs, while the numerically stable implementation does not.
If you put e.g. m1 = 1e-4, m2 = 1e-4, p1 = 1 and p2 = 1 in the expression, you get about 4e-8 with double precision but 0.0 with single precision calculation. I assume, that your question is about how one can get the 4e-8 as well with single precision calculation.
What you can do is a taylor expansion (around m1 = 0 and m2 = 0) of the expression above.
e ~ e|(m1=0,m2=0) + de/dm1|(m1=0,m2=0) * m1 + de/dm2|(m1=0,m2=0) * m2 + ...
If I calculated correctly, the zeroth and first order terms are 0 and the second order expansion would be
e ~ (p1+p2)/p1 * m1**2 + (p1+p2)/p2 * m2**2
This yields exactly 4e-8 even with single precision calculation. You can of course do more terms in the expansion if you need, until you hit the precision limit of a single float.
Edit
If the mi are not always much smaller than the pi you could further massage the equation to get
The complicated part is now the one in the square brackets. It essentially is sqrt(x+1)-1 for a wide range of x values. If x is very small, we can use the taylor expansion of the square root (e.g. like here). If the x value is larger, the formula works just fine, because the addition and subtraction of 1 are no longer discarding the value of x due to floating point precision. So one threshold for x must be choosen below one switches to the taylor expansion.

How do I determine the distance between v and PQ when v =[2,1,2] and PQ = [1,0,3]? P = [0,0,0] Q = [1,0,3]

What I have tried already: d = |v||PQ|sin("Theta")
Now, I need to determine what theta is, so I set up a position on a makeshift graph, the graph I made was on the xy plane only as the z plane complicates things needlessly for finding theta. So, I ended up with an acute angle, and if the angle is acute, then I have to find theta which according to dot product facts is greater than 0.
I do not have access to theta, so I used the same princples from cross dots. u * v = |u||v|cos("theta") but in this case, u and v are PQ and v. A vector is a vector, right?
so now I have theta = acos((v*PQ)/(|v||PQ))
with that I get (4sqrt(10))/15 = 32.5125173162 in degrees, so the angle is 32.5125173162 degrees.
So, now that I have theta, I plug it into my distance formula |v||PQ|sin(32.5125173162)
3*sqrt(10)*sin(32.5125173162) = 5.0990195136
or for the sake of simplicity, 5.1
I however want to know if this question is correct.
If it is NOT correct, what can I do to correct it? At what points did I use incorrect information?
This is not a question with a definitive answer in the back of the book, its a question on the side of a page that said: "try this!"
There are a couple of problems with this question.
From the context it looks like you mean for both v and PQ to be vectors. The "distance" between two vectors is an awkward (not well defined) question because vectors are not position bound.
You are using the cross product formula and I have no idea why:
|AxB| = |A||B|Sin(theta)
I think what you are actually trying to do is calculate the distance between the terminal points of the vectors, (2, 1, 2) and (1, 0, 3). Just use the Pythagorean Theorem (extended to 3D) for this.
d = sqrt( (x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2 )
d = sqrt( (2 - 1)^2 + (1 - 2)^2 + (2 - 3)^2 )
d = sqrt( 1^2 + (-1)^2 + (-1)^2 )
d = sqrt(3)
Edit:
If what you need really is the magnitude of the cross product, |AxB| then just find the cross product (using the determinant) and then calculate the magnitude of the result. There is no need for the formula you were using.

How to find a third point given both (2 points on a line) and (distance from third point to first point)

"How to find a third point given both (2 points on a line) and (distance from third point to first point)?"
Language: Visual Basic (2012)
The third point is on the same line as the second, and may be either closer to the first point or it may be closer to the second. This is a function that will handle both (from arrays of data).
Strangely I cannot seem to grasp the distance part of this question. Over reading many other questions on finding points from other points, I am unable to find anything clear enough for me to be able to reverse engineer to include a parameter for distance.
I need to be able to use distance to find a point. The function I am writing is basically a much more advanced form of:
Function GetThirdPoint(CenterPoint As Point, SecondPoint As Point, Range As Integer)
Return [Equations here] 'Return third point
End Function
Let's first point coordinates are P1=(x1,y1), second point P2=(x2,y2).
Then length of P1P2 vector is (use Math.Hypot function if available)
Len = Sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1))
Normalized (unit-length) direction vector is
dx = (x2-x1) / Len
dy = (y2-y1) / Len
P3 coordinates for case when P1P3 and P1P2 vectors have the same direction:
x3 = x1 + Distance * dx
y3 = y1 + Distance * dy
for opposite direction:
x3 = x1 - Distance * dx
y3 = y1 - Distance * dy
The general equation of a line is:
A*x + B*y + G = 0 where A, B must not be both equal to 0. (1)
You can find A, B, G easily because you know two points of the line (point one and two). The distance is:
D = sqrt( (x1 - x3)(x1 - x3) + (y1 - y3)(y1 - y3) ) (2)
Third point is on the line so from (1):
A*x3 + B*y3 + G = 0 (3)
From (2) and (3), you can find the solution. Because (2) is second degree you will find two solutions.

Finding out Force from Torque and Distance

I have solid object that is spinning with a torque W, and I want to calculate the force F applied on a certain point that's D units away from the center of the object. All these values are represented in Vector3 format (x, y, z)
I know until now that W = D x F, where x is the cross product, so by expanding this I get:
Wx = Dy*Fz - Dz*Fy
Wy = Dz*Fx - Dx*Fz
Wz = Dx*Fy - Dy*Fx
So I have this equation, and I need to find (Fx, Fy, Fz), and I'm thinking of using the Simplex method to solve it.
Since the F vector can also have negative values, I split each F variable into 2 (F = G-H), so the new equation looks like this:
Wx = Dy*Gz - Dy*Hz - Dz*Gy + Dz*Hy
Wy = Dz*Gx - Dz*Hx - Dx*Gz + Dx*Hz
Wz = Dx*Gy - Dx*Hy - Dy*Gx + Dy*Hx
Next, I define the simplex table (we need <= inequalities, so I duplicate each equation and multiply it by -1.
Also, I define the objective function as: minimize (Gx - Hx + Gy - Hy + Gz - Hz).
The table looks like this:
Gx Hx Gy Hy Gz Hz <= RHS
============================================================
0 0 -Dz Dz Dy -Dy <= Wx = Gx
0 0 Dz -Dz -Dy Dy <= -Wx = Hx
Dz -Dz 0 0 Dx -Dx <= Wy = Gy
-Dz Dz 0 0 -Dx Dx <= -Wy = Hy
-Dy Dy Dx -Dx 0 0 <= Wz = Gz
Dy -Dy -Dx Dx 0 0 <= -Wz = Hz
============================================================
1 -1 1 -1 1 -1 0 = Z
The problem is that when I run it through an online solver I get Unbounded solution.
Can anyone please point me to what I'm doing wrong ?
Thanks in advance.
edit: I'm sure I messed up some signs somewhere (for example the Z should be defined as a max), but I'm sure I'm wrong when defining something more important.
There exists no unique solution to the problem as posed. You can only solve for the tangential projection of the force. This comes from the properties of the vector (cross) product - it is zero for collinear vectors and in particular for the vector product of a vector by itself. Therefore, if F is a solution of W = r x F, then F' = F + kr is also a solution for any k:
r x F' = r x (F + kr) = r x F + k (r x r) = r x F
since the r x r term is zero by the definition of vector product. Therefore, there is not a single solution but rather a whole linear space of vectors that are solutions.
If you restrict the solution to forces that have zero projection in the direction of r, then you could simply take the vector product of W and r:
W x r = (r x F) x r = -[r x (r x F)] = -[(r . F)r - (r . r)F] = |r|2F
with the first term of the expansion being zero because the projection of F onto r is zero (the dot denotes scalar (inner) product). Therefore:
F = (W x r) / |r|2
If you are also given the magnitude of F, i.e. |F|, then you can compute the radial component (if any) but there are still two possible solutions with radial components in opposing directions.
Quick dirty derivation...
Given D and F, you get W perpendicular to them. That's what a cross product does.
But you have W and D and need to find F. This is a bad assumption, but let's assume F was perpendicular to D. Call it Fp, since it's not necessarily the same as F. Ignoring magnitudes, WxD should give you the direction of Fp.
This ignoring magnitudes, so fix that with a little arithmetic. Starting with W=DxF applied to Fp:
mag(W) = mag(D)*mag(Fp) (ignoring geometry; using Fp perp to D)
mag(Fp) = mag(W)/mag(D)
Combining the cross product bit for direction with this stuff for magnitude,
Fp = WxD / mag(WxD) * mag(Fp)
Fp = WxD /mag(W) /mag(D) *mag(W) /mag(D)
= WxD / mag(D)^2.
Note that given any solution Fp to W=DxF, you can add any vector proportional to D to Fp to obtain another solution F. That is a totally free parameter to choose as you like.
Note also that if the torque applies to some sort of axle or object constrained to rotate about some axis, and F is applied to some oddball lever sticking out at a funny angle, then vector D points in some funny direction. You want to replace D with just the part perpendicular to the axle/axis, otherwise the "/mag(D)" part will be wrong.
So from your comment is clear that all rotations are spinning around center of gravity
in that case
F=M/r
F force [N]
M torque [N/m]
r scalar distance between center of rotation [m]
this way you know the scalar size of your Force
now you need the direction
it is perpendicular to rotation axis
and it is the tangent of the rotation in that point
dir=r x axis
F = F * dir / |dir|
bolds are vectors rest is scalar
x is cross product
dir is force direction
axis is rotation axis direction
now just change the direction according to rotation direction (signum of actual omega)
also depending on your coordinate system setup
so ether negate F or not
but this is in 3D free rotation very unprobable scenario
the object had to by symmetrical from mass point of view
or initial driving forces was applied in manner to achieve this
also beware that after first hit with any interaction Force this will not be true !!!
so if you want just to compute Force it generate on certain point if collision occurs is this fine
but immediately after this your spinning will change
and for non symmetric objects the spinning will be most likely off the center of gravity !!!
if your object will be disintegrated then you do not need to worry
if not then you have to apply rotation and movement dynamics
Rotation Dynamics
M=alpha*I
M torque [N/m]
alpha angular acceleration
I quadratic mass inertia for actual rotation axis [kg.m^2]
epislon''=omega'=alpha
' means derivation by time
omega angular speed
epsilon angle

How to determine whether a point lies on Quad2DCurve

I have successfully drawn a Quad2D or Bezier curve in java. I have the equation for the same. But I need to determine whether a particular point(x,y) lies on the curve or not. I tried using Quad2D.contains and a few GeneralPath APIs, I could not get the result accurately.
Can someone help to find out the solution to this?
I think you've meant QuadCurve2D class, which is quadratic Bezier curve.
There seems to be no ready-made method for that, and the problem comes to the distance from the point to the Bezier curve.
Let's P0 will be your point, P1 is a start point, P2 - a control point and P3 is an end point of your curve.
Then point on the curve will be given by
P = B(t)
There is such t, for which distance between P and P0 will be minimal.
F(t) = (B(t)_x - P0_x)^2 + (B(t)_y - P0_y)^2 -> min
If distance is 0 or less than certain error, then P0 is on the curve.
t can be found with Netwon's iterative method by minimizing cost function
t_n = t_n-1 + F'(t) / F''(t)
where F' is first derivative of cost function and F'' is its second derivative.
F'(t) = 2 * (B(t)_x - P0_x) * B'(t)_x + 2 * (B(t)_y - P0_y) * B'(t)_y
F''(t) = 2 * B'(t)_x * B'(t)_x + 2 * (B(t)_x - P0_x) * B''(t)_x +
2 * B'(t)_y * B'(t)_y + 2 * (B(t)_y - P0_x) * B''(t)_y
First derivative of quadratic Bezier curve B'(t) is a line segment with a start point (P2 - P1) and end point (P3 - P2). Second derivative B''(t) is a point P3 - 2 * P2 + P1.
Plugging everything together will give a formula to t for which F(t) is minimal.