How does NSObject's reference counting system work? - objective-c

I understand that NSObject does not have a retainCount instance variable - in fact it has no instance variable relating to its lifetime or reference counted environment. My question is therefore, how does NSObject (or any object for that matter) keep track of its own reference count without an ivar?
More generally, what other systems are there for creating a reference counted environment without the use of an explicit reference-counting instance variable?

First, you should never count on a specific implementation because it could change, and it is really irrelevant for most purposes.
Anyway, the current implementation is via an associated reference count, basically via a hash table, hashing the object pointer to a reference count.

Related

Cocoa blocks as strong pointers vs copy

I did work several times with blocks as with pointers to which i had strong reference
I heard that you should use copy, but what is the implication in working with blocks as pointers and not with the raw object?
I never got a complain from the compiler, that i should not use
#property (nonatomic, strong) MyBlock block;
but should use
#property (nonatomic, copy) MyBlock block;
as far as i know, the block is just an object, so why to preferrer copy anyway?
Short Answer
The answer is it is historical, you are completely correct that in current ARC code there is no need to use copy and a strong property is fine. The same goes for instance, local and global variables.
Long Answer
Unlike other objects a block may be stored on the stack, this is an implementation optimisation and as such should, like other compiler optimisations, not have direct impact on the written code. This optimisation benefits a common case where a block is created, passed as a method/function argument, used by that function, and then discarded - the block can be quickly allocated on the stack and then disposed of without the heap (dynamic memory pool) being involved.
Compare this to local variables, which (a) created on the stack, (b) are automatically destroyed when the owning function/method returns and (c) can be passed-by-address to methods/functions called by the owning function. The address of a local variable cannot be stored and used after its owning function/method has return - the variable no longer exists.
However objects are expected to outlast their creating function/method (if required), so unlike local variables they are allocated on the heap and are not automatically destroyed based on their creating function/method returning but rather based on whether they are still needed - and "need" here is determined automatically by ARC these days.
Creating a block on the stack may optimise a common case but it also causes a problem - if the block needs to outlast its creator, as objects often do, then it must be moved to the heap before its creators stack is destroyed.
When the block implementation was first released the optimisation of storing blocks on the stack was made visible to programmers as the compiler at that time was unable to automatically handle moving the block to the heap when needed - programmers had to use a function block_copy() to do it themselves.
While this approach might not be out-of-place in the low-level C world (and blocks are C construct), having high-level Objective-C programmers manually manage a compiler optimisation is really not good. As Apple released newer versions of the compiler improvements where made. Early on it programmers were told they could replace block_copy(block) with [block copy], fitting in with normal Objective-C objects. Then the compiler started to automatically copy blocks off stack as needed, but this was not always officially documented.
There has been no need to manually copy blocks off the stack for a while, though Apple cannot shrug off its origins and refers to doing so as "best practice" - which is certainly debatable. In the latest version, Sept 2014, of Apple's Working with Blocks, they stated that block-valued properties should use copy, but then immediately come clean (emphasis added):
Note: You should specify copy as the property attribute, because a block needs to be copied to keep track of its captured state outside of the original scope. This isn’t something you need to worry about when using Automatic Reference Counting, as it will happen automatically, but it’s best practice for the property attribute to show the resultant behavior.
There is no need to "show the resultant behavior" - storing the block on the stack in the first place is an optimisation and should be transparent to the code - just like other compiler optimisations the code should gain the performance benefit without the programmer's involvement.
So as long as you use ARC and the current Clang compilers you can treat blocks like other objects, and as blocks are immutable that means you don't need to copy them. Trust Apple, even if they appear to be nostalgic for the "good old days when we did things by hand" and encourage you to leave historical reminders in your code, copy is not needed.
Your intuition was right.
You are asking about the ownership modifier for a property. This affects the synthesized (or auto-synthesized) getter and/or setter for the property if it is synthesized (or auto-synthesized).
The answer to this question will differ between MRC and ARC.
In MRC, property ownership modifiers include assign, retain, and copy. strong was introduced with ARC, and when strong is used in MRC, it is synonymous with retain. So the question would be about the difference between retain and copy, and there is a lot of difference, because copy's setter saves a copy of the given value.
Blocks need to be copied to be used outside the scope where it was created (with a block literal). Since your property will be storing the value as an instance variable that persists across function calls, and it's possible that someone will assign an unoccupied block from the scope where it was created, the convention is that you must copy it. copy is the right ownership modifier.
In ARC, strong makes the underlying instance variable __strong, and copy also makes it __strong and adds copying semantics to the setter. However, ARC also guarantees that whenever a value is saved into a __strong variable of block-pointer type, a copy is done. Your property has type MyBlock, which I assume is a typedef for a block pointer type. Therefore, a copy will still be done in the setter if the ownership qualifier were strong. So, in ARC, there is no difference between using strong and copy for this property.
If this declaration might be used in both MRC and ARC though (e.g. a header in a library), it would be a good idea to use copy so that it works correctly in both cases.
what is the implication in working with blocks as pointers and not with the raw object?
You are never using the raw value, you always have a pointer to a block: a block is an object.
Looking at your specific example, I am assuming you want to keep the block around, "so why to preferrer copy anyway"enter code here? Well, it's a matter of safety (this example is taken from Mike Ash blog). Since blocks are allocated on the stack (and not on the heap as the rest of the objects in objective-c), when you do something like this:
[dictionary setObject: ^{ printf("hey hey\n"); } forKey: key];
You are allocating the block on the stack frame of your current scope, so when the scope ends (for example your returning the dictionary), the stack frame is destroyed and the block goes with it. So you got yourself a dangling pointer. I would advise reading Mike's article fully. Anyway, you can go with a strong property if when you are assigning the block you copy it:
self.block = [^{} copy];
Edit: After looking at Mike's article date, I am assuming this was the behaviour Pre-ARC. On ARC it seems it's working as expected, and it won't crash.
Edit2: After experimenting with Non-ARC it doesn't crash as well. But this example shows different results depending on the use of ARC or not:
void (^block[10])();
int i = -1;
while(++i < 10)
block[i] = ^{ printf("%d\n", i); };
for(i = 0; i < 10; i++)
block[i]();
Quoting Mike Ashe on the different outcomes:
The reason it prints out ten 9s in the first case is quite simple: the
block that's created within the loop has a lifetime that's tied to the
loop's inner scope. The block is destroyed at the next iteration of
the loop, and when leaving the loop. Of course, "destroy" just means
that its slot on the stack is available to be overwritten. It just
happens that the compiler reuses the same slot each time through the
loop, so in the end, the array is filled with identical pointers, and
thus you get identical behavior.
As far as I understand copy is required when the object is mutable. Use this if you need the value of the object as it is at this moment, and you don't want that value to reflect any changes made by other owners of the object. You will need to release the object when you are finished with it because you are retaining the copy.
On the other hand, strong means that you own the object until it is needed. It is a replacement for the retain attribute, as part of ARC.
Source: Objective-C declared #property attributes (nonatomic, copy, strong, weak)
Note: You should specify copy as the property attribute, because a block needs to be copied to keep track of its captured state outside of the original scope. This isn’t something you need to worry about when using Automatic Reference Counting, as it will happen automatically, but it’s best practice for the property attribute to show the resultant behavior. For more information, see Blocks Programming Topics.

How is retain count implemented in NSObject?

My question is how the current versions of Foundation (or of the Objective-C runtime library, since this seems to be there) implement retain count for NSObject derived objects? As I could see at NSObject.mm, there is no ivar called retain count in the NSObject's interface body. Instead, there seems to be a kind of table or map which contains references counters for each object. But if retain count is really done with a map, aren't retain and release operations too expensive with this kind of implementation (since, in this case, it's necessary to lock and unlock mutexes, lookup the map to find the right object, besides the fact that, in a multithreaded environment, only one object can be retained/released at a time)?
I didn't find anything related to setting the retain counter to 1 when allocating a new object, neither in _objc_rootAllocWithZone at NSObject.mm (which seems to be the function that is called by [NSObject alloc]) nor in _class_createInstanceFromZone at objc-runtime-new.mm (that gets called later by _objc_rootAllocWithZone).
The retain count for NSObject is indeed kept in a global map. IIRC it actually uses a set of maps that are partitioned, presumably based on the address of the object, to reduce lock contention, but the actual implementation details are just that, implementation details.
In any case, you can't find code that sets the retain count to 1 because there isn't any. Objects with a retain count of 1 aren't put into the map. Objects only enter the retain count map when they're retained past the initial 1. This is an optimization that speeds up the common case of objects that never have their retain count rise past 1.

Objective-c: Reference to ivar persistent? Good idea?

I have a situation where I'm keeping references to ivars which need to be persistent. In one object, I have an array of pointers to ivars in another object, which are used over the entire lifetime of the program. In other words, I'm not just passing a reference to retrieve a value -- I'm keeping the pointers around.
Is this a valid? Is it possible that the ivars might move? Are there cases where objects instantiated objects are moved around at runtime unbeknownst to the program? Or, do objects stay exactly where they are created. If the later is the case, is there any reason not to use references the way I am?
I'm using ARC.
Note: This probably wasn't a good way to design this to begin with, but... it's all done and working 99%! (except for a nasty crash which reboots the entire phone... )
Objects and their instance variables don't move once created. However, you also need to keep a strong reference to the object that holds the ivar. Otherwise, the object might be deallocated, leaving you with a dangling pointer.
Note that it is generally a very bad idea to have pointers to another object's insntance variables.
While there's no technical problem with accessing the ivars from outside (as rob stated) there's still the architectural design to consider: The approach you've taken breaks encapsulation. Additionally it is very uncommon for Objective-C.
So regarding maintainability of your code I would recommend to refactor the code. In Objective-C there's no friend declaration as in C++, so it's unusual to access ivars from outside the declaring class.
Let's say an object of class A wants to access the ivars of an object of class B persistently (in your example).
What you normally do is create a property (with the strong annotation, like #property (strong) ClassB *myBVar) in class A to reference an object of class B.
If you want to set or read B's properties you use the dot notation or call the getter/setter methods:
myBVar.name = #"Jim";
NSLog(#"Name:%#",myBVar.name);
[myBVar setName:#"Jim"];
NSLog(#"Name:%#",[myBVar name]);
You never call a ivar directly as it's implementation might change.

Conflict between memory management descriptions in ObjC book and official docs

I'm trying to learn/understand what happens and why when working with or creating various objects. (Hopefully to LEARN from the docs.)
I'm reading "Programming in Objective-C 2.0" (2nd edition, by Steven Kochan). On page 408, in the first paragraph is a discussion of retain counts:
Note that its reference count then goes to 2. The addObject: method does this automatically; if you check your documentation for the addObject: method, you will see this fact described there.
So I read the addObject: docs:
Inserts a given object at the end of the array.
There, the description is missing, while other items, like arrayByAddingObject:, state it:
Returns a new array that is a copy of the receiving array with a given object added to the end.
Where in the reference does it indicate that addObject: increases the retain count? Given the presence of ARC, I should still understand what these methods are doing to avoid bugs and issues. What does ARC bring to this? (Going to read that again...)
Great question, I'm glad to see someone actually reading the docs and trying to understand them!
Since you are looking for how to research answers using Apple's documentation more so than the actual answer itself, here is how I found the answer:
First I look at the class reference for addObject: which is a method of NSMutableArray and there is no mention of memory management.
Then I look at the Overview section at the top... Hmmm, still no luck.
Since the behavior might be inherited from a parent class, I look at the Inherits from section at the top of the class reference and see that NSArray is the most immediate parent. Let's check there:
Under the Overview There is one small section about retain's:
Special Considerations
In most cases your custom NSArray class should conform to Cocoa’s
object-ownership conventions. Thus you must send retain to each object
that you add to your collection and release to each object that you
remove from the collection. Of course, if the reason for subclassing
NSArray is to implement object-retention behavior different from the
norm (for example, a non-retaining array), then you can ignore this
requirement.
Okay, I'm still not happy... Where next? The parent class of NSArray is NSObject and I know that it won't be covered there in this case (from experience) so I won't bother checking that. (If the parent was another class or something that might be covered by NSObject, I would keep moving up the tree until I found something.)
The Companion Guides usually contains a lot of good information for these types of classes. Let's try the first one, Collections Programming Topics.
The first section (after Overview) is Accessing Indexes and Easily Enumerating Elements: Arrays. Sounds promising! Click on Relevant Chapters: “Arrays: Ordered Collections”
There it is under Array Fundamentals along with a link to even more information:
And when you add an object to an NSMutableArray object, the object
isn’t copied, (unless you pass YES as the argument to
initWithArray:copyItems:). Rather, an object is added directly to an
array. In a managed memory environment, an object receives a retain
message when it’s added; in a garbage collected environment, it is
strongly referenced. When an array is deallocated in a managed memory
environment, each element is sent a release message. For more
information on copying and memory management, see “Copying
Collections.”
The book must be referring to out of date documentation because you are correct it doesn't mention anything about the retain count. It does in fact retain the object though. The way you need to think of it is not in terms of retain counts (which are useless) but rather ownership. Especially so when using ARC.
When you add an object to an NSMutableArray, it is taking ownership of that object (in ARC terminology it has a strong reference to it).
"What does ARC bring to this?"
ARC does nothing different. All ARC does (besides some optimization) is add the same release, retain, and autorelease statements that you would add yourself without using ARC. All you need to care about is that once you add an object to the array, it will live at least as long as the array.
And the arrayByAddingObject: method creates a new NSArray (or NSMutableArray) containing the object you're passing, and keeps a strong reference to the passed object. The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan.
Basically even without ARC, it's best to think of object life-cycles in terms of ownership, ARC just formalizes that. So because of that, when using the frameworks, it doesn't matter when retains happen or don't happen, you are only responsible for your objects until you pass ownership to another object and you can trust that the framework will keep the object alive as long as it needs it.
Now of course you have to intuit what constitutes ownership. For instance delegate properties are often assign, or in ARC unsafe_unretained or weak, to prevent circular retains cycles (where two objects each retain each other), though are sometimes retained/strong so you need to look into those on a case by case basis.
And also in cases like key value observing and NSNotification observing the object you are observing does not retain the observer.
But those are really exceptions to the rule. Generally you can assume a strong reference.
Regarding this sentence above: "The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan." I'll try to explain:
When you run this piece of code: [someArray arrayByAddingObject:someObject]; you've instantiated a new NSArray or NSMutableArray object (depending on which object type someArray is) but you haven't actually assigned it to any reference. That means that if you're using ARC, it may be immediately released afterwards, or if not using ARC, it will be released when it's autoreleasepool is drained (probably on the next iteration of that thread's runloop).
Now if instead you did this: NSArray *someOtherArray = [someArray arrayByAddingObject:someObject]; you now have a reference to the newly created array, called someOtherArray. In this case, this is a local variable who's scope is only within whichever set of { } it resides (so it could be inside an if statement, a loop, or a method. Now if you do nothing else with it, it will die sometime after it's scope ends (it isn't guaranteed to die right away, but that isn't important, you just can't assume it lives longer).
Now if in your class you have an iVar (instance variable) declared in the header like NSArray *someOtherArray; (which is strong by default in ARC) and you run someOtherArray = [someArray arrayByAddingObject:someObject]; somewhere in your class, the object will live until you either remove the reference (someOtherArray = nil), you overwrite the reference (someOtherArray = someThirdArray), or the class is deallocated. If you were not using ARC, you would have to make sure to retain that to achieve the same effect (someOtherArray = [[someArray arrayByAddingObject:someObject] retain]; which is essentially what ARC is doing behind the scenes).
Or you may have a property declared instead like #property (nonatomic, strong) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would achieve the same effect but would use the proprety accessor (setSomeOtherArray:) or you could still use someOtherArray = [someArray arrayByAddingObject:someObject]; to set the iVar directly (assuming you #synthesized it).
Or assuming non-ARC, you might have declared the property like #property (nonatomic, retain) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would behave exactly as ARC would, but when setting the iVar directly you would still need to add that retain manually.
I hope that clears things up a bit, please let me know if there's anything I glossed over or left out.
As you mentioned in your comment, the key here is intuitively knowing when an object would be considered owned by another one or not. Luckily, the Cocoa frameworks follow a pretty strict set of conventions that allow you to make safe assumptions:
When setting an NSString property of a framework object (say the text property of a UILabel for example) it is always copied (if anyone knows of a counter-example, please comment or edit). So you don't have to worry about your string once you pass it. Strings are copied to prevent a mutable string from being changed after it's passed.
When setting any other property other than delegate, it's (almost?) always retained (or strong reference in ARC)
When setting delegate properties, it's (almost?) always an assign (or weak reference) to prevent circular retain cycles. (For instance, object a has a property b that is strong referenced and b has a strong referenced delegate property. You set a as the delegate for b. Now a and b are both strongly referencing each other, and neither object will ever reach a retain count of 0 and will never reach it's dealloc method to dealloc the other object. NSURLConnection is a counter-example that does strongly reference it's delegate, because it's delegate is set via a method -- see that convention below -- and it's convention to nil out or release an NSURLConnection after it completes rather than in dealloc, which will remove the circular retain)
When adding to an array or dictionary, it's always retained (or strong reference).
When calling a method and passing block(s), they are always copied to move them from the stack (where they are initially created for performance purposes) into the heap.
Methods that take in object parameters and don't return a result immediately are (always? I can't think of any that don't) either copying or retaining (strong referencing) the parameters that you pass to ensure that the method can do what it needs to with them. For instance, NSURLConnection even retains it's delegate because it's passed in via a method, whereas when setting the delegate property of other objects will not retain, as that is the convention.
It's suggested that you follow these same conventions in your own classes as well for consistency.
Also, don't forget that the headers of all classes are available to you, so you can easily see whether a property is retain or assign (or strong or weak). You can't check what methods do with their parameters, but there's no need because of the convention that parameters are owned by the receiver.
In general, you should look in the "most global" spot for information about anything in the Cocoa APIs. Since memory management is pervasive across the system APIs and the APIs are consistent in their implementation of the Cocoa memory management policy, you simply need to read and understand the Cocoa memory management guide.
Once understood, you can safely assume that all system APIs implement to that memory management policy unless explicitly documented otherwise.
Thus, for NSMutableArray's addObject: method, it would have to retain the object added to the array or else it would be in violation of that standard policy.
You'll see this throughout the documentation. This prevents every method's documentation from being a page or more long and it makes it obvious when the rare method or class implements something that is, for whatever reason (sometimes not so good), an exception to the rule.
In the "Basic Memory Management Rules" section of the memory management guide:
You can take ownership of an object using retain.
A received object is normally guaranteed to remain valid within the
method it was received in, and that method may also safely return the
object to its invoker. You use retain in two situations: (1) In the
implementation of an accessor method or an init method, to take
ownership of an object you want to store as a property value; and (2)
To prevent an object from being invalidated as a side-effect of some
other operation (as explained in “Avoid Causing Deallocation of
Objects You’re Using”).
(2) is the key; an NS{Mutable}Array must retain any added object(s) exactly because it needs to prevent the added object(s) from being invalidated due to some side-effect. To not do so would be divergent from the above rule and, thus, would be explicitly documented.

Is it better practice to make member vars retained versus assign

I have member variables in my custom UIViewController that are defined as 'assign' (not 'retain') like this:
#property (nonatomic, assign) UIButton* mSkipButton;
In my loadView method, I set the var, for instance self.mSkipButton, to an autoreleased alloc of the variable type. I then attach it to my controller's view essentially having the view reference count and release it as needed.
This concerns me, however, that I have the pointer stored in my member var and that it could be referencing released memory if the count decrements at some point. Is it better practice to instead declare the variable as 'retain' and then in the viewDidUnload method release the member var (or just set it to nil to release and make sure i don't have an address in there)?
Alternatively, could I simply set the member var to nil in viewDidUnload and not make it a retained variable?
Is it better practice to instead declare the variable as 'retain' and then in the viewDidUnload...?
Yes, use retain -- good instinct. In viewDidUnload, you'd typically just set it to nil via the ivar's setter: self.ivar = nil;
I find it easier to be aware of and manage object codependencies explicitly, than to deal with issues related to using assign. You can completely avoid the issues of holding an unmanaged reference.
Arguments can be made that assign would usually be fine here (and it is in some cases), but using assign can complicate object graphs and ownership for anyone working with the class. As program complexity grows (and the libraries you depend on change), it becomes increasingly difficult to track lifetimes of unmanaged references. Things tend to break, or operate differently on different hardware and software combinations. Attempting to manage the lifetime of an unmanaged object over a complex program or in a concurrent context is self abuse. Guaranteeing defined and predictable behavior/operation reduces bug counts.
That's a property, not a "member var" (known in Objective-C as an instance variable or ivar.)
The semantics of a property depend on how that property is going to be used. Generally speaking, you'll want your properties to be retained for the lifetime of your object. If the property is a connected IBOutlet, this will be done for you by the NIB loader; otherwise, you must be explicit and use the retain or copy attribute on the property.
For objects that are expected to own your object, a property should always be marked assign to avoid a retain loop. For example, an object usually owns any object for which it acts as a delegate (usually, but not always--every CS rule has an exception.)