Thermal Printer interfacing with the AM1808 - embedded

I have to interface the thermal Printer with my AM1808 based on the Embedded linux.
I have interfaced a printer having only unidirectional communication, means i need to send only data and no need to receive anything from the printer for verification.
I have my own printer that need the bidirectional communication in which i have to send the data and same way i need to receive something from the printer to verify wether it has successfully printed the data or not.
Yes my printer gets hung when it has printed around 4000 bytes so i have to reinitialize it to empty its inbuild buffer.
Now my question is Once i have configured a UART port. do i have to enable or disable transmission or reception ? means it can work with both the transmission and reception enabled ? How can i do this please help me.
Wether I have to put printer on interrupt. ????
Thank you.

All UART's I've ever worked with have independent tx and rx hardware. Assuming no hardware flow-control enabled, then if you can tx OK, your should be able to rx.
Wether I have to put printer on interrupt? - Well, on a preemptive multitasker, it's usual to use an interrupt driver, (or some variant, eg. DMA with interrupt on completion), yes.

I have interfaced a printer having only unidirectional communication, means i need to send only data and no need to receive anything from the printer for verification.
"... no need to receive anything ..." is probably a faulty assumption.
Your printer should have somekind of flow control to prevent data overrun. Character displays & line printers often can receive the data faster than they can display or print it. These devices use a simple comm protocol that does not have any facility for retransmission of lost data. So there's flow control to notify the host to (temporarily) stop sending data when the device's receive buffer is full.
A EIA/RS-232 serial interface can use either hardware (typically using the CTS control line) or software (embedded data, typically using the XON and XOF characters) for single-ended flow control. Linux serial port drivers and line discipline make flow control invisible to the application program once the serial port is configured.
Yes my printer gets hung when it has printed around 4000 bytes so i have to reinitialize it to empty its inbuild buffer.
This appears to be evidence that you are ignoring whatever flow control the printer is providing, and causing data overrun.
Now my question is Once i have configured a UART port. do i have to enable or disable transmission or reception ?
That's not the salient question. You need to determine what kind of flow control the printer needs, and then implement (i.e. configure) that.

Related

STM32f103 HAL USB - UART bridge

I have a third party device that is UART programmable.
I need to create a USB - UART bridge with a functional password (programming only after entering the correct password)
generated the code using the latest version of STM32CubeMX for Atollic TrueSTUDIO for STM32 9.3.0 ...
I transfer data between USB and UART through a buffer (one for usb-uart, and another one for uart-usb)
when I try to transfer several characters everything is OK, but when I try to transfer a large data packet, problems start due to the fact that the USB speed is much higher than the UART ...
there are two questions:
1.How do I tell USB that I need to stop transferring data and wait until the UART (buffer) is busy
2.How on the side of the microcontroller to get the baud rate set on the PC (set when the terminal is connected to the virtual COM port)
USB provides flow control. That's what you need to implement. A general introduction can be found here:
https://medium.com/#manuel.bl/usb-for-microcontrollers-part-4-handling-large-amounts-of-data-f577565c4c7d
Basically, the setup for the USB-to-UART direction should be:
Indicate that the code is ready to receive a USB packet
Receive a USB packet
Indicate that you are no longer ready to receive a USB packet
Transmit the data via UART
Start over
Step 0: Initial setup
Call USBD_CDC_SetRxBuffer to set the buffer for receiving the USB data. Unless you use several buffers to achieve higher throughput, a single call at the start of the program is sufficient.
Step 1: Ready to receive data
Call USBD_CDC_ReceivePacket. Other than what the name implies, this function indicates that the app is ready to receive data. It immediately returns before the data has actually been received.
Step 2: Receive a USB packet
You don't need to do anything here. It will happen automatically. Once it's complete, CDC_Itf_Receive will be called.
Step 3: Indicate that you are no longer ready to receive a USB packet
Nothing to do here. This happens automatically whenever a packet has been received (and double buffering is not enabled).
Step 4: Transmit the data via UART
I guess you know how to do this. It's up to you whether you want to do it in a blocking fashion or using DMA.
Since a callback is involved, you cannot put this code into the main loop. It might be possible to put all code into CDC_Itf_Receive if blocking UART is used. It would appear in the order 2, 3, 4, 1. Additionally, initialization is needed (0 and 1).
In the UART-to-USB direction, you would need to implement flow control on the UART. The USB flow control is managed by the host. Even though USB is much faster than UART, flow control is relevant as the application on the host can process data as slow as it likes to.
Regarding question 2: I'm not sure I understand it... The microcontroller cannot set the baud rate on the host. Either the host can specify a baud rate (transmitted over USB and applied to UART), or if the UART has a fixed baud rate, you can ignore baud rate (any baud rate set on the host side will work as it does not apply to USB).

Sending AT commands from an embedded system to a Fastrack Supreme Wavecom Module

I have an embedded system that controls a motor using pwm and some other things, I send commands through a serial connection, which is connected to a Fastrack Wavecom Supreme GSM Module. However, the module connected to the embedded system (the client), fails to send the message to the server module.
I have been able to send messages back and forth between the two wavecom modules, however, when I try and send from my PIC18F45k22 to the wavecom module, it fails.
Any ideas of what could be going wrong?
You did not specify what type of serial communication you are using. For instance, if you are using the PIC's SPI module you may be sampling on the wrong edge of the clock. There are at least 2 common SPI modes widely used and 4 all together. If you are using the PIC's UART there are "a whole bucket full" of setting that may be off. Speed, number of bits, in band signaling, out of band signaling, parity, ect.

8051 UART, Receiving bytes serially

I have to send file byte-by-byte to serially connected AT89s52 from computer (VB.NET).
Every sended byte have some job to do in microcontroller what require some time.
Here is relevant part of my C code to receiving bytes:
SCON = 0x50;
TMOD = 0x20; // timer 1, mode 2, 8-bit reload
TH1 = 0xFD; // reload value for 9600 baud
TR1 = 1;
TI = 1;
again:
while(RI!=0)
{
P1=SBUF; // show data on led's
RI=0;
receivedBytes++;
}
if (key1==0)
{
goto exitreceive; // break receiving
}
show_lcd_received_bytes(receivedBytes);
// here is one more loop
// with different duration for every byte
goto again;
And here is VB.NET code for sending bytes:
For a As Integer = 1 To 10
For t As Integer = 0 To 255
SerialPort1.Write(Chr(t))
Next t
Next a
Problem is that mC have some job to do after every received byte and VB.NET don't know for that and send bytes too fast so in mC finishes just a part of all bytes (about 10%).
I can incorporate "Sleep(20)" in VB loop ant then thing will work but I have many of wasted time because every byte need different time to process and that would be unacceptable slow communication.
Now, my question is if 8051 can set some busy status on UART which VB can read before sending to decide to send byte or not.
Or how otherwise to setup such communication as described?
I also try to receive bytes with serial interrupt on mC side with same results.
Hardware is surely OK because I can send data to computer well (as expected).
Your problem is architectural. Don't try to do processing on the received data in the interrupt that handles byte Rx. Have your byte Rx interrupt only copy the received byte to a separate Rx data buffer, and have a background task that does the actual processing of the incoming data without blocking the Rx interrupt handler. If you can't keep up due to overall throughput issue, then RTS/CTS flow control is the appropriate mechanism. For example, when your Rx buffer gets 90% full, deassert the flow control signal to pause the transmit side.
As #TJD mentions hardware flow control can be used to stop the PC from sending characters while the microcomputer is processing received bytes. In the past I have implemented hardware flow by using an available port line as an output. The output needs to be connected to an TTL to RS-232 driver(if you are currently using a RS-232 you may have and extra driver available). If you are using a USB virtual serial port or RS-422/485 you will need to implement software flow control. Typically a control-S is sent to tell the PC to stop sending and a control-Q to continue. In order to take full advantage of flow control you most likely will need to also implement a fully interrupt driven FIFO to receive/send characters.
If you would like additional information concerning hardware flow control, check out http://electronics.stackexchange.com.
Blast from the past, I remember using break out boxes to serial line tracers debugging this kind of stuff.
With serial communication, if you have all the pins/wires utililzed then there is flow control via the RTS (Ready To Send) and DTR (Data Terminal Ready) that are used to signal when it is OK to send more data. Do you have control over that in the device you are coding via C? IN VB.NET, there are events used to receive these signals, or they can be queried using properties on the SerialPort object.
A lot of these answers are suggesting hardware flow control, but you also have the option of enhancing your transmission to be more robust by using software flow control. Currently, your communication is strong, but if you start running a higher baud rate or a longer distance or even just have a noisy connection, characters could be received that are incorrect, or characters could be dropped.
You could add a simple two-byte ACK sequence upon completion of whatever action is set to happen. It could look something like this:
Host sends command byte: <0x00>
Device echoes command byte: <0x00>
Device executes whatever action is needed
Device sends ACK/NAK byte (based on result):
This would allow you to see on the host side if communication is breaking down. The echoed character may mismatch what was sent which would alert you to an issue. Additionally, if a character is not received by the host within some timeout, the host can try retransmitting. Finally, the ACK/NAK gives you the option of returning a status, but most importantly it will let the host know that you've completed the operation and that it can send another command.
This can be extended to include a checksum to give the device a way to verify that the command received was valid (A simple logical inverse sent alongside the command byte would be sufficient).
The advantage to this solution is that it does not require extra lines or UART support on either end for hardware flow control.

Compact Framework serial port and balance

So, to open up a serial port and successfully transmit data from the balance through the serial port, i need to make sure that the settings on the serialPort object match the actual settings of the balance.
Now, the question is how do i detect that the connection hasn't been established due to the settings being different? No exception is thrown by serialPort.Open to indicate that the connection has been established. Yes, the settings are valid, but if they don't match the device (balance) settings; I am in the dark as to why the weight off the balance is not being captured.
Any input here?
Without knowing any more information on the format of the data you expect from your balance, only general serial port settings mismatch detection techniques are applicable.
If the UART settings are significantly incorrect, you'll likely see a lot of framing errors: when the UART is expecting a 1 stop bit, it will in fact see a 0. You can detect this with the ErrorReceived event on the port.
private void OnErrorReceived(object sender, SerialErrorReceivedEventArgs e)
{
if ((e.EventType & SerialError.Frame) == SerialError.Frame)
{
// your settings don't match, try something else
}
}
If things are close, but still incorrect, the .NET serial port object may not even give you an error (that is, until something catastrophic occurs).
My most common serial port communication failure occurs due to mismatched baud rates. If you have a message that you know you can get an 'echo' for, try that as part of a handshaking effort. Perhaps the device you're connecting to has a 'status' message. No harm will come from requesting it, and you will find out if communication is flowing correctly.
For software handshaking (xon xoff) There's very little you can do to detect whether or not it's configured right. The serial port object can do anything from ignore it completely to have thread exception errors, depending on the underlying serial port driver implementation. I've had serial port drivers that completely ignore xon/xoff, and pass the characters straight into the program - yikes!
For hardware handshaking, the basic echo strategy for baud rate may work, depending on how your device works. If you know that it will do hardware handshaking, you may be able to detect it and turn it on. If the device requires hardware handshaking and it's not on, you may get nothing, and vice versa.
Another setting that's more rarely used is the DTR pin - data terminal ready. Some serial devices require that this be asserted (ie, set to true) to indicate that it's time to start sending data. It's set to false by default; give toggling it a whirl.
Note that the serial port object is ... finicky. While not necessarily required, I would consider closing the port before you make any changes.
Edit:
Thanks to your comments, it looks like this is your device. It says the default settings should be:
1200 baud
Odd parity
1 stop bit
Hardware handshaking
It doesn't specify how many data bits, but the device says it supports 7 and 8. I'd try both of those. It also says it supports 600, 1200, 2400, 4800, 9600, and 19200 baud.
If you've turned on hardware handshaking, enabled DTR (different things) and cycled through all the different baud rates, there's a good chance that it's not your settings. It could be that the serial cable that's being used may be wired incorrectly for your device. Some serial cables are 'passthrough' cables, where the 1-9 pins on one side match exactly with the 1-9 pins on the other. Then, you have 'crossover' cables, where the "TX" and "RX" cables are switched (so that when one side transmits, the other side receives, a very handy cable.)
Consider looking at the command table in the back of the manual there; there's a "print software version" command you could issue to get some type of echo back.
Serial ports use a very, very old communications technology that use a very, very old protocol called RS-232. This is pretty much as simple as it gets... the two end points have synchronized clocks and they test the line voltage every clock cycle to see if it is high or low (with high meaning 0 and low meaing 1, which is the opposite of most conventions... again an artifact of the protocol's age). The clock synchronization is accomplished through the use of stop bits, which are really just rest time in between bytes. There are also a few other things thrown into the more advanced uses of the protocol such as parity bits, XON/XOFF, etc, but those all ride on top of this very basic communication layer. Detecting a mismatch of the clocks on each end of the serial line is going to be nearly impossible -- you'll just get incorrect data on the recieving end. The protocol itself has no way built in to identify this situation. I am unaware of any serial driver that is smart enough to notice the input data being clocked an an inappropriate frequency. If you're using one of the error detection schemes such as parity bits, probabilistically every byte will be declared an error. In short, the best you can do is check the incoming data for errors (parity errors should be detected by your driver/software layer, whereas errors in the data received by your app from that layer will need to be checked by your program -- the latter can be assisted by the use of checksums).

Getting Epson receipt printer to print from Arduino

I'm trying to build a microprinter using an Arduino and an Epson TM-T88II receipt/POS printer. The printer uses the Epson Esc/POS system, but I can't get it to do anything at all from the Arduino. I'm doing things like:
#include <SoftwareSerial.h>
#define out_pin 3
#define in_pin 2
SoftwareSerial printer = SoftwareSerial(in_pin, out_pin);
void setup()
{
pinMode(in_pin, INPUT);
pinMode(out_pin, OUTPUT);
printer.begin(9600);
delay(1000);
printer.print(0x1B, BYTE);
printer.print('#'); // ESC(HEX 1B) # is supposed to initialize the printer
printer.print("hello world");
printer.print(0xA, BYTE); // print buffer and line feed
}
I just can't get the printer to respond at all. The printer powers up and prints its self test just fine. It's a serial (RS-232) printer, and I'm connecting it to the Arduino through a MAX233 chip. I've checked and rechecked my connections through the chip, which I think are right based on a friend who has a similar setup working. I read somewhere that the TM-T88 printers need null-modem serial cables, so I bought an adapter, and that didn't seem to make any difference.
I'm new to electronics, so I'm completely stumped. I just want to get it to print something, so I can get to the fun part - the programming :). Any thoughts on things to test/try? I can give more detail on wiring or anything else, just didn't want this to get TOO long.
Are you using an RS-232 transceiver? The Arduino outputs 0 and 5 V for serial, while the printer uses -12 and 12 V for serial. You should use a MAX232 or similar device to get the correct physical interface. (You might be able to cheat if you invert the serial port on the Arduino, but that might not work, and it's more trouble when just getting started.)
Once that's taken care of, the RTS and DTR may be your problem. You should be able to change the DIP-switch settings on the printer and turn off flow control altogether, or switch it to software flow control.
Also, you may need to send both line feed and carriage return.
However, once all that's done it should print just fine, even without any reset commands. Send a bunch of ASCII characters and line feed/carriage returns, and it'll spit it all out.
You can ignore the RX line (on the Arduino side, TX on the printer side) for now - just send it data until you figure out the wiring, level conversion, flow control, etc.
You could check whether you can communicate with a PC, both from the Arduino and to the printer.
I would use an oscilloscope to see if the serial signals come out of the Arduino and the MAX as they should, but then you probably don't have one.
Are you sure the communication settings are correct? You set the baud rate to 9600, but what about data bits, parity, stop bits? What about the control lines?
I'd hook another PC instead of the printer to the other end of the serial cable and run telnet or PuTTY on that system to make sure you are communicating out and actually talking through the serial port. If so, you could use the same solution to send data to the printer to confirm all settings such as number of data bits, parity, etc.
I've done a similar project and had the same issue. You need a null modem / crossover cable to go from max232 to the printer as both devices are in slave configuration