Single Row Table in SQL : Is this a good implementation? - sql

I am new to SQL. I read a bit about how creating a single row table is not really a good practice, but I can't help but find it useful in my case. I am making a web app which balances the workload of employees in the organization. So apart from keeping track of how much work is assigned to every employee and how much work does each task (2 main task types) require, I also need to track the overall workload.
So I plan to make a single row table for total workload, with three columns. One for each of the two task types, summed together. And the third for the sum of those 2 totals. I plan to use triggers to update the table in case of addition of a new task or change in its requirements so that it reflects on the total.
Please let me know if I am heading in the right direction. Thanks!

It will work but it is not extensible, in the sense if tomorrow you need to add a 3rd main task then you will need to alter the table and add another column (not so preferred ). So may be you can just have the table with two columns for now with task type and load and you can always calculate the sum with sql query.

Related

Performance Improve on SQL Large table

Im having 260 columns table in SQL server. When we run "Select count(*) from table" it is taking almost 5-6 to get the count. Table contains close 90-100 million records with 260 columns where more than 50 % Column contains NULL. Apart from that, user can also build dynamic sql query on to table from the UI, so searching 90-100 million records will take time to return results. Is there way to improve find functionality on a SQL table where filter criteria can be anything , can any1 suggest me fastest way get aggregate data on 25GB data .Ui should get hanged or timeout
Investigate horizontal partitioning. This will really only help query performance if you can force users to put the partitioning key into the predicates.
Try vertical partitioning, where you split one 260-column table into several tables with fewer columns. Put all the values which are commonly required together into one table. The queries will only reference the table(s) which contain columns required. This will give you more rows per page i.e. fewer pages per query.
You have a high fraction of NULLs. Sparse columns may help, but calculate your percentages as they can hurt if inappropriate. There's an SO question on this.
Filtered indexes and filtered statistics may be useful if the DB often runs similar queries.
As the guys state in the comments you need to analyse a few of the queries and see which indexes would help you the most. If your query does a lot of searches, you could use the full text search feature of the MSSQL server. Here you will find a nice reference with good examples.
Things that came me up was:
[SQL Server 2012+] If you are using SQL Server 2012, you can use the new Columnstore Indexes.
[SQL Server 2005+] If you are filtering a text column, you can use Full-Text Search
If you have some function that you apply frequently in some column (like SOUNDEX of column, for example), you could create PERSISTED COMPUTED COLUMN to not having to compute this value everytime.
Use temp tables (indexed ones will be much better) to reduce the number of rows to work on.
#Twelfth comment is very good:
"I think you need to create an ETL process and start changing this into a fact table with dimensions."
Changing my comment into an answer...
You are moving from a transaction world where these 90-100 million records are recorded and into a data warehousing scenario where you are now trying to slice, dice, and analyze the information you have. Not an easy solution, but odds are you're hitting the limits of what your current system can scale to.
In a past job, I had several (6) data fields belonging to each record that were pretty much free text and randomly populated depending on where the data was generated (they were search queries and people were entering what they basically would enter in google). With 6 fields like this...I created a dim_text table that took each entry in any of these 6 tables and replaced it with an integer. This left me a table with two columns, text_ID and text. Any time a user was searching for a specific entry in any of these 6 columns, I would search my dim_search table that was optimized (indexing) for this sort of query to return an integer matching the query I wanted...I would then take the integer and search for all occourences of the integer across the 6 fields instead. searching 1 table highly optimized for this type of free text search and then querying the main table for instances of the integer is far quicker than searching 6 fields on this free text field.
I'd also create aggregate tables (reporting tables if you prefer the term) for your common aggregates. There are quite a few options here that your business setup will determine...for example, if each row is an item on a sales invoice and you need to show sales by date...it may be better to aggregate total sales by invoice and save that to a table, then when a user wants totals by day, an aggregate is run on the aggreate of the invoices to determine the totals by day (so you've 'partially' aggregated the data in advance).
Hope that makes sense...I'm sure I'll need several edits here for clarity in my answer.

more table or more rows better in sql?

Actually i am building a software for academic institutions, so i just wanted to know answers of a few questions:
As you know the some new data will be generated each year(for new admissions) and some will be upgraded. So i should store all the data in one single table with academic year separation(as a columns like ac_year), or should i make separate tables for each year. Also that there are different tables to store information like, classes,marks,fee,hostel,etc about the students. So each Info, like Fee would be stored in different tables like
Fee-2010
Fee-2011
Fee-2012...
Or in 1 single Fee table with year as a columns.
One more point is that soon after 1-2 years database will get heavier so backing up data for a single year would be possible in single table(Like Fee with year as a column) ?
And
Please answer keeping in mind SQL Server 2005.
Thanks
As you phrase the question, the answer is clearly to store the data in one table, with the year (or date or other information) as a column. This is simply the right thing to do. You are dealing with the same entity over time.
The one exception would be when the fields are changing significantly from one year to the next. I doubt that is the case for your table.
If your database is really getting big, then you can look into partitioning the table by time. Each partition would be one year's worth of data. This would speed up queries that only need to access one year's worth. It also helps with backing up and restoring data. This may be the solution you are ultimately looking for.
"Really getting big" means at least millions of rows in the table. Even with a couple million rows in the table, most queries will probably run fine on decent hardware with appropriate indexes.
It's not typical to store the data in multiple tables based on time constraints. I would prefer to store it all in one table. In the future, you may look to archiving old data, but it will still be significant time before performance will become an issue.
It is always better option to add new property to entity than create a new entity for every different property. This way maintenance and querying will be much more easier for you.
On the performance part of querying you don't have to worry about internal affairs of data and database. If there become a real performance issue there are many solutions like Creating Index on years as in your situation.

database design bigger table vs split table have the same col

i have a database program for store as you know there is too type of invoice in it one for the thing i bought and the other for me when i sold them the two table is almost identical like
invoice table
Id
customerName
date
invoiceType
and invoiceDetails which have
id
invoiceId
item
price
amount
my question is simple its what best to keep the design like that or split every table for two sperate tabels
couple of my friend suggest splitting the tables as one for saleInvoice and the other for buyInvoice to speed the time for querying
so whats the pro and con of every abrouch i feel that if i split them its like i dont follow DRY rule
i am using Nhibernate BTW so its kindda weird to have to identical class with different names
Both approached would work. If you use the single table approach, then the invoiceType column would be your discriminator field. In your nHibernate mapping, this discriminator field would be used by nHibernate to decide which type (i.e. a purchase or a sale) to instantiate for a given row in the table (see section 5.1.6 of the nHibernate mapping guide. For ad hoc SQL queries or reporting queries, you could create two views, one to return only rows with invoiceType = purchase and one to return only rows where invoiceType=sales.
Alternatively, you could create two separate tables, one for purchase and one for sales. As you point out, these two tables would have nearly identical schemas and nhibernate mapping files.
If you are anticipating very high transaction volumes, you would want to put purchases and sales on two different physical discs. With two different tables, this can be accomplished by putting them into different file groups. With a single table, you still could accomplish this by creating a SQL Server Partitioned Table. Before you go to this trouble, you might want to evaluate if this really is necessary and that disc access to the table is really going to be the performance bottleneck. You don't want to spend a lot of time doing premature optimization if it is not necessary.
My preference would be to have a single table with a discriminator column, to better follow DRY principles. Unless I had solid numbers that indicated that indicated it was necessary, I would hold off implementing a partitioned table until if and when it became necessary.
I'd ask myself, how do I intend to use this information? Will I need sales and buy invoices in the same queries? Am I likely to need specialized information eventually (highly likely in my experience) for each type? And if I do will I need to have child tables for only 1 type? How would that affect referntial integrity? Would a change to one automatically mean I needed a change to the other? How large is the table likely to be (It would have to be in the multi-millions before I would consider that it might need to be split out only due to size). How likely is it that I would get the information mixed up by accident if they are in the same table and include both when I didn't want to? The answers would determine whether I needed to split it out for me. I would tend to see these as two separate functions and it would take alot to convince me to put them in one table.

Dynamically creating tables as a means of partitioning: OK or bad practice?

Is it reasonable for an application to create database tables dynamically as a means of partitioning?
For example, say I have a large table "widgets" with a "userID" column identifying the owner of each row. If this table tended to grow extremely large, would it make sense to instead have the application create a new table called "widgets_{username}" for each new user? Assume that the application will only ever have to query for widgets belonging to a single user at a time (i.e. no need to try and join any of these user widget tables together).
Doing this would break up the one large table into more easily-managed chunks, but this doesn't seem like an elegant solution. In my mind, the database schema should be defined when the application is written, and any runtime data is stored as rows, not as additional tables.
As a more general question, is modifying the database schema at runtime ever ok?
Edit: This question is mostly hypothetical; I had a pretty good feeling that creating tables at runtime didn't make sense. That being said, we do have a table with millions of rows in our application. SELECTs perform fine, but things like deleting all rows owned by a particular user can take a while. Basically I'm looking for some solid reasoning why just dynamically creating a table for each user doesn't make sense for when I'm asked.
NO, NO, NO!! Now repeat after me, I will not do this because it will create many headaches and problems in the future! Databases are made to handle large amounts of information. they use indexes to quickly find what you are after. think phone book how effective is the index? would it be better to have a different book for each last name?
This will not give you anything performance wise. Keep a single table, but be sure to index on UserID and you'll be able to get the data fast. however if you split the table up, it becomes impossible/really really hard to get any info that spans multiple users, like search all users for a certain widget, count of all widgets of a certain type, etc. you need to have every query be built dynamically.
If deleting rows is slow, look into that. How many rows at one time are we talking about 10, 1000, 100000? What is your clustered index on this table? Could you use a "soft delete", where you have a status column that you UPDATE to "D" to mark the row as deleted. Can you delete the rows at a later time, with less database activity. is the delete slow because it is being blocked by other activity. look into those before you break up the table.
No, that would be a bad idea. However some DBMSs (e.g. Oracle) allow a single table to be partitioned on values of a column, which would achieve the objective without creating new tables at run time. Having said that, it is not "the norm" to partition tables like this: it is only usually done in very large databases.
Using an index on userID should result nearly in the same performance.
In my opinion, changing the database schema at runtime is bad practice.
Consider, for example, security issues...
Is it reasonable for an application to create database tables
dynamically as a means of partitioning?
No. (smile)

Table with a lot of columns

If my table has a huge number of columns (over 80) should I split it into several tables with a 1-to-1 relationship or just keep it as it is? Why? My main concern is performance.
PS - my table is already in 3rd normal form.
PS2 - I am using MS Sql Server 2008.
PS3 - I do not need to access all table data at once, but rather have 3 different categories of data within that table, which I access separately. It is something like: member preferences, member account, member profile.
80 columns really isn't that many...
I wouldn't worry about it from a performance standpoint. Having a single table (if you're typically using all of the data in your standard operations) will probably outperform multiple tables with 1-1 relationships, especially if you're indexing appropriately.
I would worry about this (potentially) from a maintenance standpoint, though. The more columns of data in a single table, the less understandable the role of that table in your grand scheme becomes. Also, if you're typically only using a small subset of the data, and all 80 columns are not always required, splitting into 2+ tables might help performance.
Re the performance question - it depends. The larger a row is, the less rows can be read from disk in one read. If you have a lot of rows, and you want to be able to read the core information from the table very quickly, then it may be worth splitting it into two tables - one with small rows with only the core info that can be read quickly, and an extra table containing all the info you rarely use that you can lookup when needed.
Taking another tack, from a maintenance & testing point of view, if as you say you have 3 distinct groups of data in the one table albeit all with the same unique id (e.g. member_id) it might make sense to split it out into separate tables.
If you need to add fields to say your profile details section of the members info table, do you really want to run the risk of having to re-test the preferences & account details elements of your app as well to ensure no knock on impacts.
Also for audit trail purposes if you want to track the last user ID/Timestamp to change a members data. If the admin app allows Preferences/Account Details/Profile Details to be updated separately then it makes sense to have them in separate tables to more easily track updates.
Not quite a SQL/Performance answer but maybe something to look at from a DB & App design pov
Depends what those columns are. If you've got hard coded duplicated fields like Colour1, Colour2, Colour3, then these are candidates for child tables. My general rule of thumb is if there's more than one field of the same type (Colour), then you might as well code for N of them, not a fixed number.
Rob.
1-1 may be easier, if you have say Member_Info; Member_Pref; Member_Profile. Having too many columns can make it run if you want lots of varchar(255) as you may go over the rowsize limit, and it just makes it too confusing.
Just make sure you have the correct forgein key constraints and suchwhat, so there's always 1 row in each table with the same member_id