locking database - sql

I have N processes inserting and updating rows (multiple rows) to a table A in database every t minutes (N > t), say starting at 12:00 AM (all the N processes). I save the last update timestamp in a separate table B to check when was the data last updated.
I'm thinking of getting a read lock to check timestamp and see if data is up to date, if not try and get a lock on the table, update the db and release lock.
Could this be done using linq-to-sql? Is there a possibility of a process acquiring lock and for some reason won't release the lock? In that case, is there a timeout value after which the lock is automatically released?
Any pointers will be helpful. Thanks!

getting a read lock to check timestamp and see if data is up to date,
if not try and get a lock on the table, update the db and release
lock.
This is guaranteed deadlock when two processes try to do it simultaneously:
A gets S lock on the timestamp
B gets S lock on the timestamp
A get the X lock on the data
B attempts to get X lock on data, is blocked by A
A updates the data
A attempts to update the timestamp, it needs X lock on it. Is blocked by B's S lock
A is blocked by B, B is blocked by A => deadlock.
is there a timeout value after which the lock is automatically
released
Such behavior would be a complete disaster and make programming transactions impossible. What you can ask for, and exists, is for a request for a lock to give up if it cannot be obtained in a time out: SET LOCK_TIMEOUT.
Is difficult to answer your underlying question because you presented your solution, but not the actual problem you'rte trying to solve. As general comment in databases conditional updates are done in set oriented manner by adding an appropriate predicate, eg. UPDATE ... WHERE timestamp < #last_timestamp and let the engine figure out how to implement that correctly.

Related

How to consistently track all new rows in a SQL database table

What I am trying to do
I am developing a web service, which runs in multiple server instances, all accessing the same RDBMS (PostgreSQL). While the database is needed for persistence, it contains very little data, which is why every server instance has a cache of all the data. Further the application is really simple in that it only ever inserts new rows in rather simple tables and selects that data in a scheduled fashion from all server instances (no updates or changes... only inserts and reads).
The way it is currently implemented
basically I have a table which roughly looks like this:
id BIGSERIAL,
creation_timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
-- further data columns...
The server is doing something like this every couple of seconds (pseudocode):
get all rows with creation_timestamp > lastMaxTimestamp
lastMaxTimestamp = max timestamp for all data just retrieved
insert new rows into application cache
The issue I am running into
The application skips certain rows when updating the caches. I analyzed the issue and figured out, that the problem is caused in the following way:
one server instance is creating a new row in the context of a transaction. An id for the new row is retrieved from the associated sequence (id=n) and the creation_timestamp (with value ts_1) is set.
another server does the same in the context of a different transaction. The new row in this transaction gets id=n+1 and a creation_timestamp ts_2 (where ts_1 < ts_2).
transaction 2 finishes before transaction 1
one of the servers executes a "select all rows with creation_timestamp > lastMaxTimestamp". It gets row n+1, but not n1. It sets lastMaxTimestamp to ts_2.
transaction 1 completes
some time later the server from step 4 executes "select all rows with creation_timestamp > lastMaxTimestamp" again. But since lastMaxTimestamp=ts_2 and ts_2>ts_1 the row n will never be read on that server.
Note: CURRENT_TIMESTAMP has the same value during a transaction, which is the transaction start time.
So the application gets inconsistent data into its cache and can't get new rows based on the insertion timestamp OR based on the sequence id. Transaction isolation levels don't really change anything about the situation, since the problem is created in essence by transaction 2 finishing before transaction 1.
My question
Am I missing something? I am thinking there must be a straightforward way to get all new rows of a RDBMS, but I can't come up with a simple solution... at least with a simple solution that is consistent. Extensive locking (e.g. of tables) wouldn't be acceptable because of performance reasons. Simply trying to ensure to get all ids from that sequence seems like a) a complicated solution and b) can't be done easily, since rollbacks during transactions can happen (which would lead to sequence ids not being used).
Anyone has the solution?
After a lot of searching, I found the right keywords to google for... "transaction commit timestamp" to leads to all sorts of transaction timestamp tracking and system columns like xmin:
https://dba.stackexchange.com/questions/232273/is-there-way-to-get-transaction-commit-timestamp-in-postgres
This post has some more detailed information:
Questions about Postgres track_commit_timestamp (pg_xact_commit_timestamp)
In short:
you can turn on a postgresql option to track timestamps of commits and compare those instead of the current_timestamps/clock_timestamps inside the transaction
it seems though, that it is only tracked when a transaction is completed - not when it is commited, which makes the solution not bullet proof. There are also further issue to consider like transaction id (xmin) rollover for example
logical decoding / replication is something to look into for a proper solution
Thanks to everyone trying to help me find an answer. I hope this summary is useful to someone in the future.

T-SQL Optimize DELETE of many records

I have a table that can grew to millions records (50 millions for example). On each 20 minutes records that are older than 20 minutes are deleted.
The problems is that if the table has so many records such deletion can take a lot of time and I want to make it faster.
I can not do "truncate table" because I want to remove only records that are older than 20 minutes. I suppose that when doing the "delete" and filtering the information that need to be delete, the server is creating log file or something and this take much time?
Am I right? Is there a way to stop any flag or option to optimize the delete, and then to turn on the stopped option?
To expand on the batch delete suggestion, i'd suggest you do this far more regularly (every 20 seconds perhaps) - batch deletions are easy:
WHILE 1 = 1
BEGIN
DELETE TOP ( 4000 )
FROM YOURTABLE
WHERE YourIndexedDateColumn < DATEADD(MINUTE, -20, GETDATE())
IF ##ROWCOUNT = 0
BREAK
END
Your inserts may lag slightly whilst they wait for the locks to release but they should insert rather than error.
In regards to your table though, a table with this much traffic i'd expect to see on a very fast raid 10 array / perhaps even partitioned - are your disks up to it? Are your transaction logs on different disks to your data files? - they should be
EDIT 1 - Response to your comment
TO put a database into SIMPLE recovery:
ALTER DATABASE Database Name SET RECOVERY='SIMPLE'
This basically turns off transaction logging on the given database. Meaning in the event of data loss you would need loose all data since your last full backup. If you're OK with that, well this should save a lot of time when running large transactions. (NOTE that as the transaction is running, the logging still takes place in SIMPLE - to enable the rolling back of the transaction).
If there are tables within your database where you cant afford to loose data you'll need to leave your database in FULL recovery mode (i.e. any transaction gets logged (and hopefully flushed to *.trn files by your servers maintenance plans). As i stated in my question though, there is nothing stopping you having two databases, 1 in FULL and 1 in SIMPLE. the FULL database would be fore tables where you cant afford to loose any data (i.e. you could apply the transaction logs to restore data to a specific time) and the SIMPLE database would be for these massive high-traffic tables that you can allow data loss on in the event of a failure.
All of this is relevant assuming your creating full (*.bak) files every night & flushing your log files to *.trn files every half hour or so).
In regards to your index question, it's imperative your date column is indexed, if you check your execution plan and see any "TABLE SCAN" - that would be an indicator of a missing index.
Your date column i presume is DATETIME with a constraint setting the DEFAULT to getdate()?
You may find that you get better performance by replacing that with a BIGINT YYYYMMDDHHMMSS and then apply a CLUSTERED index to that column - note however that you can only have 1 clustered index per table, so if that table already has one you'll need to use a Non-Clustered index. (in case you didnt know, a clustered index basically tells SQL to store the information in that order, meaning that when you delete rows > 20 minutes SQL can literally delete stuff sequentially rather than hopping from page to page.
The log problem is probably due to the number of records deleted in the trasaction, to make things worse the engine may be requesting a lock per record (or by page wich is not so bad)
The one big thing here is how you determine the records to be deleted, i'm assuming you use a datetime field, if so make sure you have an index on the column otherwise it's a sequential scan of the table that will really penalize your process.
There are two things you may do depending of the concurrency of users an the time of the delete
If you can guarantee that no one is going to read or write when you delete, you can lock the table in exclusive mode and delete (this takes only one lock from the engine) and release the lock
You can use batch deletes, you would make a script with a cursor that provides the rows you want to delete, and you begin transtaction and commit every X records (ideally 5000), so you can keep the transactions shorts and not take that many locks
Take a look at the query plan for the delete process, and see what it shows, a sequential scan of a big table its never good.
Unfortunately for the purpose of this question and fortunately for the sake of consistency and recoverability of the databases in SQL server, putting a database into Simple recovery mode DOES NOT disable logging.
Every transaction still gets logged before committing it to the data file(s), the only difference would be that the space in the log would get released (in most cases) right after the transaction is either rolled back or committed in the Simple recovery mode, but this is not going to affect the performance of the DELETE statement in one way or another.
I had a similar problem when I needed to delete more than 70% of the rows from a big table with 3 indexes and a lot of foreign keys.
For this scenario, I saved the rows I wanted in a temp table, truncated the original table and reinserted the rows, something like:
SELECT * INTO #tempuser FROM [User] WHERE [Status] >= 600;
TRUNCATE TABLE [User];
INSERT [User] SELECT * FROM #tempuser;
I learned this technique with this link that explains:
DELETE is a a fully logged operation , and can be rolled back if something goes wrong
TRUNCATE Removes all rows from a table without logging the individual row deletions
In the article you can explore other strategies to resolve the delay in deleting many records, that one worked to me

When does sql exclusively lock a row in an update statement?

Can a race condition occur in sql under these conditions?
If I have this SQL update running in one thread call it statement 1:
Update Items
Set Flag = B
where Flag = A;
And this SQL update running in another call it statement 2:
Update Items
Set Flag = C
where Flag = A;
Is it possible for each thread to read the same record where Flag is equal to A and write the record with their own values? Such that statement 1 can write it first and then statement 2 writes it or visa versa?
The answer to this question depends on when the database exclusively locks the update. Does it happen before it finds the records or after it finds the records and evaluates the where clause?
First, there are three lock contexts:
Database level lock
Table level lock
Row level lock
Then you have four lock modes:
IX
IS
X
S
IX and IS locks are "intention" locks. These locks are held before acquiring other types of locks. X locks are exclusive (write) locks and S locks are shared (read) locks.
The locks (IX,IS,X or S) locks can be taken at any context level. An X lock at the database level will block all other operations in the database for example. This is the type of lock that SQLlite takes. An S lock is taken for the entire database during reads, and an X lock is taken for the entire database during writes. Writes will wait for any S locks to complete and will block new S and X locks until the write lock is released. This provides a serializable isolation transaction level.
For MySQL, the locking depends on the storage engine. MyISAM will take X and S locks on entire (sets of) tables. X locks will wait on existing S or X locks and block new locks. New X locks will be given higher priority in the queue, moved ahead of new S locks. This behavior can be changed by setting LOW_PRIORITY_UPDATES, which could result in write starvation because writes will be de-prioritized in favor of reads.
It is possible in MySQL to obtain an X lock over the entire database using 'FLUSH TABLES WITH READ LOCK'.
InnoDB locks rows as they are encountered via an index read. InnoDB locks index records and locks the records when the index records are traversed. InnoDB uses special locks called 'gap' locks to ensure REPEATABLE-READ transaction isolation level. Locks are held on index entries, so if a table is not well indexed for an UPDATE query, then many rows will be locked. Note that InnoDB does not create S locks for normal SELECT queries. It uses row versioning, not row level locking for consistent snapshots.
When acquiring X locks, the database needs to detect deadlocks. Consider the following:
>connection 1
start transaction;
update T set c = c + 1 order by id asc;
>connection 2
start transaction;
update T set c = c - 1 order by id desc;
In a row locking model, these two statements can not both complete successfully. The first would wait forever to acquire locks the second holds, and vice-versa. The database will pick one of the connections to roll back. InnoDB will pick the connection which has made the fewest number of changes. MyISAM will lock the whole table for whichever connection acquires the lock first, and then the second will run after the first completes.
The simple example given by you will be resolved by X locks at any context (database, table or row). If two connections begin at exactly the same type, both running two updates which try to update the same row, both will attempt to acquire an X lock. Only one connection can acquire the X lock. It is not possible to determine exactly which one will acquire the lock. The other connection will have to wait until the lock is released until it can acquire the X lock. Keep in mind, that if the row was locked by a DELETE or UPDATE, then the waiter might end up not acquiring a lock after waiting, because there is nothing left in the database to lock.
In your example, the first UPDATE to acquire the X lock, and the second UPDATE will then wait on the X lock and will eventually execute but not match any rows.
Exclusive lock, used for data-modification operations, such as INSERT, UPDATE, or DELETE will be used in this scenario.
An exclusive lock ensures that multiple updates cannot be made to the same resource at the same time.
You will not get a race condition in this scenario.
If you have a more complex scenario involving multiple tables then you may get race conditions, or deadlocks. There are many ways to avoid this, simplifying and separating queries, etc.
You can also apply hints to queries that tell SQL what type of lock to use.
http://msdn.microsoft.com/en-us/library/aa213026(v=sql.80).aspx
Sounds like you should read about locking. SQL server has a complex set of logic and will perform either table or row level locks based on the number of rows it estimates will require updates. Unless you specifically tell it which you want it to perform it can even vary from query to query. Usually if you are modifying a small subset of the table it will choose a row level lock.
SQL Server is designed with ACID in mind, thus it writes changes to its logs before performing any actual updates to the data. This allows any failed updates to be rolled back and allows consistency between queries (like your asking about). You can perform dirty reads to get around locking issues, however you cannot prevent SQL Server from locking inserted, updated and/or deleted records.
SQL Server Locking
EDIT: Here is an article about ACID.
ACID - Wikipedia
All SQL databases pretty much guarantee that such a collision will not occur. "When" locking occurs depends on whether locking is at the table, partition, page, or row level. Or, whether you have turned off such locking in your database.
What can happen, if you have concurrent update statements and multiple rows being updated, is that sone row are updated with the first, some with the second.
In general, I think of the where clause as being evaluated to select the row set, lock the rows one at a time, do the update and unlock. However, this depends on the type of locking. In this case, the scenario above would continue with the values flipping.
If you are concerned about this situation, use table level locking to force serialization when concurrent update requests are being processed.

Lock issues on large recordset

I have a database table that I use as a queue system, where separate process that talk to each other create and read entries in the table. For example, when a user initiates a search an entry is created, then another process that runs every second or two will pick up that new entry, update the status and then do a search, updating the entry again when the search is complete. This all seems to work well with thousands of searches per hour.
However, I have a master admin screen that lets me view the status of all of these 'jobs' but it runs very slowly. I basically return all entries in the table for the last hour so I can keep an eye on what's going on. I think that I am running into lock issues of some sort. I only need to read each entry, and don't really care if it the data is a little bit out of date. I just use a standard 'Select * from Table' statement so maybe it is waiting for other locks to expire before returning data as the jobs are constantly updating the data.
Would this be handled better by a certain kind of cursor to return each row one at a time, etc? Any other ideas?
Thanks
If you really don't care if the data is a bit out of date... or if you only need the data to be 99.99% accurate, consider using WITH (NOLOCK):
SELECT * FROM Table WITH (NOLOCK);
This will instruct your query to use the READ UNCOMMITTED ISOLATION LEVEL, which has the following behavior:
Specifies that dirty reads are allowed. No shared locks are issued to
prevent other transactions from modifying data read by the current
transaction, and exclusive locks set by other transactions do not
block the current transaction from reading the locked data.
Be aware that NOLOCK may cause some inaccuracies in your data, so it probably isn't a good idea to use it throughout the rest of your system.
You need FROM yourtable WITH (NOLOCK) table hint.
You may also want to look at transaction isolation in your update process, if you aren't already
An alternative to NOLOCK (which can lead to very bad things, such as missed rows or duplicated rows) is to allow read committed snapshot isolation at the database level and then issue your query with:
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

SQL Server 2008 Express locking

OK so I have read a fair amount about SQL Server's locking stuff, but I'm struggling to understand it all.
What I want to achieve is thus:
I need to be able to lock a row when user A SELECTs it
If user B then tries to SELECT it, my winforms .net app needs to set all the controls on the relevant form to be disabled, so the user can't try and update. Also it would be nice if I could throw up a messagebox for user B, stating that user A is the person that is using that row.
So basically User B needs to be able to SELECT the data, but when they do so, they should also get a) whether the record is locked and b) who has it locked.
I know people are gonna say I should just let SQL Server deal with the locking, but I need User B to know that the record is in use as soon as they SELECT it, rather than finding out when they UPDATE - by which time they may have entered data into the form, giving me inconsistency.
Also any locks need to allow SELECTs to still happen - so when user B does his SELECT, rather than just being thrown an exception and receiving no/incomplete data, he should still get the data, and be able to view it, but just not be able to update it.
I'm guessing this is pretty basic stuff, but there's so much terminology involved with SQL Server's locking that I'm not familiar with that it makes reading about it pretty difficult at the moment.
Thanks
To create this type of 'application lock', you may want to use a table called Locks and insert key, userid, and table names into it.
When your select comes along, join into the Locks table and use the presence of this value to indicate the record is locked.
I would also recommend adding a 'RowVersion' column to your table you wish to protect. This field will assist in identifying if you are updating or querying a row that has changed since you last selected it.
This isn't really what SQL Server locking is for - ideally you should only be keeping a transaction (and therefore a lock) open for the absolute minimum needed to complete an atomic operation against that database - you certainly shouldn't be holding locks while waiting for user input.
You would be better served keeping track of these sorts of locks yourself by (for example) adding a locked bit column to the table in question along with a locked_by varchar column to keep track of who has the row locked.
The first user should UPDATE the row to indicate that the row is locked and who has it locked:
UPDATE MyTable
SET `locked` = 1
AND `locked_by` = #me
WHERE `locked` = 0
The locked = 0 check is there to protect against potential race conditions and make sure that you don't update a record that someone else has already locked.
This first user then does a SELECT to return the data and ensure that they did really manage to lock the row.