How to register a ISolrFieldSerializer in Windsor container so that SolrNet can pick it up - serialization

I am trying to get an enum to serialize to it's int value when posting to Solr.
So I have implemented a ISolrFieldSerializer to do this, As suggested here. But I can seem to register it within the Windsor container in a way that it then gets used by SolrNet
Here is what I have:
This works fine apart from the serializer does not get used, although it appears in the containers components list. Any ideas?
container.Register(Component.For<ISolrFieldSerializer>().ImplementedBy<SolrEnumSerializer>());
Startup.Init<SearchBox>("http://10.10.10.10:0000/solr/boxes");
container.Register(Component.For<ISolrOperations<SearchBox>>()
.UsingFactoryMethod(k => ServiceLocator.Current.GetInstance<ISolrOperations<SearchBox>>()));

I sorted this by removing the default implementation and replace it with a custom one:
Startup.Container.Remove<ISolrFieldSerializer>();
var fieldSerializer = new CustomSerializer();
Startup.Container.Register<ISolrFieldSerializer>(c => fieldSerializer);
Custom Sertializer:
public class CustomSerializer : ISolrFieldSerializer
{
private readonly AggregateFieldSerializer _serializer;
public CustomSerializer()
{
_serializer = new AggregateFieldSerializer(new ISolrFieldSerializer[]
{
new MyCustom1Serializer(),
new MyCustom2Serializer(),
new CollectionFieldSerializer(this),
new GenericDictionaryFieldSerializer(this),
new NullableFieldSerializer(new BoolFieldSerializer()),
new NullableFieldSerializer(new DateTimeFieldSerializer()),
//new MoneyFieldSerializer(),
new FormattableFieldSerializer(),
new TypeConvertingFieldSerializer(),
});
}
public bool CanHandleType(Type t)
{
return _serializer.CanHandleType(t);
}
public IEnumerable<PropertyNode> Serialize(object obj)
{
return _serializer.Serialize(obj);
}
}

Related

Ideablade's Cocktail Composition Container for WCF projects

I recently upgraded an application I am working on from Cocktail 1.4 to Cocktail 2.6 (Punch). I have adjusted my bootstrapper class for the wpf project which now loads with no issues. However, on my WCF / Web projects, I am receiving a runtime exception with the following error when attempting to call Composition.GetInstance:
"You must first set a valid CompositionProvider by using Composition.SetProvider."
After digging into the issue a bit, it appears the composition container is automatically configured when your bootstrapper inherits from CocktailMefBootstrapper. I currently do not have bootstrapper classes at all for non-wpf projects. Prior to the upgrade, all I had to do was call the configure method on the Composition class to configure the composition container, but it appears that it has been deprecated:
Composition.Configure();
I noticed that you can also call Composition.SetProvider(), however I am a little unsure on how to satisfy the method signature exactly. The DevForce Punch documentation states that the generic type for the bootstrapper class should be a viewmodel, and there are no views / view models in a service project. This leaves me in limbo on what to do as I don't want to rip cocktail out of these WCF projects. Is there still a way to use Cocktail's composition container without a bootstrapper for a project in Cocktail (Punch) 2.6?
UPDATE
I found this on the DevForce forums. So it appears that I ought to learn how to configure a multi threaded ICompositionProvider and call Composition.SetProvider() as mentioned above. Any recommended articles to achieving this?
After digging through Punch's source code and looking at Ideablade's MefCompositionContainer, which implements ICompositionProvider, I created my own thread safe implementation of ICompositionProvider. Below is the code I used. Basically, it's the same code for Ideablade's MefCompositionContainer which can be found here in their repository. The only change is that I am passing a bool flag of true into the CompositionContainer's constructor. MSDN lists the pros and cons of making the container thread safe
internal partial class ThreadSafeCompositionProvider : ICompositionProvider
{
static ThreadSafeCompositionProvider()
{
CompositionHost.IgnorePatterns.Add("Caliburn.Micro*");
CompositionHost.IgnorePatterns.Add("Windows.UI.Interactivity*");
CompositionHost.IgnorePatterns.Add("Cocktail.Utils*");
CompositionHost.IgnorePatterns.Add("Cocktail.Compat*");
CompositionHost.IgnorePatterns.Add("Cocktail.dll");
CompositionHost.IgnorePatterns.Add("Cocktail.SL.dll");
CompositionHost.IgnorePatterns.Add("Cocktail.WinRT.dll");
}
public IEnumerable<Assembly> GetProbeAssemblies()
{
IEnumerable<Assembly> probeAssemblies = CompositionHost.Instance.ProbeAssemblies;
var t = GetType();
// Add Cocktail assembly
probeAssemblies = probeAssemblies.Concat(GetType().GetAssembly());
return probeAssemblies.Distinct(x => x);
}
private List<Assembly> _probeAssemblies;
private AggregateCatalog _defaultCatalog;
private ComposablePartCatalog _catalog;
private CompositionContainer _container;
public ComposablePartCatalog Catalog
{
get { return _catalog ?? DefaultCatalog; }
}
public ComposablePartCatalog DefaultCatalog
{
get
{
if (_defaultCatalog == null)
{
_probeAssemblies = GetProbeAssemblies().ToList();
var mainCatalog = new AggregateCatalog(_probeAssemblies.Select(x => new AssemblyCatalog(x)));
_defaultCatalog = new AggregateCatalog(mainCatalog);
CompositionHost.Recomposed += new EventHandler<RecomposedEventArgs>(OnRecomposed)
.MakeWeak(x => CompositionHost.Recomposed -= x);
}
return _defaultCatalog;
}
}
internal void OnRecomposed(object sender, RecomposedEventArgs args)
{
if (args.HasError) return;
var newAssemblies = GetProbeAssemblies()
.Where(x => !_probeAssemblies.Contains(x))
.ToList();
if (newAssemblies.Any())
{
var catalog = new AggregateCatalog(newAssemblies.Select(x => new AssemblyCatalog(x)));
_defaultCatalog.Catalogs.Add(catalog);
_probeAssemblies.AddRange(newAssemblies);
}
// Notify clients of the recomposition
var handlers = Recomposed;
if (handlers != null)
handlers(sender, args);
}
public CompositionContainer Container
{
get { return _container ?? (_container = new CompositionContainer(Catalog, true)); }
}
public Lazy<T> GetInstance<T>() where T : class
{
var exports = GetExportsCore(typeof(T), null).ToList();
if (!exports.Any())
throw new Exception(string.Format("Could Not Locate Any Instances Of Contract", typeof(T).FullName));
return new Lazy<T>(() => (T)exports.First().Value);
}
public T TryGetInstance<T>() where T : class
{
if (!IsTypeRegistered<T>())
return null;
return GetInstance<T>().Value;
}
public IEnumerable<T> GetInstances<T>() where T : class
{
var exports = GetExportsCore(typeof(T), null);
return exports.Select(x => (T)x.Value);
}
public Lazy<object> GetInstance(Type serviceType, string contractName)
{
var exports = GetExportsCore(serviceType, contractName).ToList();
if (!exports.Any())
throw new Exception(string.Format("Could Not Locate Any Instances Of Contract",
serviceType != null ? serviceType.ToString() : contractName));
return new Lazy<object>(() => exports.First().Value);
}
public object TryGetInstance(Type serviceType, string contractName)
{
var exports = GetExportsCore(serviceType, contractName).ToList();
if (!exports.Any())
return null;
return exports.First().Value;
}
public IEnumerable<object> GetInstances(Type serviceType, string contractName)
{
var exports = GetExportsCore(serviceType, contractName);
return exports.Select(x => x.Value);
}
public ICompositionFactory<T> GetInstanceFactory<T>() where T : class
{
var factory = new ThreadSafeCompositionFactory<T>();
Container.SatisfyImportsOnce(factory);
if (factory.ExportFactory == null)
throw new CompositionException(string.Format("No export found.", typeof(T)));
return factory;
}
public ICompositionFactory<T> TryGetInstanceFactory<T>() where T : class
{
var factory = new ThreadSafeCompositionFactory<T>();
Container.SatisfyImportsOnce(factory);
if (factory.ExportFactory == null)
return null;
return factory;
}
public void BuildUp(object instance)
{
// Skip if in design mode.
if (DesignTime.InDesignMode())
return;
Container.SatisfyImportsOnce(instance);
}
public bool IsRecomposing { get; internal set; }
public event EventHandler<RecomposedEventArgs> Recomposed;
internal bool IsTypeRegistered<T>() where T : class
{
return Container.GetExports<T>().Any();
}
public void Configure(CompositionBatch compositionBatch = null, ComposablePartCatalog catalog = null)
{
_catalog = catalog;
var batch = compositionBatch ?? new CompositionBatch();
if (!IsTypeRegistered<IEventAggregator>())
batch.AddExportedValue<IEventAggregator>(new EventAggregator());
Compose(batch);
}
public void Compose(CompositionBatch compositionBatch)
{
if (compositionBatch == null)
throw new ArgumentNullException("compositionBatch");
Container.Compose(compositionBatch);
}
private IEnumerable<Lazy<object>> GetExportsCore(Type serviceType, string key)
{
return Container.GetExports(serviceType, null, key);
}
}
After setting up that class, I added a configuration during startup to instantiate my new thread safe composition provider and to set it as the provider for Punch's Composition class:
if (createThreadSafeCompositionContainer)
{
var threadSafeContainer = new ThreadSafeCompositionProvider();
Composition.SetProvider(threadSafeContainer);
}
Seems to be working like a charm!

Can an Dapper query to changed to an ObservableCollection?

I'm tying to learn to use dapper.
I have this class here:
public class Member_Collection : ObservableCollection<Member>
{
}
and I have this method in my DAL class:
public static Member_Collection SqlSelectAll(string connString)
{
Member_Collection entityToReturn = null;
using (var conn = new SqlConnection(connString))
{
var entityList = conn.Query("Select * From Member");
entityToReturn = new Member_Collection();
foreach (var item in entityList)
{
entityToReturn.Add(item);
}
}
return entityToReturn;
}
This there away for the query to return an ObservableCollection?
Getting it to "return" a specific collection type would be a case of adding a custom extension method. If you just wanted the generic observable collection type, then:
public static ObservableCollection<T> ToObservable<T>(
this IEnumerable<T> source)
{
return new ObservableCollection<T>(source);
}
Note that to return a specific subclass is more complicated. To use generics would require the caller to specify both generic arguments, which is vexing. You might need a per-item-type extension method - again, pretty ugly

Naming conventions for view pages and setting controller action for view

I am unsure on how I should be naming my View pages, they are all CamelCase.cshtml, that when viewed in the browser look like "http://www.website.com/Home/CamelCase".
When I am building outside of .NET my pages are named like "this-is-not-camel-case.html". How would I go about doing this in my MVC4 project?
If I did go with this then how would I tell the view to look at the relevant controller?
Views/Home/camel-case.cshtml
Fake edit: Sorry if this has been asked before, I can't find anything via search or Google. Thanks.
There are a few ways you can do this:
Name all of your views in the style you would like them to show up in the url
This is pretty simple, you just add the ActionName attribute to all of your actions and specify them in the style you would like your url to look like, then rename your CamelCase.cshtml files to camel-case.cshtml files.
Use attribute routing
Along the same lines as above, there is a plugin on nuget to enable attribute routing which lets you specify the full url for each action as an attribute on the action. It has convention attributes to help you out with controller names and such as well. I generally prefer this approach because I like to be very explicit with the routes in my application.
A more framework-y approach
It's probably possible to do something convention based by extending the MVC framework, but it would be a decent amount of work. In order to select the correct action on a controller, you'd need to map the action name on its way in to MVC to its CamelCase equivalent before the framework uses it to locate the action on the controller. The easiest place to do this is in the Route, which is the last thing to happen before the MVC framework takes over the request. You'll also need to convert the other way on the way out so the urls generated look like you want them to.
Since you don't really want to alter the existing method to register routes, it's probably best write a function in application init that loops over all routes after they have been registered and wraps them with your new functionality.
Here is an example route and modifications to application start that achieve what you are trying to do. I'd still go with the route attribute approach however.
public class MvcApplication : System.Web.HttpApplication
{
protected void Application_Start()
{
AreaRegistration.RegisterAllAreas();
WebApiConfig.Register(GlobalConfiguration.Configuration);
FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
RouteConfig.RegisterRoutes(RouteTable.Routes);
WrapRoutesWithNamingConvention(RouteTable.Routes);
BundleConfig.RegisterBundles(BundleTable.Bundles);
AuthConfig.RegisterAuth();
}
private void WrapRoutesWithNamingConvention(RouteCollection routes)
{
var wrappedRoutes = routes.Select(m => new ConventionRoute(m)).ToList();
routes.Clear();
wrappedRoutes.ForEach(routes.Add);
}
private class ConventionRoute : Route
{
private readonly RouteBase baseRoute;
public ConventionRoute(RouteBase baseRoute)
: base(null, null)
{
this.baseRoute = baseRoute;
}
public override RouteData GetRouteData(HttpContextBase httpContext)
{
var baseRouteData = baseRoute.GetRouteData(httpContext);
if (baseRouteData == null) return null;
var actionName = baseRouteData.Values["action"] as string;
var convertedActionName = ConvertHyphensToPascalCase(actionName);
baseRouteData.Values["action"] = convertedActionName;
return baseRouteData;
}
private string ConvertHyphensToPascalCase(string hyphens)
{
var capitalParts = hyphens.Split('-').Select(m => m.Substring(0, 1).ToUpper() + m.Substring(1));
var pascalCase = String.Join("", capitalParts);
return pascalCase;
}
public override VirtualPathData GetVirtualPath(RequestContext requestContext, RouteValueDictionary values)
{
var valuesClone = new RouteValueDictionary(values);
var pascalAction = valuesClone["action"] as string;
var hyphens = ConvertPascalCaseToHyphens(pascalAction);
valuesClone["action"] = hyphens;
var baseRouteVirtualPath = baseRoute.GetVirtualPath(requestContext, valuesClone);
return baseRouteVirtualPath;
}
private string ConvertPascalCaseToHyphens(string pascal)
{
var pascalParts = new List<string>();
var currentPart = new StringBuilder();
foreach (var character in pascal)
{
if (char.IsUpper(character) && currentPart.Length > 0)
{
pascalParts.Add(currentPart.ToString());
currentPart.Clear();
}
currentPart.Append(character);
}
if (currentPart.Length > 0)
{
pascalParts.Add(currentPart.ToString());
}
var lowers = pascalParts.Select(m => m.ToLower());
var hyphens = String.Join("-", lowers);
return hyphens;
}
}
}

composing MEF parts in C# like a simple Funq container

In Funq and probably most other IoC containers I can simply do this to configure a type:
container.Register<ISomeThing>(c => new SomeThing());
How could I quickly extend MEF (or use existing MEF functionality) to do the same without using attributes.
Here is how I thought I could do it:
var container = new CompositionContainer();
var batch = new CompositionBatch();
batch.AddExport<ISomeThing>(() => new SomeThing());
batch.AddExportedValue(batch);
container.Compose(batch);
With this extension method for CompositionBatch:
public static ComposablePart AddExport<TKey>(this CompositionBatch batch, Func<object> func)
{
var typeString = typeof(TKey).ToString();
return batch.AddExport(
new Export(
new ExportDefinition(
typeString,
new Dictionary<string, object>() { { "ExportTypeIdentity", typeString } }),
func));
}
If I later do:
var a = container.GetExport<ISomeThing>().Value;
var b = container.GetExport<ISomeThing>().Value;
Both instance are the same. How can I force (configure) them to be different instances?
If this is not the way to go, how would I do this in MEF?
I would imagine the key is to add the delegate to the container, e.g.:
container.AddExportedValue<Func<ISomething>>(() => new Something());
That way you can grab the delegate and execute it:
var factory = container.GetExport<Func<ISomething>>();
ISomething something = factory();
Of course, MEF (Silverlight) does provide a native ExportFactory<T> (and ExportFactory<T,TMetadata> type that supports the creation of new instances for each call to import. You can add support for this by downloading Glen Block's ExportFactory for .NET 4.0 (Desktop) library.
If you don't want to use attributes, you can use this trick (based on Mark Seemann's blogpost).
First, create a generic class like this:
[PartCreationPolicy(CreationPolicy.NonShared)]
public class MefAdapter<T> where T : new()
{
private readonly T export;
public MefAdapter()
{
this.export = new T();
}
[Export]
public virtual T Export
{
get { return this.export; }
}
}
Now you can register any class you want in the container, like this:
var registeredTypesCatalog = new TypeCatalog(
typeof(MefAdapter<Foo>),
typeof(MefAdapter<Bar>),
...);
var container = new CompositionContainer(catalog);
Alternatively, you could implement your own export provider derived from ExportProvider, which allows you to pretty much duplicate Funq's way of working:
var provider = new FunqyExportProvider();
provider.Register<IFoo>(context => new Foo());
var container = new CompositionContainer(provider);
Both instance are the same. How can I force (configure) them to be different instances?
Simply mark the SomeThing class like this:
[Export(typeof(ISomeThing)]
[PartCreationPolicy(CreationPolicy.NonShared]
public class SomeThing : ISomeThing
{
...
}
And then you will get different instances wherever you import ISomeThing.
Alternatively, you can also set a required creation policy on an import:
[Export(typeof(IFoo))]
public class Foo : IFoo
{
[Import(typeof(ISomeThing),
RequiredCreationPolicy = CreationPolicy.NonShared)]
public ISomething SomeThing { private get; set; }
}
In Glen Block's Skydrive directory linked to in Matthew Abbott's answer I found something that seems simple and lightweight: A FuncCatalog. Download it here: FuncCatalogExtension.
Using the few little classes from that project I could now do this:
var funcCatalog = new FuncCatalog();
funcCatalog.AddPart<ISomeThing>(ep => new SomeThing());
var container = new CompositionContainer(funcCatalog);
var batch = new CompositionBatch();
batch.AddExportedObject<ExportProvider>(container);
container.Compose(batch);
var a = container.GetExportedObject<ISomeThing>();
var b = container.GetExportedObject<ISomeThing>();

JSON.NET and nHibernate Lazy Loading of Collections

Is anybody using JSON.NET with nHibernate? I notice that I am getting errors when I try to load a class with child collections.
I was facing the same problem so I tried to use #Liedman's code but the GetSerializableMembers() was never get called for the proxied reference.
I found another method to override:
public class NHibernateContractResolver : DefaultContractResolver
{
protected override JsonContract CreateContract(Type objectType)
{
if (typeof(NHibernate.Proxy.INHibernateProxy).IsAssignableFrom(objectType))
return base.CreateContract(objectType.BaseType);
else
return base.CreateContract(objectType);
}
}
We had this exact problem, which was solved with inspiration from Handcraftsman's response here.
The problem arises from JSON.NET being confused about how to serialize NHibernate's proxy classes. Solution: serialize the proxy instances like their base class.
A simplified version of Handcraftsman's code goes like this:
public class NHibernateContractResolver : DefaultContractResolver {
protected override List<MemberInfo> GetSerializableMembers(Type objectType) {
if (typeof(INHibernateProxy).IsAssignableFrom(objectType)) {
return base.GetSerializableMembers(objectType.BaseType);
} else {
return base.GetSerializableMembers(objectType);
}
}
}
IMHO, this code has the advantage of still relying on JSON.NET's default behaviour regarding custom attributes, etc. (and the code is a lot shorter!).
It is used like this
var serializer = new JsonSerializer{
ReferenceLoopHandling = ReferenceLoopHandling.Ignore,
ContractResolver = new NHibernateContractResolver()
};
StringWriter stringWriter = new StringWriter();
JsonWriter jsonWriter = new Newtonsoft.Json.JsonTextWriter(stringWriter);
serializer.Serialize(jsonWriter, objectToSerialize);
string serializedObject = stringWriter.ToString();
Note: This code was written for and used with NHibernate 2.1. As some commenters have pointed out, it doesn't work out of the box with later versions of NHibernate, you will have to make some adjustments. I will try to update the code if I ever have to do it with later versions of NHibernate.
I use NHibernate with Json.NET and noticed that I was getting inexplicable "__interceptors" properties in my serialized objects. A google search turned up this excellent solution by Lee Henson which I adapted to work with Json.NET 3.5 Release 5 as follows.
public class NHibernateContractResolver : DefaultContractResolver
{
private static readonly MemberInfo[] NHibernateProxyInterfaceMembers = typeof(INHibernateProxy).GetMembers();
protected override List<MemberInfo> GetSerializableMembers(Type objectType)
{
var members = base.GetSerializableMembers(objectType);
members.RemoveAll(memberInfo =>
(IsMemberPartOfNHibernateProxyInterface(memberInfo)) ||
(IsMemberDynamicProxyMixin(memberInfo)) ||
(IsMemberMarkedWithIgnoreAttribute(memberInfo, objectType)) ||
(IsMemberInheritedFromProxySuperclass(memberInfo, objectType)));
var actualMemberInfos = new List<MemberInfo>();
foreach (var memberInfo in members)
{
var infos = memberInfo.DeclaringType.BaseType.GetMember(memberInfo.Name);
actualMemberInfos.Add(infos.Length == 0 ? memberInfo : infos[0]);
}
return actualMemberInfos;
}
private static bool IsMemberDynamicProxyMixin(MemberInfo memberInfo)
{
return memberInfo.Name == "__interceptors";
}
private static bool IsMemberInheritedFromProxySuperclass(MemberInfo memberInfo, Type objectType)
{
return memberInfo.DeclaringType.Assembly == typeof(INHibernateProxy).Assembly;
}
private static bool IsMemberMarkedWithIgnoreAttribute(MemberInfo memberInfo, Type objectType)
{
var infos = typeof(INHibernateProxy).IsAssignableFrom(objectType)
? objectType.BaseType.GetMember(memberInfo.Name)
: objectType.GetMember(memberInfo.Name);
return infos[0].GetCustomAttributes(typeof(JsonIgnoreAttribute), true).Length > 0;
}
private static bool IsMemberPartOfNHibernateProxyInterface(MemberInfo memberInfo)
{
return Array.Exists(NHibernateProxyInterfaceMembers, mi => memberInfo.Name == mi.Name);
}
}
To use it just put an instance in the ContractResolver property of your JsonSerializer. The circular dependency problem noted by jishi can be resolved by setting the ReferenceLoopHandling property to ReferenceLoopHandling.Ignore . Here's an extension method that can be used to serialize objects using Json.Net
public static void SerializeToJsonFile<T>(this T itemToSerialize, string filePath)
{
using (StreamWriter streamWriter = new StreamWriter(filePath))
{
using (JsonWriter jsonWriter = new JsonTextWriter(streamWriter))
{
jsonWriter.Formatting = Formatting.Indented;
JsonSerializer serializer = new JsonSerializer
{
NullValueHandling = NullValueHandling.Ignore,
ReferenceLoopHandling = ReferenceLoopHandling.Ignore,
ContractResolver = new NHibernateContractResolver(),
};
serializer.Serialize(jsonWriter, itemToSerialize);
}
}
}
Are you getting a circular dependancy-error? How do you ignore objects from serialization?
Since lazy loading generates a proxy-objects, any attributes your class-members have will be lost. I ran into the same issue with Newtonsoft JSON-serializer, since the proxy-object didn't have the [JsonIgnore] attributes anymore.
You will probably want to eager load most of the object so that it can be serialized:
ICriteria ic = _session.CreateCriteria(typeof(Person));
ic.Add(Restrictions.Eq("Id", id));
if (fetchEager)
{
ic.SetFetchMode("Person", FetchMode.Eager);
}
A nice way to do this is to add a bool to the constructor (bool isFetchEager) of your data provider method.
I'd say this is a design problem in my opinion. Because NH makes connections to the database underneath all and has proxies in the middle, it is not good for the transparency of your application to serialize them directly (and as you can see Json.NET does not like them at all).
You should not serialize the entities themselves, but you should convert them into "view" objects or POCO or DTO objects (whatever you want to call them) and then serialize these.
The difference is that while NH entity may have proxies, lazy attributes, etc. View objects are simple objects with only primitives which are serializable by default.
How to manage FKs?
My personal rule is:
Entity level: Person class and with a Gender class associated
View level: Person view with GenderId and GenderName properties.
This means that you need to expand your properties into primitives when converting to view objects. This way also your json objects are simpler and easier to handle.
When you need to push the changes to the DB, in my case I use AutoMapper and do a ValueResolver class which can convert your new Guid to the Gender object.
UPDATE: Check http://blog.andrewawhitaker.com/blog/2014/06/19/queryover-series-part-4-transforming/ for a way to get the view directly (AliasToBean) from NH. This would be a boost in the DB side.
The problem can happen when NHibernate wraps the nested collection properties in a PersistentGenericBag<> type.
The GetSerializableMembers and CreateContract overrides cannot detect that these nested collection properties are "proxied". One way to resolve this is to override the CreateProperty method. The trick is to get the value from the property using reflection and test whether the type is of PersistentGenericBag. This method also has the ability to filter any properties that generated exceptions.
public class NHibernateContractResolver : DefaultContractResolver
{
protected override JsonProperty CreateProperty(MemberInfo member, MemberSerialization memberSerialization)
{
JsonProperty property = base.CreateProperty(member, memberSerialization);
property.ShouldSerialize = instance =>
{
try
{
PropertyInfo prop = (PropertyInfo)member;
if (prop.CanRead)
{
var value = prop.GetValue(instance, null);
if (value != null && typeof(NHibernate.Collection.Generic.PersistentGenericBag<>).IsSubclassOfRawGeneric(value.GetType()))
return false;
return true;
}
}
catch
{ }
return false;
};
return property;
}
}
The IsSubclassOfRawGeneric extension used above:
public static class TypeExtensions
{
public static bool IsSubclassOfRawGeneric(this Type generic, Type? toCheck)
{
while (toCheck != null && toCheck != typeof(object))
{
var cur = toCheck.IsGenericType ? toCheck.GetGenericTypeDefinition() : toCheck;
if (generic == cur)
{
return true;
}
toCheck = toCheck?.BaseType;
}
return false;
}
}
If you serialize objects that contain NHibernate proxy classes you might end up downloading the whole database, because once the property is accessed NHibernate would trigger a request to the database.
I've just implemented a Unit of Work for NHibernate: NHUnit that fixes two of the most annoying issues from NHibernate: proxy classes and cartesian product when using fetch.
How would you use this?
var customer = await _dbContext.Customers.Get(customerId) //returns a wrapper to configure the query
.Include(c => c.Addresses.Single().Country, //include Addresses and Country
c => c.PhoneNumbers.Single().PhoneNumberType) //include all PhoneNumbers with PhoneNumberType
.Unproxy() //instructs the framework to strip all the proxy classes when the Value is returned
.Deferred() //instructs the framework to delay execution (future)
.ValueAsync(token); //this is where all deferred queries get executed
The above code is basically configuring a query: return a customer by id with multiple child objects which should be executed with other queries (futures) and the returned result should be stripped of NHibernate proxies. The query gets executed when ValueAsync is called.
NHUnit determines if it should do join with the main query, create new future queries or make use of batch fetch.
There is a simple example project on Github to show you how to use NHUnit package. If others are interested in this project I will invest more time to make it better.
This is what I use:
Have a marker interface and inherit it on your entities, e.g. in my case empty IEntity.
We will use the marker interface to detect NHibernate entity types in the contract resolver.
public class CustomerEntity : IEntity { ... }
Create a custom contract resolver for JSON.NET
public class NHibernateProxyJsonValueProvider : IValueProvider {
private readonly IValueProvider _valueProvider;
public NHibernateProxyJsonValueProvider(IValueProvider valueProvider)
{
_valueProvider = valueProvider;
}
public void SetValue(object target, object value)
{
_valueProvider.SetValue(target, value);
}
private static (bool isProxy, bool isInitialized) GetProxy(object proxy)
{
// this is pretty much what NHibernateUtil.IsInitialized() does.
switch (proxy)
{
case INHibernateProxy hibernateProxy:
return (true, !hibernateProxy.HibernateLazyInitializer.IsUninitialized);
case ILazyInitializedCollection initializedCollection:
return (true, initializedCollection.WasInitialized);
case IPersistentCollection persistentCollection:
return (true, persistentCollection.WasInitialized);
default:
return (false, false);
}
}
public object GetValue(object target)
{
object value = _valueProvider.GetValue(target);
(bool isProxy, bool isInitialized) = GetProxy(value);
if (isProxy)
{
if (isInitialized)
{
return value;
}
if (value is IEnumerable)
{
return Enumerable.Empty<object>();
}
return null;
}
return value;
}
}
public class NHibernateContractResolver : CamelCasePropertyNamesContractResolver {
protected override JsonContract CreateContract(Type objectType)
{
if (objectType.IsAssignableTo(typeof(IEntity)))
{
return base.CreateObjectContract(objectType);
}
return base.CreateContract(objectType);
}
protected override JsonProperty CreateProperty(MemberInfo member, MemberSerialization memberSerialization)
{
JsonProperty property = base.CreateProperty(member, memberSerialization);
property.ValueProvider = new NHibernateProxyJsonValueProvider(property.ValueProvider);
return property;
}
}
Normal uninitialized lazy loaded properties will result in null in the json output.
Collection uninitialized lazy loaded properties will result in an [] empty array in json.
So for a lazy loaded property to appear in the json output you need to eagerly load it in the query or in code before serialization.
Usage:
JsonConvert.SerializeObject(entityToSerialize, new JsonSerializerSettings() {
ContractResolver = new NHibernateContractResolver()
});
Or globally in in ASP.NET Core Startup class
services.AddNewtonsoftJson(options =>
{
options.SerializerSettings.ContractResolver = new NHibernateContractResolver();
});
Using:
NET 5.0
NHibernate 5.3.8
JSON.NET latest via ASP.NET Core