I want to get sign by ECDSA secp224k1. I cannot get the same signature as in the CoinFLEX Authentication Process example from the manual. I am using C# BouncyCastle.
Why can't I get manual page's signature by my code?
// manual page's step 7
byte[] fortyByteMessage = fromHexStringToByteArr("0x00000000 00000001").Concat(fromHexStringToByteArr("0x6b347302 2e6b9b5a f2fe5d1d ae7cf5bf")).Concat(fromHexStringToByteArr("0xf08c98ca f1fd82e8 cea9825d bff04fd0")).ToArray();
// manual page's step 9
byte[] privateKey = fromHexStringToByteArr("0xb89ea7fc d22cc059 c2673dc2 4ff40b97 83074646 86560d0a d7561b83");
// manual page's step 10
X9ECParameters spec = ECNamedCurveTable.GetByName("secp224k1");
ECDomainParameters domain = new ECDomainParameters(spec.Curve, spec.G, spec.N);
ECDsaSigner signer = new ECDsaSigner(new HMacDsaKCalculator(new Sha224Digest()));
signer.Init(true, new ECPrivateKeyParameters(new BigInteger(privateKey), domain));
BigInteger[] signature = signer.GenerateSignature(fortyByteMessage);
byte[] r = signature[0].ToByteArray().SkipWhile(b => b == 0x00).Reverse().ToArray(); // (r) r should be 0x3fb77a9d 7b5b2a68 209e76f6 872078c5 791340d5 989854ad a3ab735e, but not.
Console.WriteLine(BitConverter.ToString(r).Replace("-", string.Empty).ToLower());
Expected byteArr ( step 10 r value ):
r = 0x3fb77a9d 7b5b2a68 209e76f6 872078c5 791340d5 989854ad a3ab735e<br>
My byteArr (this is wrong value, because it is different from step 10 r value )
r = 0x1e3b3f4f 7401ff9d 827b7222 47823919 452d3adb effa7aa4 52a0879e<br>
Another function:
static byte[] fromHexStringToByteArr(string paramHexString)
{
string hexString = paramHexString.Substring(2).Replace(" ", "");
byte[] result = new byte[hexString.Length / 2];
int cur = 0;
for (int i = 0; i < hexString.Length; i = i + 2)
{
string w = hexString.Substring(i, 2);
result[cur] = Convert.ToByte(w, 16);
cur++;
}
return result;
}
According to step 10 of the instructions, not the 40-byte-message should be signed, but the SHA224-hash of this message: The client signs the 28-byte SHA-224 digest of the 40-byte message.... Note, that the data are not automatically hashed by the GenerateSignature-method, i.e. it must be hashed explicitly, see also here and these examples.
The Org.BouncyCastle.Math.BigInteger.ToByteArray-method (which is used in the C#-code) outputs the byte-array in big-endian-format (unlike .Net, whose System.Numerics.BigInteger.ToByteArray-method uses the little-endian-format). Therefore, it is not necessary to reverse the byte-order (using the Reverse-method).
With these modifications, the signature is:
r = 0x1781ff4997b48d389f518df75001c4b6564082956228d74dd0321656
s = 0x0aadc68cf78dc75d44fb300f200465e72a70826ec2d5577d49b62e59
which, however, still differs from the signature shown in the instructions.
In the C#-code, the ECDsaSigner-instance is created with a HMacDsaKCalculator-instance, generating a deterministic signature based on RFC6979. When creating a signature with ECDSA, the k-parameter is chosen randomly for the non-deterministic ECDSA, whereas in the deterministic variant it is created from the message and the private key according to a specific algorithm (described in RFC6979), see here. Thus, the deterministic variant generates the same signature for the same message and private key, while the non-deterministic variant generates different signatures.
Probably the difference between the signatures is caused by the use of the non-deterministic variant by CoinFLEX. Unfortunately, the instructions do not go into detail about the ECDSA-procedure used.
Update:
Both variants, deterministic and non-deterministic, provide valid ECDSA-signatures! Before the deterministic variant (RFC6979 is from August 2013) there was only the non-deterministic variant, see here.
I installed and tested the sign_secp224k1-tool on a Linux (Debian) machine. As suspected, the tool generates different signatures for the same private key and the same message, obviously using the non-deterministic variant. This can also be easily verified from the source-code: The signature is calculated using the ecp_sign-method, which randomly determines the k-value using /dev/urandom.
Thus it is clear that the signature generated by the C#-code using the deterministic variant generally cannot match a signature generated by the sign_secp224k1-tool using the non-deterministic variant.
I'm using "node-forge" to generate a publicKey to use with my AES symmetric key but I don't know how to use the data provided by my backend to create this publicKey. Currently, I receive from an authentication api the following:
e: "10001"
n:"c7c5dd235568711a943ebbdacac890ca2cf12c1ab539f77726e8874d2ab4220cf06369358b5eff0425fb17d4f696f741cf04c5ea874415e7f67d118a2e763e641e8675b8f42e9277b3f70f14e4de23fe16f51abdc427490f47e4b28ae3e5eb3563ba797fe90f9b70ba878646b1b297c52ba735827682b67309d38b423e31b50b"
maxdigits: "131"
Where "e" is my exponent, "n" is my module and "maxdigits" is the length my BigIntegers are supposed to have.
But when I try something like this:
const keys = forge.pki.rsa.generateKeyPair({ e: res.e, n: res.n });
My backend returns an error. What am I doing wrong?
forge.pki.rsa.generateKeyPair is the wrong method in this context. forge.pki.rsa.generateKeyPair creates a new key pair with random modulus. The first parameter specifies the modulus/key size in bits, the second the exponent ([1] and [2]):
// var forge = require('node-forge'); // in nodejs-context
var pki = forge.pki;
var rsa = forge.pki.rsa;
var keypair = rsa.generateKeyPair({bits: 2048, e: 0x10001});
var pubKeyPEM = pki.publicKeyToPem(keypair.publicKey);
var privKeyPEM = pki.privateKeyToPem(keypair.privateKey);
console.log(pubKeyPEM);
console.log(privKeyPEM);
The forge.pki.rsa.setPublicKey-method is used to generate a public key via modulus and exponent, where the modulus is the first parameter and the exponent is the second parameter ([2]), both of type forge.jsbn.BigInteger ([3]):
var BigInteger = forge.jsbn.BigInteger;
var n = new BigInteger('c7c5dd235568711a943ebbdacac890ca2cf12c1ab539f77726e8874d2ab4220cf06369358b5eff0425fb17d4f696f741cf04c5ea874415e7f67d118a2e763e641e8675b8f42e9277b3f70f14e4de23fe16f51abdc427490f47e4b28ae3e5eb3563ba797fe90f9b70ba878646b1b297c52ba735827682b67309d38b423e31b50b', 16);
var e = new BigInteger('10001', 16);
var pubKey = rsa.setPublicKey(n, e);
var pubKeyPEM = pki.publicKeyToPem(pubKey)
console.log(pubKeyPEM); // Check with e.g. https://lapo.it/asn1js/
I need some help in understanding, how to decrypt SalesforceMarketingCloud encrypted String into java.
I should admit that I have few things missing in my questions but this is what ever I have been provided so far
Algorithm – AES256, 256 Bit
Initilization vector – 16 bytes
Salt – 8 Bytes
Passphrase – “presharedpassphrase123”
As per my understanding the Input String has been encrypted using
EncryptSymmetric(#Clear, "AES", #null, #Passphrase, #null, #Salt, #null, #IV)
But when I try to decrypt it at Java side, it fails for various reason.
My best shot has been getting a garbage String as output so far when I used combination like below
NoPadding, CBS, and hashing my passphrase(which is 22 char long) to 32 bit using SHA-256
Can anyone please help, any Java code sample which you successfully used in past.
private String decryptWithKey(String myKey, byte[] strToDecrypt) throws Exception
{
MessageDigest sha = null;
try {
key = myKey.getBytes(CHAR_SCHEME);
sha = MessageDigest.getInstance("SHA-256");
key = sha.digest(key);
key = Arrays.copyOf(key, 32);
secretKey = new SecretKeySpec(key, ALGO);
Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");
byte[] ivByte = new byte[cipher.getBlockSize()];
ivByte = hexStringToByteArray("0716A494177F29F102AF33AFD0253BA1");;
System.out.println(new String(ivByte));
// IvParameterSpec ivParamsSpec = new IvParameterSpec(IV);
IvParameterSpec ivParamsSpec = new IvParameterSpec(ivByte);
cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParamsSpec);
setDecryptedString(new String(cipher.doFinal(strToDecrypt)));
}
catch (Exception e)
{
System.out.println("Error while decrypting: "+e.toString());
throw e;
}
return decryptedString;
}
I need to test ECC verification with given public and private keys. I found methods for random keys generation but there are no setters for specific public/private keys. How to set public/private keys as byte array?
byte[] privateKeyBytes = new byte[]{(byte)0x24, (byte)0xF4, (byte)0x36, (byte)0x16, (byte)0xD0, (byte)0x96, (byte)0x12, (byte)0x63, (byte)0x90, (byte)0x2E, (byte)0x51, (byte)0xF6, (byte)0x87, (byte)0x55, (byte)0xAB, (byte)0xCB, (byte)0x5D, (byte)0xAC, (byte)0x56, (byte)0x1A, (byte)0xA5, (byte)0xFA, (byte)0x55, (byte)0xDB};
byte[] publicKeyBytes = new byte[]{(byte)0x71, (byte)0x0B, (byte)0xCD, (byte)0xF8, (byte)0xEE, (byte)0x7F, (byte)0x36, (byte)0x32, (byte)0xF4, (byte)0x3E, (byte)0x8B, (byte)0x20, (byte)0x54, (byte)0xF7, (byte)0x84, (byte)0x26, (byte)0x4E, (byte)0x96, (byte)0xD9, (byte)0xBA, (byte)0x0F, (byte)0x82, (byte)0x84, (byte)0x2D, (byte)0xC1, (byte)0x31, (byte)0xE0, (byte)0xBF, (byte)0x9F, (byte)0x60, (byte)0x5F, (byte)0xAE, (byte)0x3A, (byte)0xA1, (byte)0x43, (byte)0x50, (byte)0x88, (byte)0x87, (byte)0xFE, (byte)0x49, (byte)0x6C, (byte)0x1F, (byte)0xF6, (byte)0x82, (byte)0x73, (byte)0xD8, (byte)0x77, (byte)0x8F};
KeyPair pair = g.generateKeyPair();
PublicKey pubKey = pair.getPublic();
PrivateKey prikey = pair.getPrivate();
Public and Private Keys can't be set, because they should be generated.
According to this, you won't be able to set it.
Normally you are able to encode a message and put the public key into the encoding method. Mabye you have an "ImportParameters"-Function like in C#, where you can import a "Key" into the chosen algorithm like RSA.
Edit:
According to THIS answer, you can import like this.
I would suggest you generate the keys, store them using a serialisation as JSON or something, so you can import, deserialise and import them in the method again
Used for encoded keys:
private static PrivateKey generatePrivateKey(KeyFactory factory, byte[] content){
PKCS8EncodedKeySpec privKeySpec = new PKCS8EncodedKeySpec(content);
return factory.generatePrivate(privKeySpec);
}
private static PublicKey generatePublicKey(KeyFactory factory, byte[] content) {
X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(content);
return factory.generatePublic(pubKeySpec);
}
For unencoded:
Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
ECNamedCurveParameterSpec spec = ECNamedCurveTable.getParameterSpec("secp192r1");
ECPrivateKeySpec ecPrivateKeySpec = new ECPrivateKeySpec(new BigInteger(1, privateKeyBytes), spec);
ECNamedCurveSpec params = new ECNamedCurveSpec("secp192r1", spec.getCurve(), spec.getG(), spec.getN());
java.security.spec.ECPoint w = new java.security.spec.ECPoint(new BigInteger(1, Arrays.copyOfRange(publicKeyBytes, 0, 24)), new BigInteger(1, Arrays.copyOfRange(publicKeyBytes, 24, 48)));
PublicKey publicKey = factory.generatePublic(new java.security.spec.ECPublicKeySpec(w, params));
So I'm trying to create a private/public key from 64 characters that I already know using bitcoinjs with the code below:
key = Bitcoin.ECKey.makeRandom();
// Print your private key (in WIF format)
document.write(key.toWIF());
// => Kxr9tQED9H44gCmp6HAdmemAzU3n84H3dGkuWTKvE23JgHMW8gct
// Print your public key (toString defaults to a Bitcoin address)
document.write(key.pub.getAddress().toString());
// => 14bZ7YWde4KdRb5YN7GYkToz3EHVCvRxkF
If I try to set "key" to my 64 characters instead of "Bitcoin.ECKey.makeRandom();" it fails. Is there a method or library that I overlooked that would allow me to use the known 64 characters in order to generate the private key in wif format and the public address?
Thanks in advance to anyone that may be able to offer some help.
You should use fromWIF method to pass your own data.
from source code of eckey.js
// Static constructors
ECKey.fromWIF = function(string) {
var payload = base58check.decode(string)
var compressed = false
// Ignore the version byte
payload = payload.slice(1)
if (payload.length === 33) {
assert.strictEqual(payload[32], 0x01, 'Invalid compression flag')
// Truncate the compression flag
payload = payload.slice(0, -1)
compressed = true
}
To create WIF from your key please follow https://en.bitcoin.it/wiki/Wallet_import_format
Here is interactive tool http://gobittest.appspot.com/PrivateKey
The solution to generate private and public key:
//public-key
var address = eckey.getBitcoinAddress().toString();
var privateKeyBytesCompressed = privateKeyBytes.slice(0);
privateKeyBytesCompressed.push(0x01);
var privateKeyWIFCompressed = new Bitcoin.Address(privateKeyBytesCompressed);
privateKeyWIFCompressed.version = 0x80;
//private-key
privateKeyWIFCompressed = privateKeyWIFCompressed.toString();
Take a look at moneyart.info for beautifully designed paperwallets.