When I alloc and init two NSString variables and compare their pointers, they are the same. Here's a snippet that shows this:
NSString *s1 = [[NSString alloc] initWithString:#"hello world"];
NSString *s2 = [[NSString alloc] initWithString:#"hello world"];
if (s1 == s2) {
NSLog(#"==");
}else {
NSLog(#"!=");
}
Why are s1 and s2 the same?
There are three things going on here:
Firstly, the two identical string literals you're passing in to initWithString: will have the same address to start. This is an obvious optimization for constant data.
Secondly, when you nest alloc and init with strings, the runtime performs an optimization, the alloc call essentially becomes a no-op. This is done using the NSPlaceholderString class. This means the pointer you get back here will be coming from initWithString:, not from alloc.
Thirdly, under the hood, initWithString: is calling CFStringCreateCopy, which as you may find, has the following behavior: Since this routine is for creating immutable strings, it has an optimization. It simply calls CFRetain() and returns the same object that was passed in.
Thanks for the very interesting question. I had fun figuring it out.
#"hello world" strings are of class NSConstantString.if you use #"hello world" in two places, they will be referencing the very same object.
From documentation.
The simplest way to create a string object in source code is to use
the Objective-C #"..." construct:
NSString *temp = #"/tmp/scratch"; Note that, when creating a string
constant in this fashion, you should use UTF-8 characters. Such an
object is created at compile time and exists throughout your program’s
execution. The compiler makes such object constants unique on a
per-module basis, and they’re never deallocated, though you can retain
and release them as you do any other object. You can also send
messages directly to a string constant as you do any other string:
BOOL same = [#"comparison" isEqualToString:myString];
Related
I have been trying to understand the difference between Strong and Weak references in iOS. What I did to understand is:
//.h File
#property(nonatomic,strong) NSString* myStrongString;
#property(nonatomic,weak) NSString* myWeakString;
//.m File
- (void)viewDidLoad
{
[super viewDidLoad];
[self assignTempString];
// Do any additional setup after loading the view, typically from a nib.
}
-(void)assignTempString{
self.myStrongString = [[NSString alloc] initWithString:#"Varun Mehta"];
}
- (IBAction)printAssignedString:(id)sender {
NSLog(#"Object will have strong reference so it will print my name==%#",self.myStrongString);
}
According to my understanding when I repeat the above step by using myWeakString it should print null. But its still printing my name. Anybody having any idea why its happening.
But when I replace [[NSString alloc] initWithString:#"Varun Mehta"] with [NSString stringWithFormat:#"Varun Mehta"] or [[NSString alloc] initWithFormat:#"Varun Mehta"] result is coming as I have expected.
There are several things to consider here.
A statically declared string is built into your app so it isn't really retained or released, thus a weak reference to #"my string" will always be valid. The compiler is just recognizing [[NSString alloc] initWithString:#"Varun Mehta"] as a static string and removing your alloc/init. However anything that deals with formatting is, by definition, creating a new string and thus the new string obeys the weak referencing rules and is immediately deallocated, nil-ing out the reference.
If you access a weakly retained object that ends up in the autorelease pool it won't actually get deallocated until all your methods return and the run loop goes back into another cycle (and thus drains the autorelease pool), so you can continue to work with the object even though it is "walking dead". This is typically only when interacting with non-ARC code.
If you need practise try this code:
- (void)viewDidLoad
{
[super viewDidLoad];
[self assignTempString];
}
-(void)assignTempString{
#autoreleasepool
{
self.myStrongString = [NSString stringWithFormat:#"%#", #"Strong string"];
self.myWeakString = [NSString stringWithFormat:#"%#", #"Weak string"];
}
}
- (IBAction)printAssignedString:(id)sender {
NSLog(#"Strong ptr content: %#",self.myStrongString);
NSLog(#"Weak ptr content: %#",self.myWeakString);
}
[NSString alloc] will allocate an ARC-managed object and will set its retain count to 1. As long as your view controller is alive, this retain count will be 1, so it will not be deallocated. [NSString stringWithFormat:] returns an autoreleased string which is deallocated after the execution of [self assignTempString].
Two methods initWithString and stringWithFormat suggest exactly what is to expect.
So initWithString expects you to create allocate memory and then initialise it.
While stringWithFormat expects you to just point to the string.
When you do a init with your strong/weak variable it will exist till end of your program.
While when you point;
strong literal will keep a reference and hence will not allow ARC to cleanup the string literal,
weak literal will not keep a reference and hence ARC is free to clean it up immediately after the function call.
Hope it clarifies working for you.
What you are experiencing happens because of how NSString is implemented.
Since NSString objects are immutable the compiler takes a shortcut when you use stringWithString: with a string literal as argument. If the argument of this and other related methods is a string literal the returned value will just point to the string literal. The whole object instantiation is optimized away.
And string literals won't be deallocated. But the weak variable is only nil'd out during dealloc, so if dealloc is never called the weak variables are never set to nil.
This won't happen if you use stringWithFormat:. Even using only string literals as argument will create new string instances.
Why? Most likely because Apple decided that it's not worth the effort to check if stringWithFormat: was used with a string literal that does not have any format specifiers.
That's an implementation detail, don't think too long about this decision. It should not influence the code you write. I would suggest you treat every string that is not a bare literal (i.e. #"Foo" without any NSString methods) as dynamically created NSString (i.e. use isEqualToString: for all your string comparisons)
This logging code will show this reuse behaviour. It'll show the same addresses for all NSString instances, because the compiler has optimized all those calls to a simple #"Foo".
NSLog(#"%p", #"Foo");
NSLog(#"%p", [[NSString alloc] initWithString:#"Foo"]);
NSLog(#"%p", [NSString stringWithString:#"Foo"]);
NSLog(#"%p", [[NSString stringWithString:#"Foo"] copy]);
NSLog(#"%p", [#"Foo" copy]);
In newer versions of Xcode you will even get nice warnings for this code:
using initWithString: with a literal is redundant
using stringWithString: with a literal is redundant
I was playing with the respondsToSelector method in Objective-C on MacOS-X 10.6.7 and Xcode 4.0.2, to identify if an object would respond to certain messages. According to the manuals, NSString should not respond to appendString: while NSMutableString should. Here's the piece of code which tests it:
int main (int argc, const char * argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString *myString = [[NSString alloc] init];
if ([myString respondsToSelector:#selector(appendString:)]) {
NSLog(#"myString responds to appendString:");
} else {
NSLog(#"myString doesn't respond to appendString:");
}
// do stuff with myString
[myString release];
[pool drain];
return 0;
}
and here's the output:
Class02[10241:903] myString responds to appendString:
I'd sort of expected the opposite. How does an NSString object respond to appendString: ? What's going on here that I'm missing ?
Short answer: That string is of type NSCFString, a class that inherits from NSMutableString, hence it responds to the selectors for the methods declared in NSMutableString, including superclasses.
Not so short answer: Foundation strings are toll-free bridged with Core Foundation strings. Developers use the opaque types CFStringRef (bridged with NSString) and CFMutableStringRef (bridged with NSMutableString) to refer to these strings so, at first glance, there are two different types of strings: immutable and mutable.
From a Core Foundation internal implementation perspective, there’s a private type called struct __CFString. This private type keeps a bit field that stores, amongst other information, whether the string is mutable or immutable. Having a single type simplifies implementation since many functions are shared by both immutable and mutable strings.
Whenever a Core Foundation function that operates on mutable strings is called, it first reads that bit field and checks whether the string is mutable or immutable. If the argument is supposed to be a mutable string but it in fact isn’t, the function returns an error (e.g. _CFStringErrNotMutable) or fails an assertion (e.g. __CFAssertIsStringAndMutable(cf)).
At any rate, these are implementation details, and they might change in the future. The fact that NSString doesn’t declare -appendString: doesn’t mean that every NSString instance doesn’t respond to the corresponding selector — think substitutability. The same situation applies to other mutable/immutable classes such as NSArray and NSMutableArray. From the developer perspective, the important thing is that the object that’s been returned is of a type that matches the return type — it could be the type itself or any subtype of that type. Class clusters make this a tad more convoluted but the situation is not restricted to class clusters per se.
In summary, you can only expect that a method returns an object whose type belongs to the hierarchy (i.e., either the type itself or a subtype) of the type for the return value. Unfortunately, this means that you cannot check whether a Foundation object is mutable or not. But then again, do you really need this check?
You can use the CFShowStr() function to get information from a string. In the example in your question, add
CFShowStr((CFStringRef)myString);
You should get an output similar to:
Length 0
IsEightBit 1
HasLengthByte 0
HasNullByte 1
InlineContents 0
Allocator SystemDefault
Mutable 0
Contents 0x0
where
Mutable 0
means that the string is in fact immutable.
This probably has to do with the implementation. NSString is a class cluster, which means that NSString is just a public interface and the actual implementing class is different (see what the class message gives you).
And at the same time NSString is also toll-free bridged to CFString, meaning that you can switch before those two types freely just by casting:
NSString *one = #"foo";
CFStringRef two = (CFStringRef)one; // valid cast
When you create a new string you really get a NSCFString back, a thin wrapper around CFString. And the point is that when you create a new mutable string, you also get an instance of NSCFString.
Class one = [[NSString string] class]; // NSCFString
Class two = [[NSMutableString string] class]; // NSCFString
I guess this was convenient from the implementation point of view – both NSString and NSMutableString can be backed by a common class (= less code duplication) and this class makes sure you don’t violate the immutability:
// “Attempt to mutate immutable object with appendString:”
[[NSString string] appendString:#"foo"];
There’s a lot of guess work in this answer and I don’t really understand the stuff, let’s hope somebody knows better.
You should not make assumptions about a method being not there. That method might be used internally or for whatever reason it exists. Technically, it's just private API.
You only have a contract to the public declarations (docs), and they don't show that message. So be prepared to get into trouble rather quickly if you use other features.
Whenever I need to create a new NSString variable I always alloc and init it. It seems that there are times when you don't want to do this. How do you know when to alloc and init an NSString and when not to?
Whenever I need to create a new NSString variable I always alloc and init it.
No, that doesn't make sense.
The variable exists from the moment the program encounters the point where you declare it:
NSString *myString;
This variable is not an NSString. It is storage for a pointer to an NSString. That's what the * indicates: That this variable holds a pointer.
The NSString object exists only from the moment you create one:
[[NSString alloc] init];
and the pointer to that object is only in the variable from the moment you assign it there:
myString = [[NSString alloc] init];
//Or, initializing the variable in its declaration:
NSString *myString = [[NSString alloc] init];
Thus, if you're going to get a string object from somewhere else (e.g., substringWithRange:), you can skip creating a new, empty one, because you're just going to replace the pointer to the empty string with the pointer to the other one.
Sometimes you do want to create an empty string; for example, if you're going to obtain a bunch of strings one at a time (e.g., from an NSScanner) and want to concatenate some or all of them into one big string, you can create an empty mutable string (using alloc and init) and send it appendString: messages to do the concatenations.
You also need to release any object you create by alloc. This is one of the rules in the Memory Management Programming Guide.
If you want to initialise it to a known value, there is little point in using alloc, you can just use a string literal:
NSString* myStr = #"Some value";
If you want to initialise it with a format or whatever, but don't need it to stick around beyond the current autorelease pool lifetime, it's a bit neater to use the class convenience methods:
NSString* myTempStr = [NSString stringWithFormat:#"%d", myIntVar];
If you need its lifetime to go beyond that, either alloc/init or else add a retain to the previous call. I tend to slightly prefer the latter, but the two are pretty much equivalent. Either way you will need a balancing release later.
Note that, since NSString is not mutable, this sort of thing is not only unnecessary but actively wrong:
// don't do this!
NSString* myStr = [[NSString alloc] initWithString:#""];
myStr = someOtherStr;
since it leaks the initial placeholder value.
It seems that there are times when you don't want to do this.
I can't think of any time when I would want to alloc/init a NSString. Since NSStringgs are immutable, you pretty much always create new strings by one of:
convenience class method e.g.
NSString* foo = [NSString stringWithFormat:...];
literal
NSString* foo = #"literal";
NSString instance method
NSString* foo = [bar uppercaseString];
copy from mutable string
NSString* foo = [mutableBar copy]; // foo needs to be released or autoreleased in this case
I'm guessing that you are referring to using StringWithString or similar instead of initWithString? StringWithString alloc and inits for you under the hood and then returns an autoreleased string.
If you don't need to do any string manipulation other than to have the string, you can use NSString *str = #"string";
In general with iOS, the tighter you manage your memory the better. This means that if you don't need to return a string from a method, you should alloc init and then release it.
If you need to return a string, of course you'll need to return an autoreleased string. I don't think its any more complicated than that.
- (void)createAString:(NSString **)str
{
*str = [NSString stringWithString:#"Hi all!"];
[*str autorelease]; // ???? is this right ?
}
How should I use release or autorelease ? I don't want to release outside of the function of course :)
...
NSString *createStr;
[self createAString:&createStr];
NSLog(#"%#", createStr);
You're correct that you'd generally want to return autoreleased (or the like) objects from out params when you use this form. Your assignment statement in the function that sets *str to a string:
*str = [NSString stringWithString:#"foo"];
is already doing the right thing, because that method returns an instance of NSString that the caller doesn't own. Just like you could return this string object from your function without any further memory management, you can set it as the outparam as you've done. Your second snippet showing the call site is fine.
This said, I'm worried about a few things in your code that you should be sure you understand:
The value of str inside the method is still a **, and sending that a message (as you've done for the speculative autorelease) is nonsense. Be sure you fully understand doubly indirected pointers before using them too liberally. :) If you need to send str a message after creating it, send it to *str, which is what contains the NSString *.
Setting an outparam like this when the function returns void is not idiomatic Cocoa. You would normally just return the NSString * directly. Outparams are rare in Cocoa. (Usually just NSErrors get this treatment from framework calls. Otherwise they conventionally use name like getString to differentiate them from normal get accessors which don't use the word "get".)
I hope -stringWithString was just an example. That method is almost never used in practice, since it's equivalent (in this case) to just using a #"string literal" (although that would muddy your example).
Instead of using a double pointer, would it not be more elegant to use an NSMutableString instead?
- (void)createAString:(NSMutableString *)str
{
[str setString:#"Hi all!"];
}
....
NSMutableString *createStr = [[NSMutableString alloc] init];
[self createAString: createStr];
NSLog(#"%#", createStr);
[createStr release];
Or, even better, just have the createAString method return an NSString.
- (NSString *)createAString
{
return #"Hi all!"; // this is autoreleased automatically
}
I wouldn't want to presume that your needs are this simple, though. =)
I am kind of confused by the behavior of NSString *str..
I assigned it in several ways, sometimes it works, and sometimes it becomes null.
NSString *str = #"/hi/hello"; // this one always works
// this sometimes becomes null after the function ends
NSString *str2 = [str lastPathComponent];
// as above
NSString *str3 = [NSString stringWithString:str2];
NSString *str4 = [NSString initWithString:str3];
I am not quite familiar with the object behavior of Obj-C, is it just like C++?
If so, how can I do assignment safely like
string str = "hi";
string str2 = str;
behaves in C++?
ex: I declare a string in my .h file,
how to assign it safely that it wouldn't become NULL after a function ends?
I know it's a very basic question, but I can't find the answer in NSString reference page.
Really thanks for any help!
The behaviour is not just like C++. Objects are reference-counted. If you want to keep one around, you must place a claim on it.
If you create the object yourself with a method whose name includes the word alloc, new or copy then you have ownership already. This is like a C++ new. (When you have created an object with alloc, you need also to initialise it with some method whose name begins init. But you have to create it first. In C++ both things would be considered parts of the single act of construction.)
Objects you receive from other methods (such as two of the three NSString methods you mention) are only transiently available unless you explicitly claim ownership by calling [object retain]. You only need to do this if you want to keep them around beyond the immediate context. (There isn't really an equivalent to this in C++.)
However you gain ownership, you must relinquish it when you are finished by calling [object release]. This sort of like a C++ delete, except that the object isn't actually destroyed until all ownership claims are released.
Getting to grips with this is really really really important, perhaps the only important thing you need to know to use Objective-C. Read the object ownership documentation carefully and you'll be sorted.
I assume you're not using garbage collection? If this is the case then you need to retain the string.
NSString* str2 = [[str lastPathComponent] retain];
I suggest you do some reading on objective-c memory management.
NSString *str = #"/hi/hello";
This works because it creates a string literal. Answers to this question are worth a read to understand these in Objective-C
What's the difference between a string constant and a string literal?
In all these cases you are creating autoreleased strings. These will be deallocated when you return to the application's runloop.
NSString *str2 = [str lastPathComponent];
NSString *str3 = [NSString stringWithString:str2];
In this last one I assume you meant [[NSString alloc] initWithString:str3]
This creates a string that is retained. But this isn't a good way to create static strings.
You should create static strings in your implementation file like this
static NSString *myConstant = #"constantString"