iOS: send customized uint8 array - objective-c

I'm trying to make an app that communicate iPhone with another hardware using dock to RS232 wire (I bought from RedPark). I'm also using the library provided by redpark. I made a simple code at beginning, it worked fine.
UInt8 infoCmd[5] = {0x3E,0x3E,0x05,0x80,0xff};
[rscMgr write:infoCmd Length:5];
Then I want to add more command to it, so I create a method that returns different combinations of command I need.
- (UInt8 *)requestCommand:(int)commandName{
UInt8 * command;
if (commandName == DATADUMP) {
command=[Communication buildDataDump];
}
if (commandName == GETSERIALINFO) {
command=[Communication buildGetSerailInfo];
}
return command;
}
+ (UInt8 *)buildGetSerailInfo{
UInt8 *command = malloc(sizeof(UInt8)*5);
command[0]=SYN;
command[1]=SYN;
command[2]=ENQ;
command[3]=GETSERIALINFO;
//command[4] = {SYN, SYN, ENQ, GETSERIALINFO};
return command;
}
The thing is, some of my commands includes data that can be 200 bytes long. How can I create an UInt8 array that is easier for me to add bytes?
I'm new to programming, please explain to me in detail. Thank you a lot in advance.

Actually you will just send data, row byte over the wire. I do something similar in one project (not wire, but RS232 commands over TCP/IP), and it becomes quite simple, if you use an NSMutableData instance.
A snippet from my code:
static u_int8_t codeTable[] = { 0x1b, 0x74, 0x10 };
static u_int8_t charSet[] = { 0x1b, 0x52, 0x10 };
static u_int8_t formatOff[] = { 0x1b, 0x21, 0x00 };
static u_int8_t reverseOn[] = { 0x1d, 0x42, 0x01 };
static u_int8_t reverseOff[]= { 0x1d, 0x42, 0x00 };
static u_int8_t paperCut[] = { 0x1d, 0x56, 0x0 };
NSMutableData *mdata = [NSMutableData dataWithBytes:&formatOff length:sizeof(formatOff)];
[mdata appendBytes:&formatOff length:sizeof(formatOff)];
[mdata appendBytes:&reverseOff length:sizeof(reverseOff)];
[mdata appendData: [NSData dataWithBytes: &codeTable length:sizeof(codeTable)]];
[mdata appendData: [NSData dataWithBytes: &charSet length:sizeof(charSet)]];
As you see, I am just appending the data byte by byte.

Related

I can't read keydatas (buttons' press values) with SPI between XMC4800 and STLED316

I use SPI communication between XMC4800 and STLED316 led controller. I can write datas to the display on STLED316.However, I can't read keydatas (by keyscan feature of STLED, it is written by STLED316 datasheet). I have some codes for write and read. I suppose command address or register address to send a byte to STLED is wrong. I couldn't figure out if they are the problem or something else. I simplified the codes. I used SPI_MASTER API for communication. write_7segg is working but can't use keydata's specific bits to use button press values (0,1). I need to use key press (keydata) values to change something on the display. If someone worked with STLED316 before, it maybe more understandable. Finally, STLED316 has a 5-digit display and 5 buttons with keyscan feature. read[0] = STLED316_DATA_RD = 0x40, read[1] = STLED316_READ_PAGE = 0x08, keydata[0] = STLED316_ADDR_KEY_DATA1 = 0x01. Here the codes are:
keydata = read_keyscan();
if ((((keydata) & 0x01) == 1) && (current_mode == 0)) {
write_7segg(4, arServo_Numbers[0]);
write_7segg(3, arServo_Numbers[0]);
write_7segg(2, arServo_Characters[23]);
write_7segg(1, arServo_Numbers[0]);
write_7segg(0, arServo_Characters[15]);
}
void write_7segg(unsigned char DisplayNumber, unsigned char Segments) {
// DIGITAL_IO_SetOutputLow(&DIGITAL_IO_0);
Buffer[0] = DisplayNumber;
Buffer[1] = Segments;
DIGITAL_IO_SetOutputLow(&DIGITAL_IO_8);
SPI_MASTER_Transmit(&SPI_MASTER_01,Buffer, 2);
DIGITAL_IO_SetOutputHigh(&DIGITAL_IO_8);
uint8_t readData(uint8_t address){
uint8_t sendByte = read[0]|read[1]|address;
uint8_t readByte = 0;
DIGITAL_IO_SetOutputLow(&DIGITAL_IO_8);
SPI_MASTER_Transfer(&SPI_MASTER_01,&sendByte, &readByte, 1);
DIGITAL_IO_SetOutputHigh(&DIGITAL_IO_8);
return readByte;
}
uint16_t read_keyscan(void){
uint16_t keyState = 0;
keyState = readData(keys[1]) << 8;
keyState = readData(keys[0]);
return keyState;
}

STM32F769NI USB CDC host problem sending simple data to the device

I am making HID for some data acquisition system. There are a lot of sensors who store test data and when I need I get to them and connect via USB and take it. USB host sent 3 bytes and USB device, if bytes are correct, sends its stored data. Sounds simple.
Previously it was implemented on PC, but now I try to implement it on STM32F769 Discovery and have some serious problems.
I am using ARM Keil 5.27, code generated with STM32CubeMX 5.3.0. I tried just to make a plain simple program, later to integrate with the entire touchscreen interface. I tried to implement this code in main:
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
while (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
{
Transmission_function();
}
And the function itself:
#define DLE 0x10
#define STX 0x2
uint8_t tx_buf[]={DLE, STX, 120}, RX_FLAG;
uint32_t size_tx=sizeof(tx_buf);
void Transmission_function (void)
{
if (Appli_state == APPLICATION_READY)
{
i=0;
USBH_CDC_Transmit(&hUsbHostHS, tx_buf, size_tx);
HAL_Delay(50);
RX_FLAG=0;
}
}
It should send the message after I press the blue button on the Discovery board. All that I get is Hard Fault. While trying to debug, I tried manually to check after which action I get this error and it was functioning in stm32f7xx_ll_usb.c:
HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src,
uint8_t ch_ep_num, uint16_t len, uint8_t dma)
{
uint32_t USBx_BASE = (uint32_t)USBx;
uint32_t *pSrc = (uint32_t *)src;
uint32_t count32b, i;
if (dma == 0U)
{
count32b = ((uint32_t)len + 3U) / 4U;
for (i = 0U; i < count32b; i++)
{
USBx_DFIFO((uint32_t)ch_ep_num) = *((__packed uint32_t *)pSrc);
pSrc++;
}
}
return HAL_OK;
}
But trying to scroll back in disassembly I notice, that just before Hard Fault program was in this function inside stm32f7xx_hal_hcd.c, in case GRXSTS_PKTSTS_IN:
static void HCD_RXQLVL_IRQHandler(HCD_HandleTypeDef *hhcd)
{
USB_OTG_GlobalTypeDef *USBx = hhcd->Instance;
uint32_t USBx_BASE = (uint32_t)USBx;
uint32_t pktsts;
uint32_t pktcnt;
uint32_t temp;
uint32_t tmpreg;
uint32_t ch_num;
temp = hhcd->Instance->GRXSTSP;
ch_num = temp & USB_OTG_GRXSTSP_EPNUM;
pktsts = (temp & USB_OTG_GRXSTSP_PKTSTS) >> 17;
pktcnt = (temp & USB_OTG_GRXSTSP_BCNT) >> 4;
switch (pktsts)
{
case GRXSTS_PKTSTS_IN:
/* Read the data into the host buffer. */
if ((pktcnt > 0U) && (hhcd->hc[ch_num].xfer_buff != (void *)0))
{
(void)USB_ReadPacket(hhcd->Instance, hhcd->hc[ch_num].xfer_buff, (uint16_t)pktcnt);
/*manage multiple Xfer */
hhcd->hc[ch_num].xfer_buff += pktcnt;
hhcd->hc[ch_num].xfer_count += pktcnt;
if ((USBx_HC(ch_num)->HCTSIZ & USB_OTG_HCTSIZ_PKTCNT) > 0U)
{
/* re-activate the channel when more packets are expected */
tmpreg = USBx_HC(ch_num)->HCCHAR;
tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
tmpreg |= USB_OTG_HCCHAR_CHENA;
USBx_HC(ch_num)->HCCHAR = tmpreg;
hhcd->hc[ch_num].toggle_in ^= 1U;
}
}
break;
case GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
break;
case GRXSTS_PKTSTS_IN_XFER_COMP:
case GRXSTS_PKTSTS_CH_HALTED:
default:
break;
}
}
Last few lines from Dissasembly shows this:
0x080018B4 E8BD81F0 POP {r4-r8,pc}
0x080018B8 0000 DCW 0x0000
0x080018BA 1FF8 DCW 0x1FF8
Why it fails? How could I fix it? I do not have much experience with USB protocol.
I will post my walkaround this, but I am not sure why it worked. Solution was to use EXTI0 interrupt instead of just detection if PA0 is high, as I showed I used here:
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
while (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
Transmission_function();
I changed it to this:
void EXTI0_IRQHandler(void)
{
/* USER CODE BEGIN EXTI0_IRQn 0 */
if(Appli_state == APPLICATION_READY){
USBH_CDC_Transmit(&hUsbHostHS, Buffer, 3);
}
/* USER CODE END EXTI0_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
/* USER CODE BEGIN EXTI0_IRQn 1 */
/* USER CODE END EXTI0_IRQn 1 */
}

Glitches occur when data is read using ExtAudioFile in combination with a circular buffer

I am trying to process audio data that is read using ExtAudioFile. However when I try to put this data in a circular buffer I hear several glitches.
In the example code below I pass data from "inBuffer" directly to "outBuffer" (both of type TPCircularBuffer by Michael Tyson). Both buffers are of size 10 x numberOfFrames * sizeof(float). The client stream format is mono with float samples.
Why do I hear these glitches without even processing any data? Without a circular buffer the sound streams well. What do I wrong or would another approach better?
static OSStatus recordingCallback(
void* inRefCon,
AudioUnitRenderActionFlags* ioActionFlags,
const AudioTimeStamp* inTimeStamp,
UInt32 inBusNumber,
UInt32 inNumberFrames,
AudioBufferList* ioData){
PlayAudioFile* player = (__bridge PlayAudioFile*)inRefCon;
Info *info = (Info *)player.info;
ExtAudioFileRead(info->extAudioFile, &inNumberFrames, info->inputBuffer);
if (inNumberFrames == 0) {
ExtAudioFileSeek(info->extAudioFile, 0);
}
// Put data in circular buffer
TPCircularBufferProduceBytes(info->inBuffer, info->inputBuffer->mBuffers[0].mData, info->inputBuffer->mBuffers[0].mDataByteSize);
UInt32 frameSize = inNumberFrames*sizeof(float);
if (info->inBuffer->fillCount >= frameSize) {
int32_t availableBytes;
float *tail = TPCircularBufferTail(info->inBuffer, &availableBytes);
if (availableBytes > frameSize){
memcpy(info->tempBuffer, tail, frameSize);
TPCircularBufferConsume(info->inBuffer, frameSize);
// Currently, data is not processed but just put to the output buffer
TPCircularBufferProduceBytes(info->outBuffer, info->tempBuffer, frameSize);
}
}
return noErr;
}
static OSStatus renderCallback(
void* inRefCon,
AudioUnitRenderActionFlags* ioActionFlags,
const AudioTimeStamp* inTimeStamp,
UInt32 inBusNumber,
UInt32 inNumberFrames,
AudioBufferList* ioData){
PlayAudioFile* player = (__bridge PlayAudioFile*)inRefCon;
Info *info = (Info *)play.info;
for (int i=0; i < ioData->mNumberBuffers; i++) {
AudioBuffer buffer = ioData->mBuffers[i];
if (info->outBuffer->fillCount > ioData->mBuffers[0].mDataByteSize) {
int32_t availableBytes;
float *tail = TPCircularBufferTail(info->outBuffer, &availableBytes);
memcpy(buffer.mData, tail, buffer.mDataByteSize);
TPCircularBufferConsume(info->outBuffer, buffer.mDataByteSize);
/* Messaging is not used for this example
// Notify delegate
if ([player.delegate respondsToSelector:#selector(player:audioBuffer:bufferSize:)])
{
[player.delegate player:player
audioBuffer:buffer.mData
bufferSize:inNumberFrames];
}
*/
}
else {
memset((char*)ioData->mBuffers[i].mData, 0, ioData->mBuffers[i].mDataByteSize * info->clientFormat.mBytesPerFrame);
}
}
return noErr;
}
Edit
Based on the answer below I modified the code by allocating and freeing memory outside the callback functions, and by increasing the size of the circular buffers. Unfortunately, the sound is still worse than without circular buffers. Could there be another reason for these glitches?
Allocating or freeing memory should not be done inside audio callbacks. Neither should sending Objective C messages.
A render callback should always put data into the buffer list buffers. But your code is missing an else statement to do so. Try a bigger circular buffer and make sure it is sufficiently pre-filled before starting render callbacks.

How to use VideoToolbox to decompress H.264 video stream

I had a lot of trouble figuring out how to use Apple's Hardware accelerated video framework to decompress an H.264 video stream. After a few weeks I figured it out and wanted to share an extensive example since I couldn't find one.
My goal is to give a thorough, instructive example of Video Toolbox introduced in WWDC '14 session 513. My code will not compile or run since it needs to be integrated with an elementary H.264 stream (like a video read from a file or streamed from online etc) and needs to be tweaked depending on the specific case.
I should mention that I have very little experience with video en/decoding except what I learned while googling the subject. I don't know all the details about video formats, parameter structure etc. so I've only included what I think you need to know.
I am using XCode 6.2 and have deployed to iOS devices that are running iOS 8.1 and 8.2.
Concepts:
NALUs: NALUs are simply a chunk of data of varying length that has a NALU start code header 0x00 00 00 01 YY where the first 5 bits of YY tells you what type of NALU this is and therefore what type of data follows the header. (Since you only need the first 5 bits, I use YY & 0x1F to just get the relevant bits.) I list what all these types are in the method NSString * const naluTypesStrings[], but you don't need to know what they all are.
Parameters: Your decoder needs parameters so it knows how the H.264 video data is stored. The 2 you need to set are Sequence Parameter Set (SPS) and Picture Parameter Set (PPS) and they each have their own NALU type number. You don't need to know what the parameters mean, the decoder knows what to do with them.
H.264 Stream Format: In most H.264 streams, you will receive with an initial set of PPS and SPS parameters followed by an i frame (aka IDR frame or flush frame) NALU. Then you will receive several P frame NALUs (maybe a few dozen or so), then another set of parameters (which may be the same as the initial parameters) and an i frame, more P frames, etc. i frames are much bigger than P frames. Conceptually you can think of the i frame as an entire image of the video, and the P frames are just the changes that have been made to that i frame, until you receive the next i frame.
Procedure:
Generate individual NALUs from your H.264 stream. I cannot show code for this step since it depends a lot on what video source you're using. I made this graphic to show what I was working with ("data" in the graphic is "frame" in my following code), but your case may and probably will differ. My method receivedRawVideoFrame: is called every time I receive a frame (uint8_t *frame) which was one of 2 types. In the diagram, those 2 frame types are the 2 big purple boxes.
Create a CMVideoFormatDescriptionRef from your SPS and PPS NALUs with CMVideoFormatDescriptionCreateFromH264ParameterSets( ). You cannot display any frames without doing this first. The SPS and PPS may look like a jumble of numbers, but VTD knows what to do with them. All you need to know is that CMVideoFormatDescriptionRef is a description of video data., like width/height, format type (kCMPixelFormat_32BGRA, kCMVideoCodecType_H264 etc.), aspect ratio, color space etc. Your decoder will hold onto the parameters until a new set arrives (sometimes parameters are resent regularly even when they haven't changed).
Re-package your IDR and non-IDR frame NALUs according to the "AVCC" format. This means removing the NALU start codes and replacing them with a 4-byte header that states the length of the NALU. You don't need to do this for the SPS and PPS NALUs. (Note that the 4-byte NALU length header is in big-endian, so if you have a UInt32 value it must be byte-swapped before copying to the CMBlockBuffer using CFSwapInt32. I do this in my code with the htonl function call.)
Package the IDR and non-IDR NALU frames into CMBlockBuffer. Do not do this with the SPS PPS parameter NALUs. All you need to know about CMBlockBuffers is that they are a method to wrap arbitrary blocks of data in core media. (Any compressed video data in a video pipeline is wrapped in this.)
Package the CMBlockBuffer into CMSampleBuffer. All you need to know about CMSampleBuffers is that they wrap up our CMBlockBuffers with other information (here it would be the CMVideoFormatDescription and CMTime, if CMTime is used).
Create a VTDecompressionSessionRef and feed the sample buffers into VTDecompressionSessionDecodeFrame( ). Alternatively, you can use AVSampleBufferDisplayLayer and its enqueueSampleBuffer: method and you won't need to use VTDecompSession. It's simpler to set up, but will not throw errors if something goes wrong like VTD will.
In the VTDecompSession callback, use the resultant CVImageBufferRef to display the video frame. If you need to convert your CVImageBuffer to a UIImage, see my StackOverflow answer here.
Other notes:
H.264 streams can vary a lot. From what I learned, NALU start code headers are sometimes 3 bytes (0x00 00 01) and sometimes 4 (0x00 00 00 01). My code works for 4 bytes; you will need to change a few things around if you're working with 3.
If you want to know more about NALUs, I found this answer to be very helpful. In my case, I found that I didn't need to ignore the "emulation prevention" bytes as described, so I personally skipped that step but you may need to know about that.
If your VTDecompressionSession outputs an error number (like -12909) look up the error code in your XCode project. Find the VideoToolbox framework in your project navigator, open it and find the header VTErrors.h. If you can't find it, I've also included all the error codes below in another answer.
Code Example:
So let's start by declaring some global variables and including the VT framework (VT = Video Toolbox).
#import <VideoToolbox/VideoToolbox.h>
#property (nonatomic, assign) CMVideoFormatDescriptionRef formatDesc;
#property (nonatomic, assign) VTDecompressionSessionRef decompressionSession;
#property (nonatomic, retain) AVSampleBufferDisplayLayer *videoLayer;
#property (nonatomic, assign) int spsSize;
#property (nonatomic, assign) int ppsSize;
The following array is only used so that you can print out what type of NALU frame you are receiving. If you know what all these types mean, good for you, you know more about H.264 than me :) My code only handles types 1, 5, 7 and 8.
NSString * const naluTypesStrings[] =
{
#"0: Unspecified (non-VCL)",
#"1: Coded slice of a non-IDR picture (VCL)", // P frame
#"2: Coded slice data partition A (VCL)",
#"3: Coded slice data partition B (VCL)",
#"4: Coded slice data partition C (VCL)",
#"5: Coded slice of an IDR picture (VCL)", // I frame
#"6: Supplemental enhancement information (SEI) (non-VCL)",
#"7: Sequence parameter set (non-VCL)", // SPS parameter
#"8: Picture parameter set (non-VCL)", // PPS parameter
#"9: Access unit delimiter (non-VCL)",
#"10: End of sequence (non-VCL)",
#"11: End of stream (non-VCL)",
#"12: Filler data (non-VCL)",
#"13: Sequence parameter set extension (non-VCL)",
#"14: Prefix NAL unit (non-VCL)",
#"15: Subset sequence parameter set (non-VCL)",
#"16: Reserved (non-VCL)",
#"17: Reserved (non-VCL)",
#"18: Reserved (non-VCL)",
#"19: Coded slice of an auxiliary coded picture without partitioning (non-VCL)",
#"20: Coded slice extension (non-VCL)",
#"21: Coded slice extension for depth view components (non-VCL)",
#"22: Reserved (non-VCL)",
#"23: Reserved (non-VCL)",
#"24: STAP-A Single-time aggregation packet (non-VCL)",
#"25: STAP-B Single-time aggregation packet (non-VCL)",
#"26: MTAP16 Multi-time aggregation packet (non-VCL)",
#"27: MTAP24 Multi-time aggregation packet (non-VCL)",
#"28: FU-A Fragmentation unit (non-VCL)",
#"29: FU-B Fragmentation unit (non-VCL)",
#"30: Unspecified (non-VCL)",
#"31: Unspecified (non-VCL)",
};
Now this is where all the magic happens.
-(void) receivedRawVideoFrame:(uint8_t *)frame withSize:(uint32_t)frameSize isIFrame:(int)isIFrame
{
OSStatus status;
uint8_t *data = NULL;
uint8_t *pps = NULL;
uint8_t *sps = NULL;
// I know what my H.264 data source's NALUs look like so I know start code index is always 0.
// if you don't know where it starts, you can use a for loop similar to how i find the 2nd and 3rd start codes
int startCodeIndex = 0;
int secondStartCodeIndex = 0;
int thirdStartCodeIndex = 0;
long blockLength = 0;
CMSampleBufferRef sampleBuffer = NULL;
CMBlockBufferRef blockBuffer = NULL;
int nalu_type = (frame[startCodeIndex + 4] & 0x1F);
NSLog(#"~~~~~~~ Received NALU Type \"%#\" ~~~~~~~~", naluTypesStrings[nalu_type]);
// if we havent already set up our format description with our SPS PPS parameters, we
// can't process any frames except type 7 that has our parameters
if (nalu_type != 7 && _formatDesc == NULL)
{
NSLog(#"Video error: Frame is not an I Frame and format description is null");
return;
}
// NALU type 7 is the SPS parameter NALU
if (nalu_type == 7)
{
// find where the second PPS start code begins, (the 0x00 00 00 01 code)
// from which we also get the length of the first SPS code
for (int i = startCodeIndex + 4; i < startCodeIndex + 40; i++)
{
if (frame[i] == 0x00 && frame[i+1] == 0x00 && frame[i+2] == 0x00 && frame[i+3] == 0x01)
{
secondStartCodeIndex = i;
_spsSize = secondStartCodeIndex; // includes the header in the size
break;
}
}
// find what the second NALU type is
nalu_type = (frame[secondStartCodeIndex + 4] & 0x1F);
NSLog(#"~~~~~~~ Received NALU Type \"%#\" ~~~~~~~~", naluTypesStrings[nalu_type]);
}
// type 8 is the PPS parameter NALU
if(nalu_type == 8)
{
// find where the NALU after this one starts so we know how long the PPS parameter is
for (int i = _spsSize + 4; i < _spsSize + 30; i++)
{
if (frame[i] == 0x00 && frame[i+1] == 0x00 && frame[i+2] == 0x00 && frame[i+3] == 0x01)
{
thirdStartCodeIndex = i;
_ppsSize = thirdStartCodeIndex - _spsSize;
break;
}
}
// allocate enough data to fit the SPS and PPS parameters into our data objects.
// VTD doesn't want you to include the start code header (4 bytes long) so we add the - 4 here
sps = malloc(_spsSize - 4);
pps = malloc(_ppsSize - 4);
// copy in the actual sps and pps values, again ignoring the 4 byte header
memcpy (sps, &frame[4], _spsSize-4);
memcpy (pps, &frame[_spsSize+4], _ppsSize-4);
// now we set our H264 parameters
uint8_t* parameterSetPointers[2] = {sps, pps};
size_t parameterSetSizes[2] = {_spsSize-4, _ppsSize-4};
// suggestion from #Kris Dude's answer below
if (_formatDesc)
{
CFRelease(_formatDesc);
_formatDesc = NULL;
}
status = CMVideoFormatDescriptionCreateFromH264ParameterSets(kCFAllocatorDefault, 2,
(const uint8_t *const*)parameterSetPointers,
parameterSetSizes, 4,
&_formatDesc);
NSLog(#"\t\t Creation of CMVideoFormatDescription: %#", (status == noErr) ? #"successful!" : #"failed...");
if(status != noErr) NSLog(#"\t\t Format Description ERROR type: %d", (int)status);
// See if decomp session can convert from previous format description
// to the new one, if not we need to remake the decomp session.
// This snippet was not necessary for my applications but it could be for yours
/*BOOL needNewDecompSession = (VTDecompressionSessionCanAcceptFormatDescription(_decompressionSession, _formatDesc) == NO);
if(needNewDecompSession)
{
[self createDecompSession];
}*/
// now lets handle the IDR frame that (should) come after the parameter sets
// I say "should" because that's how I expect my H264 stream to work, YMMV
nalu_type = (frame[thirdStartCodeIndex + 4] & 0x1F);
NSLog(#"~~~~~~~ Received NALU Type \"%#\" ~~~~~~~~", naluTypesStrings[nalu_type]);
}
// create our VTDecompressionSession. This isnt neccessary if you choose to use AVSampleBufferDisplayLayer
if((status == noErr) && (_decompressionSession == NULL))
{
[self createDecompSession];
}
// type 5 is an IDR frame NALU. The SPS and PPS NALUs should always be followed by an IDR (or IFrame) NALU, as far as I know
if(nalu_type == 5)
{
// find the offset, or where the SPS and PPS NALUs end and the IDR frame NALU begins
int offset = _spsSize + _ppsSize;
blockLength = frameSize - offset;
data = malloc(blockLength);
data = memcpy(data, &frame[offset], blockLength);
// replace the start code header on this NALU with its size.
// AVCC format requires that you do this.
// htonl converts the unsigned int from host to network byte order
uint32_t dataLength32 = htonl (blockLength - 4);
memcpy (data, &dataLength32, sizeof (uint32_t));
// create a block buffer from the IDR NALU
status = CMBlockBufferCreateWithMemoryBlock(NULL, data, // memoryBlock to hold buffered data
blockLength, // block length of the mem block in bytes.
kCFAllocatorNull, NULL,
0, // offsetToData
blockLength, // dataLength of relevant bytes, starting at offsetToData
0, &blockBuffer);
NSLog(#"\t\t BlockBufferCreation: \t %#", (status == kCMBlockBufferNoErr) ? #"successful!" : #"failed...");
}
// NALU type 1 is non-IDR (or PFrame) picture
if (nalu_type == 1)
{
// non-IDR frames do not have an offset due to SPS and PSS, so the approach
// is similar to the IDR frames just without the offset
blockLength = frameSize;
data = malloc(blockLength);
data = memcpy(data, &frame[0], blockLength);
// again, replace the start header with the size of the NALU
uint32_t dataLength32 = htonl (blockLength - 4);
memcpy (data, &dataLength32, sizeof (uint32_t));
status = CMBlockBufferCreateWithMemoryBlock(NULL, data, // memoryBlock to hold data. If NULL, block will be alloc when needed
blockLength, // overall length of the mem block in bytes
kCFAllocatorNull, NULL,
0, // offsetToData
blockLength, // dataLength of relevant data bytes, starting at offsetToData
0, &blockBuffer);
NSLog(#"\t\t BlockBufferCreation: \t %#", (status == kCMBlockBufferNoErr) ? #"successful!" : #"failed...");
}
// now create our sample buffer from the block buffer,
if(status == noErr)
{
// here I'm not bothering with any timing specifics since in my case we displayed all frames immediately
const size_t sampleSize = blockLength;
status = CMSampleBufferCreate(kCFAllocatorDefault,
blockBuffer, true, NULL, NULL,
_formatDesc, 1, 0, NULL, 1,
&sampleSize, &sampleBuffer);
NSLog(#"\t\t SampleBufferCreate: \t %#", (status == noErr) ? #"successful!" : #"failed...");
}
if(status == noErr)
{
// set some values of the sample buffer's attachments
CFArrayRef attachments = CMSampleBufferGetSampleAttachmentsArray(sampleBuffer, YES);
CFMutableDictionaryRef dict = (CFMutableDictionaryRef)CFArrayGetValueAtIndex(attachments, 0);
CFDictionarySetValue(dict, kCMSampleAttachmentKey_DisplayImmediately, kCFBooleanTrue);
// either send the samplebuffer to a VTDecompressionSession or to an AVSampleBufferDisplayLayer
[self render:sampleBuffer];
}
// free memory to avoid a memory leak, do the same for sps, pps and blockbuffer
if (NULL != data)
{
free (data);
data = NULL;
}
}
The following method creates your VTD session. Recreate it whenever you receive new parameters. (You don't have to recreate it every time you receive parameters, pretty sure.)
If you want to set attributes for the destination CVPixelBuffer, read up on CoreVideo PixelBufferAttributes values and put them in NSDictionary *destinationImageBufferAttributes.
-(void) createDecompSession
{
// make sure to destroy the old VTD session
_decompressionSession = NULL;
VTDecompressionOutputCallbackRecord callBackRecord;
callBackRecord.decompressionOutputCallback = decompressionSessionDecodeFrameCallback;
// this is necessary if you need to make calls to Objective C "self" from within in the callback method.
callBackRecord.decompressionOutputRefCon = (__bridge void *)self;
// you can set some desired attributes for the destination pixel buffer. I didn't use this but you may
// if you need to set some attributes, be sure to uncomment the dictionary in VTDecompressionSessionCreate
NSDictionary *destinationImageBufferAttributes = [NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES],
(id)kCVPixelBufferOpenGLESCompatibilityKey,
nil];
OSStatus status = VTDecompressionSessionCreate(NULL, _formatDesc, NULL,
NULL, // (__bridge CFDictionaryRef)(destinationImageBufferAttributes)
&callBackRecord, &_decompressionSession);
NSLog(#"Video Decompression Session Create: \t %#", (status == noErr) ? #"successful!" : #"failed...");
if(status != noErr) NSLog(#"\t\t VTD ERROR type: %d", (int)status);
}
Now this method gets called every time VTD is done decompressing any frame you sent to it. This method gets called even if there's an error or if the frame is dropped.
void decompressionSessionDecodeFrameCallback(void *decompressionOutputRefCon,
void *sourceFrameRefCon,
OSStatus status,
VTDecodeInfoFlags infoFlags,
CVImageBufferRef imageBuffer,
CMTime presentationTimeStamp,
CMTime presentationDuration)
{
THISCLASSNAME *streamManager = (__bridge THISCLASSNAME *)decompressionOutputRefCon;
if (status != noErr)
{
NSError *error = [NSError errorWithDomain:NSOSStatusErrorDomain code:status userInfo:nil];
NSLog(#"Decompressed error: %#", error);
}
else
{
NSLog(#"Decompressed sucessfully");
// do something with your resulting CVImageBufferRef that is your decompressed frame
[streamManager displayDecodedFrame:imageBuffer];
}
}
This is where we actually send the sampleBuffer off to the VTD to be decoded.
- (void) render:(CMSampleBufferRef)sampleBuffer
{
VTDecodeFrameFlags flags = kVTDecodeFrame_EnableAsynchronousDecompression;
VTDecodeInfoFlags flagOut;
NSDate* currentTime = [NSDate date];
VTDecompressionSessionDecodeFrame(_decompressionSession, sampleBuffer, flags,
(void*)CFBridgingRetain(currentTime), &flagOut);
CFRelease(sampleBuffer);
// if you're using AVSampleBufferDisplayLayer, you only need to use this line of code
// [videoLayer enqueueSampleBuffer:sampleBuffer];
}
If you're using AVSampleBufferDisplayLayer, be sure to init the layer like this, in viewDidLoad or inside some other init method.
-(void) viewDidLoad
{
// create our AVSampleBufferDisplayLayer and add it to the view
videoLayer = [[AVSampleBufferDisplayLayer alloc] init];
videoLayer.frame = self.view.frame;
videoLayer.bounds = self.view.bounds;
videoLayer.videoGravity = AVLayerVideoGravityResizeAspect;
// set Timebase, you may need this if you need to display frames at specific times
// I didn't need it so I haven't verified that the timebase is working
CMTimebaseRef controlTimebase;
CMTimebaseCreateWithMasterClock(CFAllocatorGetDefault(), CMClockGetHostTimeClock(), &controlTimebase);
//videoLayer.controlTimebase = controlTimebase;
CMTimebaseSetTime(self.videoLayer.controlTimebase, kCMTimeZero);
CMTimebaseSetRate(self.videoLayer.controlTimebase, 1.0);
[[self.view layer] addSublayer:videoLayer];
}
If you can't find the VTD error codes in the framework, I decided to just include them here. (Again, all these errors and more can be found inside the VideoToolbox.framework itself in the project navigator, in the file VTErrors.h.)
You will get one of these error codes either in the the VTD decode frame callback or when you create your VTD session if you did something incorrectly.
kVTPropertyNotSupportedErr = -12900,
kVTPropertyReadOnlyErr = -12901,
kVTParameterErr = -12902,
kVTInvalidSessionErr = -12903,
kVTAllocationFailedErr = -12904,
kVTPixelTransferNotSupportedErr = -12905, // c.f. -8961
kVTCouldNotFindVideoDecoderErr = -12906,
kVTCouldNotCreateInstanceErr = -12907,
kVTCouldNotFindVideoEncoderErr = -12908,
kVTVideoDecoderBadDataErr = -12909, // c.f. -8969
kVTVideoDecoderUnsupportedDataFormatErr = -12910, // c.f. -8970
kVTVideoDecoderMalfunctionErr = -12911, // c.f. -8960
kVTVideoEncoderMalfunctionErr = -12912,
kVTVideoDecoderNotAvailableNowErr = -12913,
kVTImageRotationNotSupportedErr = -12914,
kVTVideoEncoderNotAvailableNowErr = -12915,
kVTFormatDescriptionChangeNotSupportedErr = -12916,
kVTInsufficientSourceColorDataErr = -12917,
kVTCouldNotCreateColorCorrectionDataErr = -12918,
kVTColorSyncTransformConvertFailedErr = -12919,
kVTVideoDecoderAuthorizationErr = -12210,
kVTVideoEncoderAuthorizationErr = -12211,
kVTColorCorrectionPixelTransferFailedErr = -12212,
kVTMultiPassStorageIdentifierMismatchErr = -12213,
kVTMultiPassStorageInvalidErr = -12214,
kVTFrameSiloInvalidTimeStampErr = -12215,
kVTFrameSiloInvalidTimeRangeErr = -12216,
kVTCouldNotFindTemporalFilterErr = -12217,
kVTPixelTransferNotPermittedErr = -12218,
A good Swift example of much of this can be found in Josh Baker's Avios library: https://github.com/tidwall/Avios
Note that Avios currently expects the user to handle chunking data at NAL start codes, but does handle decoding the data from that point forward.
Also worth a look is the Swift based RTMP library HaishinKit (formerly "LF"), which has its own decoding implementation, including more robust NALU parsing: https://github.com/shogo4405/lf.swift
In addition to VTErrors above, I thought it's worth adding CMFormatDescription, CMBlockBuffer, CMSampleBuffer errors that you may encounter while trying Livy's example.
kCMFormatDescriptionError_InvalidParameter = -12710,
kCMFormatDescriptionError_AllocationFailed = -12711,
kCMFormatDescriptionError_ValueNotAvailable = -12718,
kCMBlockBufferNoErr = 0,
kCMBlockBufferStructureAllocationFailedErr = -12700,
kCMBlockBufferBlockAllocationFailedErr = -12701,
kCMBlockBufferBadCustomBlockSourceErr = -12702,
kCMBlockBufferBadOffsetParameterErr = -12703,
kCMBlockBufferBadLengthParameterErr = -12704,
kCMBlockBufferBadPointerParameterErr = -12705,
kCMBlockBufferEmptyBBufErr = -12706,
kCMBlockBufferUnallocatedBlockErr = -12707,
kCMBlockBufferInsufficientSpaceErr = -12708,
kCMSampleBufferError_AllocationFailed = -12730,
kCMSampleBufferError_RequiredParameterMissing = -12731,
kCMSampleBufferError_AlreadyHasDataBuffer = -12732,
kCMSampleBufferError_BufferNotReady = -12733,
kCMSampleBufferError_SampleIndexOutOfRange = -12734,
kCMSampleBufferError_BufferHasNoSampleSizes = -12735,
kCMSampleBufferError_BufferHasNoSampleTimingInfo = -12736,
kCMSampleBufferError_ArrayTooSmall = -12737,
kCMSampleBufferError_InvalidEntryCount = -12738,
kCMSampleBufferError_CannotSubdivide = -12739,
kCMSampleBufferError_SampleTimingInfoInvalid = -12740,
kCMSampleBufferError_InvalidMediaTypeForOperation = -12741,
kCMSampleBufferError_InvalidSampleData = -12742,
kCMSampleBufferError_InvalidMediaFormat = -12743,
kCMSampleBufferError_Invalidated = -12744,
kCMSampleBufferError_DataFailed = -16750,
kCMSampleBufferError_DataCanceled = -16751,
Thanks to Olivia for this great and detailed post!
I recently started to program a streaming app on iPad Pro with Xamarin forms and this article helped a lot and I found many references to it throughout the web.
I suppose many people re-wrote Olivia's example in Xamarin already and I don't claim to be the best programmer in the world. But as nobody posted a C#/Xamarin version here yet and I would like to give something back to the community for the great post above, here is my C# / Xamarin version. Maybe it helps someone to to speed up progress in her or his project.
I kept close to Olivia's example, I even kept most of her comments.
First, for I prefer dealing with enums rather than numbers, I declared this NALU enum.
For the sake of completeness I also added some "exotic" NALU types I found on the internet:
public enum NALUnitType : byte
{
NALU_TYPE_UNKNOWN = 0,
NALU_TYPE_SLICE = 1,
NALU_TYPE_DPA = 2,
NALU_TYPE_DPB = 3,
NALU_TYPE_DPC = 4,
NALU_TYPE_IDR = 5,
NALU_TYPE_SEI = 6,
NALU_TYPE_SPS = 7,
NALU_TYPE_PPS = 8,
NALU_TYPE_AUD = 9,
NALU_TYPE_EOSEQ = 10,
NALU_TYPE_EOSTREAM = 11,
NALU_TYPE_FILL = 12,
NALU_TYPE_13 = 13,
NALU_TYPE_14 = 14,
NALU_TYPE_15 = 15,
NALU_TYPE_16 = 16,
NALU_TYPE_17 = 17,
NALU_TYPE_18 = 18,
NALU_TYPE_19 = 19,
NALU_TYPE_20 = 20,
NALU_TYPE_21 = 21,
NALU_TYPE_22 = 22,
NALU_TYPE_23 = 23,
NALU_TYPE_STAP_A = 24,
NALU_TYPE_STAP_B = 25,
NALU_TYPE_MTAP16 = 26,
NALU_TYPE_MTAP24 = 27,
NALU_TYPE_FU_A = 28,
NALU_TYPE_FU_B = 29,
}
More or less for convenience reasons I also defined an additional dictionary for the NALU descriptions:
public static Dictionary<NALUnitType, string> GetDescription { get; } =
new Dictionary<NALUnitType, string>()
{
{ NALUnitType.NALU_TYPE_UNKNOWN, "Unspecified (non-VCL)" },
{ NALUnitType.NALU_TYPE_SLICE, "Coded slice of a non-IDR picture (VCL) [P-frame]" },
{ NALUnitType.NALU_TYPE_DPA, "Coded slice data partition A (VCL)" },
{ NALUnitType.NALU_TYPE_DPB, "Coded slice data partition B (VCL)" },
{ NALUnitType.NALU_TYPE_DPC, "Coded slice data partition C (VCL)" },
{ NALUnitType.NALU_TYPE_IDR, "Coded slice of an IDR picture (VCL) [I-frame]" },
{ NALUnitType.NALU_TYPE_SEI, "Supplemental Enhancement Information [SEI] (non-VCL)" },
{ NALUnitType.NALU_TYPE_SPS, "Sequence Parameter Set [SPS] (non-VCL)" },
{ NALUnitType.NALU_TYPE_PPS, "Picture Parameter Set [PPS] (non-VCL)" },
{ NALUnitType.NALU_TYPE_AUD, "Access Unit Delimiter [AUD] (non-VCL)" },
{ NALUnitType.NALU_TYPE_EOSEQ, "End of Sequence (non-VCL)" },
{ NALUnitType.NALU_TYPE_EOSTREAM, "End of Stream (non-VCL)" },
{ NALUnitType.NALU_TYPE_FILL, "Filler data (non-VCL)" },
{ NALUnitType.NALU_TYPE_13, "Sequence Parameter Set Extension (non-VCL)" },
{ NALUnitType.NALU_TYPE_14, "Prefix NAL Unit (non-VCL)" },
{ NALUnitType.NALU_TYPE_15, "Subset Sequence Parameter Set (non-VCL)" },
{ NALUnitType.NALU_TYPE_16, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_17, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_18, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_19, "Coded slice of an auxiliary coded picture without partitioning (non-VCL)" },
{ NALUnitType.NALU_TYPE_20, "Coded Slice Extension (non-VCL)" },
{ NALUnitType.NALU_TYPE_21, "Coded Slice Extension for Depth View Components (non-VCL)" },
{ NALUnitType.NALU_TYPE_22, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_23, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_STAP_A, "STAP-A Single-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_STAP_B, "STAP-B Single-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_MTAP16, "MTAP16 Multi-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_MTAP24, "MTAP24 Multi-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_FU_A, "FU-A Fragmentation Unit (non-VCL)" },
{ NALUnitType.NALU_TYPE_FU_B, "FU-B Fragmentation Unit (non-VCL)" }
};
Here comes my main decoding procedure. I assume the received frame as raw byte array:
public void Decode(byte[] frame)
{
uint frameSize = (uint)frame.Length;
SendDebugMessage($"Received frame of {frameSize} bytes.");
// I know how my H.264 data source's NALUs looks like so I know start code index is always 0.
// if you don't know where it starts, you can use a for loop similar to how I find the 2nd and 3rd start codes
uint firstStartCodeIndex = 0;
uint secondStartCodeIndex = 0;
uint thirdStartCodeIndex = 0;
// length of NALU start code in bytes.
// for h.264 the start code is 4 bytes and looks like this: 0 x 00 00 00 01
const uint naluHeaderLength = 4;
// check the first 8bits after the NALU start code, mask out bits 0-2, the NALU type ID is in bits 3-7
uint startNaluIndex = firstStartCodeIndex + naluHeaderLength;
byte startByte = frame[startNaluIndex];
int naluTypeId = startByte & 0x1F; // 0001 1111
NALUnitType naluType = (NALUnitType)naluTypeId;
SendDebugMessage($"1st Start Code Index: {firstStartCodeIndex}");
SendDebugMessage($"1st NALU Type: '{NALUnit.GetDescription[naluType]}' ({(int)naluType})");
// bits 1 and 2 are the NRI
int nalRefIdc = startByte & 0x60; // 0110 0000
SendDebugMessage($"1st NRI (NAL Ref Idc): {nalRefIdc}");
// IF the very first NALU type is an IDR -> handle it like a slice frame (-> re-cast it to type 1 [Slice])
if (naluType == NALUnitType.NALU_TYPE_IDR)
{
naluType = NALUnitType.NALU_TYPE_SLICE;
}
// if we haven't already set up our format description with our SPS PPS parameters,
// we can't process any frames except type 7 that has our parameters
if (naluType != NALUnitType.NALU_TYPE_SPS && this.FormatDescription == null)
{
SendDebugMessage("Video Error: Frame is not an I-Frame and format description is null.");
return;
}
// NALU type 7 is the SPS parameter NALU
if (naluType == NALUnitType.NALU_TYPE_SPS)
{
// find where the second PPS 4byte start code begins (0x00 00 00 01)
// from which we also get the length of the first SPS code
for (uint i = firstStartCodeIndex + naluHeaderLength; i < firstStartCodeIndex + 40; i++)
{
if (frame[i] == 0x00 && frame[i + 1] == 0x00 && frame[i + 2] == 0x00 && frame[i + 3] == 0x01)
{
secondStartCodeIndex = i;
this.SpsSize = secondStartCodeIndex; // includes the header in the size
SendDebugMessage($"2nd Start Code Index: {secondStartCodeIndex} -> SPS Size: {this.SpsSize}");
break;
}
}
// find what the second NALU type is
startByte = frame[secondStartCodeIndex + naluHeaderLength];
naluType = (NALUnitType)(startByte & 0x1F);
SendDebugMessage($"2nd NALU Type: '{NALUnit.GetDescription[naluType]}' ({(int)naluType})");
// bits 1 and 2 are the NRI
nalRefIdc = startByte & 0x60; // 0110 0000
SendDebugMessage($"2nd NRI (NAL Ref Idc): {nalRefIdc}");
}
// type 8 is the PPS parameter NALU
if (naluType == NALUnitType.NALU_TYPE_PPS)
{
// find where the NALU after this one starts so we know how long the PPS parameter is
for (uint i = this.SpsSize + naluHeaderLength; i < this.SpsSize + 30; i++)
{
if (frame[i] == 0x00 && frame[i + 1] == 0x00 && frame[i + 2] == 0x00 && frame[i + 3] == 0x01)
{
thirdStartCodeIndex = i;
this.PpsSize = thirdStartCodeIndex - this.SpsSize;
SendDebugMessage($"3rd Start Code Index: {thirdStartCodeIndex} -> PPS Size: {this.PpsSize}");
break;
}
}
// allocate enough data to fit the SPS and PPS parameters into our data objects.
// VTD doesn't want you to include the start code header (4 bytes long) so we subtract 4 here
byte[] sps = new byte[this.SpsSize - naluHeaderLength];
byte[] pps = new byte[this.PpsSize - naluHeaderLength];
// copy in the actual sps and pps values, again ignoring the 4 byte header
Array.Copy(frame, naluHeaderLength, sps, 0, sps.Length);
Array.Copy(frame, this.SpsSize + naluHeaderLength, pps,0, pps.Length);
// create video format description
List<byte[]> parameterSets = new List<byte[]> { sps, pps };
this.FormatDescription = CMVideoFormatDescription.FromH264ParameterSets(parameterSets, (int)naluHeaderLength, out CMFormatDescriptionError formatDescriptionError);
SendDebugMessage($"Creation of CMVideoFormatDescription: {((formatDescriptionError == CMFormatDescriptionError.None)? $"Successful! (Video Codec = {this.FormatDescription.VideoCodecType}, Dimension = {this.FormatDescription.Dimensions.Height} x {this.FormatDescription.Dimensions.Width}px, Type = {this.FormatDescription.MediaType})" : $"Failed ({formatDescriptionError})")}");
// re-create the decompression session whenever new PPS data was received
this.DecompressionSession = this.CreateDecompressionSession(this.FormatDescription);
// now lets handle the IDR frame that (should) come after the parameter sets
// I say "should" because that's how I expect my H264 stream to work, YMMV
startByte = frame[thirdStartCodeIndex + naluHeaderLength];
naluType = (NALUnitType)(startByte & 0x1F);
SendDebugMessage($"3rd NALU Type: '{NALUnit.GetDescription[naluType]}' ({(int)naluType})");
// bits 1 and 2 are the NRI
nalRefIdc = startByte & 0x60; // 0110 0000
SendDebugMessage($"3rd NRI (NAL Ref Idc): {nalRefIdc}");
}
// type 5 is an IDR frame NALU.
// The SPS and PPS NALUs should always be followed by an IDR (or IFrame) NALU, as far as I know.
if (naluType == NALUnitType.NALU_TYPE_IDR || naluType == NALUnitType.NALU_TYPE_SLICE)
{
// find the offset or where IDR frame NALU begins (after the SPS and PPS NALUs end)
uint offset = (naluType == NALUnitType.NALU_TYPE_SLICE)? 0 : this.SpsSize + this.PpsSize;
uint blockLength = frameSize - offset;
SendDebugMessage($"Block Length (NALU type '{naluType}'): {blockLength}");
var blockData = new byte[blockLength];
Array.Copy(frame, offset, blockData, 0, blockLength);
// write the size of the block length (IDR picture data) at the beginning of the IDR block.
// this means we replace the start code header (0 x 00 00 00 01) of the IDR NALU with the block size.
// AVCC format requires that you do this.
// This next block is very specific to my application and wasn't in Olivia's example:
// For my stream is encoded by NVIDEA NVEC I had to deal with additional 3-byte start codes within my IDR/SLICE frame.
// These start codes must be replaced by 4 byte start codes adding the block length as big endian.
// ======================================================================================================================================================
// find all 3 byte start code indices (0x00 00 01) within the block data (including the first 4 bytes of NALU header)
uint startCodeLength = 3;
List<uint> foundStartCodeIndices = new List<uint>();
for (uint i = 0; i < blockData.Length; i++)
{
if (blockData[i] == 0x00 && blockData[i + 1] == 0x00 && blockData[i + 2] == 0x01)
{
foundStartCodeIndices.Add(i);
byte naluByte = blockData[i + startCodeLength];
var tmpNaluType = (NALUnitType)(naluByte & 0x1F);
SendDebugMessage($"3-Byte Start Code (0x000001) found at index: {i} (NALU type {(int)tmpNaluType} '{NALUnit.GetDescription[tmpNaluType]}'");
}
}
// determine the byte length of each slice
uint totalLength = 0;
List<uint> sliceLengths = new List<uint>();
for (int i = 0; i < foundStartCodeIndices.Count; i++)
{
// for convenience only
bool isLastValue = (i == foundStartCodeIndices.Count-1);
// start-index to bit right after the start code
uint startIndex = foundStartCodeIndices[i] + startCodeLength;
// set end-index to bit right before beginning of next start code or end of frame
uint endIndex = isLastValue ? (uint) blockData.Length : foundStartCodeIndices[i + 1];
// now determine slice length including NALU header
uint sliceLength = (endIndex - startIndex) + naluHeaderLength;
// add length to list
sliceLengths.Add(sliceLength);
// sum up total length of all slices (including NALU header)
totalLength += sliceLength;
}
// Arrange slices like this:
// [4byte slice1 size][slice1 data][4byte slice2 size][slice2 data]...[4byte slice4 size][slice4 data]
// Replace 3-Byte Start Code with 4-Byte start code, then replace the 4-Byte start codes with the length of the following data block (big endian).
// https://stackoverflow.com/questions/65576349/nvidia-nvenc-media-foundation-encoded-h-264-frames-not-decoded-properly-using
byte[] finalBuffer = new byte[totalLength];
uint destinationIndex = 0;
// create a buffer for each slice and append it to the final block buffer
for (int i = 0; i < sliceLengths.Count; i++)
{
// create byte vector of size of current slice, add additional bytes for NALU start code length
byte[] sliceData = new byte[sliceLengths[i]];
// now copy the data of current slice into the byte vector,
// start reading data after the 3-byte start code
// start writing data after NALU start code,
uint sourceIndex = foundStartCodeIndices[i] + startCodeLength;
long dataLength = sliceLengths[i] - naluHeaderLength;
Array.Copy(blockData, sourceIndex, sliceData, naluHeaderLength, dataLength);
// replace the NALU start code with data length as big endian
byte[] sliceLengthInBytes = BitConverter.GetBytes(sliceLengths[i] - naluHeaderLength);
Array.Reverse(sliceLengthInBytes);
Array.Copy(sliceLengthInBytes, 0, sliceData, 0, naluHeaderLength);
// add the slice data to final buffer
Array.Copy(sliceData, 0, finalBuffer, destinationIndex, sliceData.Length);
destinationIndex += sliceLengths[i];
}
// ======================================================================================================================================================
// from here we are back on track with Olivia's code:
// now create block buffer from final byte[] buffer
CMBlockBufferFlags flags = CMBlockBufferFlags.AssureMemoryNow | CMBlockBufferFlags.AlwaysCopyData;
var finalBlockBuffer = CMBlockBuffer.FromMemoryBlock(finalBuffer, 0, flags, out CMBlockBufferError blockBufferError);
SendDebugMessage($"Creation of Final Block Buffer: {(blockBufferError == CMBlockBufferError.None ? "Successful!" : $"Failed ({blockBufferError})")}");
if (blockBufferError != CMBlockBufferError.None) return;
// now create the sample buffer
nuint[] sampleSizeArray = new nuint[] { totalLength };
CMSampleBuffer sampleBuffer = CMSampleBuffer.CreateReady(finalBlockBuffer, this.FormatDescription, 1, null, sampleSizeArray, out CMSampleBufferError sampleBufferError);
SendDebugMessage($"Creation of Final Sample Buffer: {(sampleBufferError == CMSampleBufferError.None ? "Successful!" : $"Failed ({sampleBufferError})")}");
if (sampleBufferError != CMSampleBufferError.None) return;
// if sample buffer was successfully created -> pass sample to decoder
// set sample attachments
CMSampleBufferAttachmentSettings[] attachments = sampleBuffer.GetSampleAttachments(true);
var attachmentSetting = attachments[0];
attachmentSetting.DisplayImmediately = true;
// enable async decoding
VTDecodeFrameFlags decodeFrameFlags = VTDecodeFrameFlags.EnableAsynchronousDecompression;
// add time stamp
var currentTime = DateTime.Now;
var currentTimePtr = new IntPtr(currentTime.Ticks);
// send the sample buffer to a VTDecompressionSession
var result = DecompressionSession.DecodeFrame(sampleBuffer, decodeFrameFlags, currentTimePtr, out VTDecodeInfoFlags decodeInfoFlags);
if (result == VTStatus.Ok)
{
SendDebugMessage($"Executing DecodeFrame(..): Successful! (Info: {decodeInfoFlags})");
}
else
{
NSError error = new NSError(CFErrorDomain.OSStatus, (int)result);
SendDebugMessage($"Executing DecodeFrame(..): Failed ({(VtStatusEx)result} [0x{(int)result:X8}] - {error}) - Info: {decodeInfoFlags}");
}
}
}
My function to create the decompression session looks like this:
private VTDecompressionSession CreateDecompressionSession(CMVideoFormatDescription formatDescription)
{
VTDecompressionSession.VTDecompressionOutputCallback callBackRecord = this.DecompressionSessionDecodeFrameCallback;
VTVideoDecoderSpecification decoderSpecification = new VTVideoDecoderSpecification
{
EnableHardwareAcceleratedVideoDecoder = true
};
CVPixelBufferAttributes destinationImageBufferAttributes = new CVPixelBufferAttributes();
try
{
var decompressionSession = VTDecompressionSession.Create(callBackRecord, formatDescription, decoderSpecification, destinationImageBufferAttributes);
SendDebugMessage("Video Decompression Session Creation: Successful!");
return decompressionSession;
}
catch (Exception e)
{
SendDebugMessage($"Video Decompression Session Creation: Failed ({e.Message})");
return null;
}
}
The decompression session callback routine:
private void DecompressionSessionDecodeFrameCallback(
IntPtr sourceFrame,
VTStatus status,
VTDecodeInfoFlags infoFlags,
CVImageBuffer imageBuffer,
CMTime presentationTimeStamp,
CMTime presentationDuration)
{
if (status != VTStatus.Ok)
{
NSError error = new NSError(CFErrorDomain.OSStatus, (int)status);
SendDebugMessage($"Decompression: Failed ({(VtStatusEx)status} [0x{(int)status:X8}] - {error})");
}
else
{
SendDebugMessage("Decompression: Successful!");
try
{
var image = GetImageFromImageBuffer(imageBuffer);
// In my application I do not use a display layer but send the decoded image directly by an event:
ImageSource imgSource = ImageSource.FromStream(() => image.AsPNG().AsStream());
OnImageFrameReady?.Invoke(imgSource);
}
catch (Exception e)
{
SendDebugMessage(e.ToString());
}
}
}
I use this function to convert the CVImageBuffer to an UIImage. It also refers to one of Olivia's posts mentioned above (how to convert a CVImageBufferRef to UIImage):
private UIImage GetImageFromImageBuffer(CVImageBuffer imageBuffer)
{
if (!(imageBuffer is CVPixelBuffer pixelBuffer)) return null;
var ciImage = CIImage.FromImageBuffer(pixelBuffer);
var temporaryContext = new CIContext();
var rect = CGRect.FromLTRB(0, 0, pixelBuffer.Width, pixelBuffer.Height);
CGImage cgImage = temporaryContext.CreateCGImage(ciImage, rect);
if (cgImage == null) return null;
var uiImage = UIImage.FromImage(cgImage);
cgImage.Dispose();
return uiImage;
}
Last but not least my tiny little function for debug output, feel free to pimp it as needed for your purpose ;-)
private void SendDebugMessage(string msg)
{
Debug.WriteLine($"VideoDecoder (iOS) - {msg}");
}
Finally, let's have a look at the namespaces used for the code above:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Net;
using AvcLibrary;
using CoreFoundation;
using CoreGraphics;
using CoreImage;
using CoreMedia;
using CoreVideo;
using Foundation;
using UIKit;
using VideoToolbox;
using Xamarin.Forms;
#Livy to remove memory leaks before CMVideoFormatDescriptionCreateFromH264ParameterSets you should add the following:
if (_formatDesc) {
CFRelease(_formatDesc);
_formatDesc = NULL;
}
This post helped me a lot with sending H264 video from one device to another, but switching between devices caused the function receivedRawVideoFrame to not work correctly due to some changes in the frame data.
Here is my final function that decodes NAL units from the data directly, but doesn't rely on the order in the data frame
- (void)receivedRawVideoFrame:(NSData*)frameData {
NSUInteger frameSize = [frameData length];
const uint8_t * frame = [frameData bytes];
NSMutableDictionary* nalUnitsStart = [NSMutableDictionary dictionary];
NSMutableDictionary* nalUnitsEnd = [NSMutableDictionary dictionary];
uint8_t previousNalUnitType = 0;
for ( NSUInteger offset = 0; offset < frameSize - 4; offset++ ) {
// Find the start on NAL unit
if (frame[offset] == 0x00 && frame[offset+1] == 0x00 && frame[offset+2] == 0x00 && frame[offset+3] == 0x01) {
uint8_t nalType = frame[offset + 4] & 0x1F;
// Record the end of previous NAL unit
nalUnitsEnd[#(previousNalUnitType)] = #(offset);
previousNalUnitType = nalType;
nalUnitsStart[#(nalType)] = #(offset + 4);
}
}
// Record the end of the last NAL unit
nalUnitsEnd[#(previousNalUnitType)] = #(frameSize);
// Let's check if our data contains SPS && PPS NAL Units
NSNumber* spsOffset = nalUnitsStart[#(NAL_TYPE_SPS)];
NSNumber* ppsOffset = nalUnitsStart[#(NAL_TYPE_PPS)];
if ( spsOffset && ppsOffset ) {
NSNumber* spsEnd = nalUnitsEnd[#(NAL_TYPE_SPS)];
NSNumber* ppsEnd = nalUnitsEnd[#(NAL_TYPE_PPS)];
NSAssert(spsEnd && ppsEnd, #" [DECODE]: Missing the end of NAL unit(s)");
uint8_t *pps = NULL;
uint8_t *sps = NULL;
int spsSize = (int)(spsEnd.unsignedIntegerValue - spsOffset.unsignedIntegerValue);
int ppsSize = (int)(ppsEnd.unsignedIntegerValue - ppsOffset.unsignedIntegerValue);
// allocate enough data to fit the SPS and PPS parameters into our data objects.
// VTD doesn't want you to include the start code header (4 bytes long) so we add the - 4 here
sps = malloc(spsSize);
pps = malloc(ppsSize);
// copy in the actual sps and pps values, again ignoring the 4 byte header
memcpy(sps, &frame[spsOffset.unsignedIntegerValue], spsSize);
memcpy(pps, &frame[ppsOffset.unsignedIntegerValue], ppsSize);
// now we set our H264 parameters
uint8_t* parameterSetPointers[2] = {sps, pps};
size_t parameterSetSizes[2] = {spsSize, ppsSize};
OSStatus status = CMVideoFormatDescriptionCreateFromH264ParameterSets(kCFAllocatorDefault,
2,
(const uint8_t *const*)parameterSetPointers,
parameterSetSizes,
4,
&_formatDesc);
if (sps != NULL) free(sps);
if (pps != NULL) free(pps);
DebugAssert(status == noErr, #" [DECODE]: Failed to create CMVideoFormatDescription for H264");
if ( status != noErr ) {
NSLog(#" [DECODE]: Failed to create CMVideoFormatDescription for H264");
} else {
// Good place to re-create our decompression session
[self destroySession];
}
}
// Loop over all NAL units we have while ignoring everything with type < 5
for ( NSNumber* nalType in nalUnitsStart.allKeys ) {
if ( nalType.intValue > 5 ) {
continue;
}
// Get the header too (0x00000001), that will be replaced with the NAL unit size
NSNumber* nalStart = nalUnitsStart[nalType];
NSNumber* nalEnd = nalUnitsEnd[nalType];
size_t blockLength = nalEnd.unsignedIntegerValue - (nalStart.unsignedIntegerValue - sizeof(uint32_t));
uint8_t *data = malloc(blockLength);
memcpy(data, &frame[nalStart.unsignedIntegerValue - sizeof(uint32_t)], blockLength);
// replace the start code header on this NALU with its size.
// AVCC format requires that you do this.
// htonl converts the unsigned int from host to network byte order
uint32_t dataLength32 = htonl(blockLength - 4);
memcpy(data, &dataLength32, sizeof(uint32_t));
CMBlockBufferRef blockBuffer;
OSStatus status = CMBlockBufferCreateWithMemoryBlock(NULL,
data,
blockLength,
kCFAllocatorNull,
NULL,
0,
blockLength,
0,
&blockBuffer);
DebugAssert(status == noErr, #" [DECODE]: Failed to create CMBlockBufferRef for %#", nalType);
if ( status != noErr ) {
NSLog(#" [DECODE]: Failed to create CMBlockBufferRef for H264 for %#", nalType);
} else {
const size_t sampleSize = blockLength;
/* NOTE:
We are not responsible for releasing sample buffer,
it will be released by the decompress frame function
after it has been decoded!
*/
CMSampleBufferRef sampleBuffer;
status = CMSampleBufferCreate(kCFAllocatorDefault,
blockBuffer,
true,
NULL,
NULL,
_formatDesc,
1,
0,
NULL,
1,
&sampleSize,
&sampleBuffer);
DebugAssert(status == noErr, #" [DECODE]: Failed to create CMSampleBufferRef for %#", nalType);
if ( status != noErr ) {
NSLog(#" [DECODE]: Failed to create CMSampleBufferRef for H264 for %#", nalType);
if ( sampleBuffer ) {
CFRelease(sampleBuffer);
sampleBuffer = NULL;
}
} else {
// set some values of the sample buffer's attachments
CFArrayRef attachments = CMSampleBufferGetSampleAttachmentsArray(sampleBuffer, YES);
CFMutableDictionaryRef dict = (CFMutableDictionaryRef)CFArrayGetValueAtIndex(attachments, 0);
CFDictionarySetValue(dict, kCMSampleAttachmentKey_DisplayImmediately, kCFBooleanTrue);
[self decompressFrame:sampleBuffer];
}
}
if ( blockBuffer ) {
CFRelease(blockBuffer);
blockBuffer = NULL;
}
if ( data != NULL ) {
free(data);
data = NULL;
}
}
}
decompressFrame function is responsible for creating a new decompression session when it needs to based on the latest CMVideoFormatDescriptionRef data we got from our stream.

Embedded: SDHC SPI write issue

I am currently working at a logger that uses a MSP430F2618 MCU and SanDisk 4GB SDHC Card.
Card initialization works as expected, I also can read MBR and FAT table.
The problem is that I can't write any data on it. I have checked if it is write protected by notch, but it's not. Windows 7 OS has no problem reading/writing to it.
Though, I have used a tool called "HxD" and I've tried to alter some sectors (under Windows). When I try to save the content to SD card, the tool pop up a windows telling me "Access denied!".
Then I came back to my code for writing to SD card:
uint8_t SdWriteBlock(uchar_t *blockData, const uint32_t address)
{
uint8_t result = OP_ERROR;
uint16_t count;
uchar_t dataResp;
uint8_t idx;
for (idx = RWTIMEOUT; idx > 0; idx--)
{
CS_LOW();
SdCommand(CMD24, address, 0xFF);
dataResp = SdResponse();
if (dataResp == 0x00)
{
break;
}
else
{
CS_HIGH();
SdWrite(0xFF);
}
}
if (0x00 == dataResp)
{
//send command success, now send data starting with DATA TOKEN = 0xFE
SdWrite(0xFE);
//send 512 bytes of data
for (count = 0; count < 512; count++)
{
SdWrite(*blockData++);
}
//now send tow CRC bytes ,through it is not used in the spi mode
//but it is still needed in transfer format
SdWrite(0xFF);
SdWrite(0xFF);
//now read in the DATA RESPONSE TOKEN
do
{
SdWrite(0xFF);
dataResp = SdRead();
}
while (dataResp == 0x00);
//following the DATA RESPONSE TOKEN are a number of BUSY bytes
//a zero byte indicates the SD/MMC is busy programing,
//a non_zero byte indicates SD/MMC is not busy
dataResp = dataResp & 0x0F;
if (0x05 == dataResp)
{
idx = RWTIMEOUT;
do
{
SdWrite(0xFF);
dataResp = SdRead();
if (0x0 == dataResp)
{
result = OP_OK;
break;
}
idx--;
}
while (idx != 0);
CS_HIGH();
SdWrite(0xFF);
}
else
{
CS_HIGH();
SdWrite(0xFF);
}
}
return result;
}
The problem seems to be when I am waiting for card status:
do
{
SdWrite(0xFF);
dataResp = SdRead();
}
while (dataResp == 0x00);
Here I am waiting for a response of type "X5"(hex value) where X is undefined.
But most of the cases the response is 0x00 (hex value) and I don't get out of the loop. Few cases are when the response is 0xFF (hex value).
I can't figure out what is the problem.
Can anyone help me? Thanks!
4GB SDHC
We need to see much more of your code. Many µC SPI codebases only support SD cards <= 2 GB, so using a smaller card might work.
You might check it yourself: SDHC needs a CMD 8 and an ACMD 41 after the CMD 0 (GO_IDLE_STATE) command, otherwise you cannot read or write data to it.
Thank you for your answers, but I solved my problem. It was a problem of timing. I had to put a delay at specific points.