I have an NSString declared like this :
.h:
#interface ViewController : UIViewController
{
NSString * aString;
}
#property(nonatomic,copy)NSString *aString;
.m :
#synthesize aString;
......
aString=[[NSString alloc]init];
aString=#"Hello World";
NSLog(#"%#",aString);//The app crashes here
The app crashes with this stack trace:
-[CFString respondsToSelector:]: message sent to deallocated instance
remove the line:
aString=[[NSString alloc]init];
and set values to the property:
self.aString=#"Hello World";
Doing: aString=#"Hello World"; means you are setting value to the instance variable, without using the accessor methods of the property, then you are responsible to the memory management and it's more complicated. Get the value by: self.aString also.
P.S. Always work though properties, almost never use the instance variables, (only in the dealloc method release the ivar, otherwise if you are not good at memory management you will always have problems, but properties do everything for you)
Related
I'm exposing a few properties from an Objective-C project to Swift (based on this repo), but have no experience in Objective-C, so I'm rather out of my depth here, so please bear with me.
I'm wondering how to correctly dealloc a nonnull property (or whether it's necessary at all!). I've provisionally dealloc'ed the nonnull property surface by setting it to null (in the same manner as is done for the nullable partOfSpeech). However, this prompts the following warning:
Null passed to a callee that requires a non-null argument
... so I wonder whether it's redundant. Is there anything I should do instead to handle my nonnull property, during the Node class's dealloc block?
Given the interface, node.h:
#interface Node : NSObject {
NSString *surface;
NSString *partOfSpeech;
}
#property (nonatomic, retain, nonnull) NSString *surface;
#property (nonatomic, retain, nullable) NSString *partOfSpeech;
- (nullable NSString *)partOfSpeech;
#end
... And the implementation, node.m:
#implementation Node
#synthesize surface;
#synthesize partOfSpeech;
// surface is assumed to be set post-initialisation.
- (void)setPartOfSpeech:(NSString *)value {
if (partOfSpeech) [partOfSpeech release];
partOfSpeech = value ? [value retain] : nil;
}
- (NSString *)partOfSpeech {
if (!features || [features count] < 1) return nil;
return [features objectAtIndex:0];
}
- (void)dealloc {
// WARNING: "Null passed to a callee that requires a non-null argument"
self.surface = nil;
self.partOfSpeech = nil;
[super dealloc];
}
#end
... And given that a Node's lifecycle is like this:
Node *newNode = [Node new];
newNode.surface = [[[NSString alloc] initWithBytes:node->surface length:node->length encoding:NSUTF8StringEncoding] autorelease];
// ... Do stuff with newNode (eg. add to array of Node)...
[newNode release];
First: The compiler can automatically synthesize instance variables and
setters/getters for your properties. So your interface should be just
// Node.h
#interface Node : NSObject
#property (nonatomic, retain, nonnull) NSString *surface;
#property (nonatomic, retain, nullable) NSString *partOfSpeech;
#end
and no #synthesize statements are needed in the implementation file.
The compiler will automatically create instance variables
_surface and _partOfSpeech, and also create accessor methods
- (NSString *) surface;
- (void)setSurface:(NSString *)value;
- (NSString *)partOfSpeech;
- (void)setPartOfSpeech:(NSString *)value;
which do "the right thing", with or without ARC. You can override
those methods if you want to implement some custom logic, but you don't have to implement a standard setter like your setPartOfSpeech.
If you use ARC (automatic reference counting) then that is all,
nothing more is needed. And
I would really recommend to do so. The compiler inserts the required retain/release calls at compile time, and is quite clever in avoiding
unnecessary calls. See for example
Confirmed: Objective-C ARC is slow. Don’t use it! (sarcasm off)
about some comparisons. With MRC (manual reference counting), your code might even be slower, or
have memory leaks.
But to answer your question: With MRC you have to release the
instance variables in dealloc
- (void)dealloc {
[_surface release];
[_partOfSpeech release];
[super dealloc];
}
as explained in Memory Management Policy in the "Advanced Memory Management Programming Guide".
You should not use the accessor methods in dealloc as in your
self.surface = nil;
self.partOfSpeech = nil;
see Don’t Use Accessor Methods in Initializer Methods and dealloc.
If you are using manual memory management you can just release the object stored in the properties backing variable. As you've named the backing variable the same as the property use the -> to clearly reference the backing variable:
[self->surface release];
Or if you want to do this with assignment just assign the empty string literal:
self.surface = #"";
The string literal is created at compile time, lives throughout the program execution, and takes up very little space. The assignment will caused the release (and deallocation if the reference count reaches zero) of the previous value in the property, just like assigning nil (or any other value).
HTH
I am having a very, very strange error, probably related to memory management (even though I'm using ARC).
I have a my AppDelegate, Foo, and SubFoo (which is a subclass of Foo).
Foo.h
#protocol FooDelegate <NSObject>
- (void)didReceiveDownloadRequest:(NSURLRequest *)downloadRequest;
#end
#interface Foo : NSObject {
__weak id <FooDelegate> delegate;
}
- (void)performRequest;
#property (nonatomic, weak) id <FooDelegate> delegate;
#property (nonatomic, retain) NSString *fileIdentifier;
Foo.m
#implementation Foo
#synthesize delegate, fileIdentifier;
- (id)init {
if ((self = [super init])) {
self.delegate = nil; // I tried leaving this line out, same result.
NSLog(#"I am %p.", self);
}
return self;
}
- (void)performRequest {
// Bah.
}
#end
SubFoo.h
#interface SubFoo : Foo {
WebView *aWebView;
}
SubFoo.m
- (void)performRequest {
if (self.fileIdentifier) {
aWebView = [[WebView alloc] init];
[aWebView setFrameLoadDelegate:self];
[[aWebView mainFrame] loadRequest:[NSURLRequest requestWithURL:[NSURL URLWithString:#"theURL"]];
}
}
- (void)webView:(WebView *)sender didFinishLoadForFrame:(WebFrame *)frame {
NSLog(#"Finished loading.");
// ...
NSLog(#"Class Name: %#", NSStringFromClass([self class]));
NSLog(#"Memory Location of delegate: %p", self.delegate);
// ...
}
Sometimes, the class name on webView:didFinishLoadForFrame: returns a completely different class (instead of SubFoo, it returns random classes, like NSSet, NSArray, it even sometimes returns CFXPreferencesSearchListSource), other times it just crashes there with an EXC_BAD_ACCESS, and when it returns a random class on Class Name: it returns that [randomClassName delegate] is an unrecognized selector.
EDIT: When self gets set to another thing, it gets set RIGHT on webView:didFinishLoadForFrame:, and on performRequest it is ALWAYS SubFoo.
Any help here would be appreciated.
First, even though you are using ARC zeroing weak references in your project (#property (weak)), other projects and frameworks may not be (and are probably not) using zeroing weak references.
In other words, assume that all delegates in frameworks are __unsafe_unretained unless:
The delegate property is declared weak in a header
The documentation/header explicitly states otherwise
That said, let's talk about your example. Your object ownership chart looks something like this:
(Note: I'm not entirely sure which class in your project uses SubFoo. Based on common practice, I'm assuming that you have a class with a strong reference to SubFoo, and that class is also set up to be a SubFooDelegate)
Ultimately, your instance of SubFoo is losing its last strong reference and is deallocating. In a perfect ARC-enabled world, the WebView's pointer to SubFoo would nil out at this time. However, it's not a perfect world yet, and WebView's frameLoadDelegate is __unsafe_unretained. Due to run loop interaction, the WebView is outliving SubFoo. The web request completes, and a dead pointer is dereferenced.
To fix this, you need to call [aWebView setFrameLoadDelegate:nil]; in SubFoo's dealloc method. You also need to call it when you reassign aWebView, as you are losing track of the old aWebView:
SubFoo.m
#implementation SubFoo
- (void)dealloc {
[aWebView setFrameLoadDelegate:nil];
// Also nil out any other unsafe-unretained references
}
- (void)performRequest {
if (self.fileIdentifier) {
[aWebView setFrameLoadDelegate:nil]; // Protects us if performRequest is called twice. Is a no-op if aWebView is nil
aWebView = [[WebView alloc] init];
[aWebView setFrameLoadDelegate:self];
[[aWebView mainFrame] loadRequest:[NSURLRequest requestWithURL:[NSURL URLWithString:#"theURL"]];
}
}
- (void)webView:(WebView *)sender didFinishLoadForFrame:(WebFrame *)frame {
// ...
}
Forget the self.delegate error for now, it is a red herring if [self class] is producing the wrong result! Your results suggest you are somehow clobbering self.
Breakpoint on webView:didFinishLoadForFrame: check the self value and step through.
Comment Followup
For self to be wrong on the first statement of an instance method is, let's say, unusual (but not impossible).
It is important when an object is set as another's delegate that you make sure the delegate object's lifetime is at least as long as the one it is acting as a delegate to. Introducing ARC can make previously working code fail as it may release the delegate earlier than the code did under MRC. When this happens the call to the delegate usually fails.
However your error does not fail on the call to the delegate; the call starts - you end up in webView:didFinishLoadForFrame: - and then you find self is invalid. To actually invoke an instance method usually requires a valid value for self as it is used to determine the method implementation to call. Hence it is usual for self to be valid at the start of a method!
But note the "usually"...
So despite you having successfully reach your method, your error might be down to not having a strong reference to your SubFoo instance, you pass it as a delegate to aWebView, and by the time webView:didFinishLoadForFrame: is called your SubFoo has gone.
Make sure you're keeping a strong ref to your SubFoo instance. If you just want to test (this is not a recommended general solution!) if this is your problem you can just assign it to a local static (static SubFoo *holdMe say declared inside performRequest) in performRequest, which will keep a strong reference around at least until the next call to performRequest. If this does prove to be the problem you then need to come up with a good way to maintain the reference that fits your design.
Here's the real problem: You're creating a SubFoo object within the context of a method. So after the method completes, SubFoo is being released (before its WebView has time to load).
To fix this, you'll need to assign the SubFoo object you're creating to something persistent, like a instance variable of the class you're creating it from. That way the object will persist beyond the scope of the method it was created in and all will work as expected.
As CRD mentioned, I would say an incorrect object/bad access returned is a sign of an object being released. Sometimes it's replaced by another object, sometimes it's not so you get the bad access exception. Regarding how this could happen to self, I would imagine that this is a concurrency weird case (object is being freed on another thread).
The best way to confirm this is to run your code in Instrument's NSZombie template, it'll show you as soon as you access a freed object. It also shows when it's been retained/released so you don't have to guess.
Regarding your above comment.
SubFoo *theClass = [[SubFoo alloc] init];
You must store theClass in a
#property (strong) SubFoo *mySubFoo;
If you declare it as such:
{
SubFoo *theClass = [[SubFoo alloc] init];
}
It gets released at the closing bracket. This part of the point of ARC when that variable moves out of scope, it gets released. If you want to let it float in the ether you could use
{
__weak SubFoo *theClass = [[SubFoo alloc] init];
}
and it won't get released, but this will lead to a memory leak unless you carefully manage all the weak references. In the case of it not being released at -performRequest I'm assuming the request looks like this:
{
SubFoo *theClass = [[SubFoo alloc] init];
[theClass performRequest];
}
wheras -webView:didFinishLoadForFrame: is called at some indiscriminate time in the future.
I am trying to understand what is happening in the getter below, this is what I understand so far:
(1) the getter returns a pointer to an NSString object. (2) the NSString object is retained, possibly because we have just given away a pointer to it. (3) autorelease? when does that activate, when the PlanetClass instance is deallocated (released)?
// CLASS
#interface PlanetClass : NSObject {
NSString *planetName;
}
- (NSString *)planetName;
- (void)setPlanetName:(NSString *)value;
#end
// GETTER
- (NSString *)planetName{
return[[planetName retain] autorelease];
}
EDIT: I think I am more confused regarding the reason for the actual retain and later release. my understanding was that the getter simply returned a pointer to either nil or an object that already exists (i.e. was set by the setter) I think I understand the retain as we are giving away a pointer and we need to track that, but what about the release, is that just a failsafe incase I later forget to release the NSString object?
The instance variable planetName is also release in my dealloc method (see below) autorelease seems to be doing the same, just later when the pool is drained?
- (void)dealloc {
[planetName release];
[super dealloc];
}
cheers -gary-
It might be a good idea to let Objective-C handle this as a property, letting you clean up some of the implementation to keep the memory management, well, manageable:
#interface PlanetClass : NSObject {
NSString* planetName;
}
#property(nonatomic, retain) NSString* planetName;
#end // PlanetClass
#implementation PlanetClass
#synthesize planetName
//... rest of PlanetClass here
#end // PlanetClass
There are plenty of docs available online for more details on Objective-C properties and #synthesize.
Memory Management Docs
I highly recommend this read from Apple on memory management to try and help understand what all the retain/release hubbub is about.
When autorelease is sent to an object, it is added to the autorelease pool. When the pool is drained, it sends release to all the objects in the pool. So any object in the autorelease pool will be release when the pool is drained
The return/autorelease in the getter method is not doing anything, you can just return planetName
I have the following controller class which will do different tasks based on combination of the flag and param property. The value of these two properties will be set by many other classes having a reference to this controller. The question is how does each of the calling class assign value and when should they release it so that there will be no memory leak ?
#interface SampleController {
NSMutableArray *param;
NSString *flag;
}
#property (nonatomic, retain) NSMutableArray *param;
#property (nonatomic, retain) NSString *flag;
#end
#implementation SampleController
#synthesize param;
#synthesize flag;
- (id)init
{
param = [[NSMutableArray alloc] initWithCapacity:0];
flag = #"nothing";
}
#end
Well it depends on how you call your controller :
in an instance variable of an other object : you have to release it in this object's deallocate methode
in a function : you should release it when you do not need it anymore (retained by another object for example or it finished the job in this function), if you want to return it, just sent the message "autorelease" to it and the NSAutoReleasePool will do the job for you.
To assign value, you can
set the mutable array with the setParam:(*NSMutableArray)theArrayYouWantToReplaceYourArrayWith
access it directly with [[yourSampleController param]addObject:(id)objectYouWantToAdd]...
or more convenient : [yourSampleController.param addObject:(id)objectYouWantToAdd]
The addObject: message here is an example, you can see the methods for modifying an array (remove, sort,...) in the NSMutableArray class reference.
You will not be able to modify your string since it is a NSString and not a NSMutableString, but you can accessit by
[yourSampleController getParam]
[yourSampleController param]
yourSampleController.param
If you want to avoid leaks in general, build your project with the Instrument tool in leak mode and look at the objects that are leaked if you found some that are declared in your functions.
You can also check the Clang Static Analyzer (free static debugger) which is quite good if you have a lot of files.
I hope i helped you
Julien
If I create a new object that includes two object pointers (see below) when the object is created the pointers are set to point to nil;
#interface rocketShip : NSObject {
NSString *name;
NSNumber *thrust;
}
If (for some unexpected reason) I don't assign these pointers and later release them in my dealloc method is that ok, I am pretty sure it is, just wanted to check?
- (void)dealloc{
[name release];
name = nil;
[thrust release];
thrust = nil;
[super dealloc];
}
gary
Sending a message to nil won't cause an error, so this is fine. You need to make sure the pointers are actually nil though - sending a message to a garbage pointer will likely cause errors.
Yes, you can do this because you can safely send a message (such as release) to nil and it will just do nothing.
If you use the accessor property to create your get/set methods:
#interface rocketShip : NSObject {
NSString *name;
NSNumber *thrust;
}
#property (retain, nonatomic) NSString *name;
#property (retain, nonatomic) NSNumber *thrust;
And in your .m file:
#synthesize name;
#synthesize thrust;
You can then just set your variable to nil in dealloc. This will in fact call your setter and decrement the reference count by one and clean things up.
It’s important in Objective-C to distinguish between objects and variables. You cannot release a pointer (the value of a variable), you can only release an object (the object to which a pointer refers). A nil pointer refers to no object, so messages sent to nil do nothing (which is generally safe).