Multi-Tenant Rails 3 App on Heroku using PostgreSQL - ruby-on-rails-3

I have a multi-tenant app on Heroku (multiple Accounts that know nothing about each other), and I'm unsure as how to best architect my database. Postgres's schemas look awesome, but heroku doesn't handle large numbers of them well.
Now, my Rails app is mainly serving JSON, as most of the templates are rendering client-side (using Backbone.js). So I'm considering moving to MongoDB because 1) each tenant could get one top level 'account' document, and everything could be nested below and 2) its storage format so closely resembles JSON. We are still in beta, so it could be pulled off. Are those valid reasons to use Mongo? Is former even an intelligent way to use Mongo?
If I were to stick with postgres, should everything belong_to the top level Account model (with indexes)? If so, how would I handle joins? Is it possible to perform mult-index joins (total postgres noob)?
We have about 60k entries in one table so far, yet a single account may only have 200-1000, so I'm worried about joining on the entire table.
Really appreciate any help.
Update:
We ended up moving to a VPS (Rackspace Cloud) and implementing postgres's schemas. No regrets with this move as it runs much faster than it did on Heroku, and we have more control of the server.

Check out this gem which was written to do multi-tenancy with postgres http://railscraft.tumblr.com/post/21421806379/multi-tenanting-ruby-on-rails-applications-on-heroku

Related

Is it a good idea to store lists in document-based databases?

I’m trying to build a mobile app that involves users following each other. I’ve seen posts (here) that say it is a cardinal sin to store a users’ followees and followers as a list in a SQL database as each “cell” should only store one discrete value.
However, is this the case for noSQL, document-based databases? What are the pros and cons of storing followers and followees as a list in the user document, vs storing it in a separate collection?
The only ones i can see now is that retrieving the follower/followee data (could be?) faster for the former method as you don’t have to index the entire follower/followee collection, unlike the latter method (or is the time difference negligible?). On the other hand, one would require 2 writes every time someone follows/unfollows another user, which may be disadvantageous for billing in cloud databases, but might not be a problem if the database is hosted locally (?)
I’m very new to working with databases so I’m hoping to get some insight from more experienced people about long term/large scale effects of this choice. Thanks!

PostgreSQL for multiple users

I am building an app for a workshop at a conference. It will be used by the participants to input answers to a survey on their mobile devices and then these answers will be saved to a database.
I am currently looking at PostgreSQL and from what I have seen it is extremely capable of handling well over 100 expected users that I will have using the app at one time. What I haven't been able to decide conclusively is whether these 100 people all adding to the same database at once will cause any problems. I have looked into locks and understand that theres shouldn't be any conflicts when inserting into tables (which is all the users will be doing) but I just wanted to confirm before moving forward with the app.
I assume it is also important to deploy the app using a hosting service which can handle the load. I am intending to use Heroku which I have experience deploying postgreSQL databases to.
Just in case it is relevant I was intending to use Knex.js to build the database in a node backend.
Happy to provide any further information and would appreciate any input or better suggestions to look into.
Cheers,
Tim

Syncing Postgres Database Instances

I have a queer situation. I am managing an e-commerce site built on Django with Postgresql. It has two versions - English and Japanese. Because of a release that has brought a huge number of users, the site (specifically Postgres) is overloaded and crashing. The only safe solution which I can think of is to put these two separately on two separate servers so that En and Jp traffic gets their own dedicated server. Now, the new server is ready but during the time of domain propagation, and during half-propagated stages (new one being seen from some countries and old one from some) there will be transactions on both. Users are buying digital stuff in hundreds of numbers every minute. So, there is no way to turn the server off for a turnover.
Is there a way to sync the two databases at a later stage (because if both share a database, the new server will be pointless). The bottleneck is Postgres, and has already been tuned for maximum possible connections on this server, and kernel.shmmax is at its limit. DB pooling also will need time to setup and some downtime as well, which am not permitted to do at the moment. What I mean by sync is that once full propagation occurs, I wish to unify the DB dump files from both and make one which has all records of both synced in time. The structure is rather complex so many tables will need sync. Is this do-able ..?
Thanks in advance !

What's the best way to get a 'lot' of small pieces of data synced between a Mac App and the Web?

I'm considering MongoDB right now. Just so the goal is clear here is what needs to happen:
In my app, Finch (finchformac.com for details) I have thousands and thousands of entries per day for each user of what window they had open, the time they opened it, the time they closed it, and a tag if they choose one for it. I need this data to be backed up online so it can sync to their other Mac computers, etc.. I also need to be able to draw charts online from their data which means some complex queries hitting hundreds of thousands of records.
Right now I have tried using Ruby/Rails/Mongoid in with a JSON parser on the app side sending up data in increments of 10,000 records at a time, the data is processed to other collections with a background mapreduce job. But, this all seems to block and is ultimately too slow. What recommendations does (if anyone) have for how to go about this?
You've got a complex problem, which means you need to break it down into smaller, more easily solvable issues.
Problems (as I see it):
You've got an application which is collecting data. You just need to
store that data somewhere locally until it gets sync'd to the
server.
You've received the data on the server and now you need to shove it
into the database fast enough so that it doesn't slow down.
You've got to report on that data and this sounds hard and complex.
You probably want to write this as some sort of API, for simplicity (and since you've got loads of spare processing cycles on the clients) you'll want these chunks of data processed on the client side into JSON ready to import into the database. Once you've got JSON you don't need Mongoid (you just throw the JSON into the database directly). Also you probably don't need rails since you're just creating a simple API so stick with just Rack or Sinatra (possibly using something like Grape).
Now you need to solve the whole "this all seems to block and is ultimately too slow" issue. We've already removed Mongoid (so no need to convert from JSON -> Ruby Objects -> JSON) and Rails. Before we get onto doing a MapReduce on this data you need to ensure it's getting loaded into the database quickly enough. Chances are you should architect the whole thing so that your MapReduce supports your reporting functionality. For sync'ing of data you shouldn't need to do anything but pass the JSON around. If your data isn't writing into your DB fast enough you should consider Sharding your dataset. This will probably be done using some user-based key but you know your data schema better than I do. You need choose you sharding key so that when multiple users are sync'ing at the same time they will probably be using different servers.
Once you've solved Problems 1 and 2 you need to work on your Reporting. This is probably supported by your MapReduce functions inside Mongo. My first comment on this part, is to make sure you're running at least Mongo 2.0. In that release 10gen sped up MapReduce (my tests indicate that it is substantially faster than 1.8). Other than this you can can achieve further increases by Sharding and directing reads to the the Secondary servers in your Replica set (you are using a Replica set?). If this still isn't working consider structuring your schema to support your reporting functionality. This lets you use more cycles on your clients to do work rather than loading your servers. But this optimisation should be left until after you've proven that conventional approaches won't work.
I hope that wall of text helps somewhat. Good luck!

Multi-tenancy with SQL/WCF/Silverlight

We're building a Silverlight application which will be offered as SaaS. The end product is a Silverlight client that connects to a WCF service. As the number of clients is potentially large, updating needs to be easy, preferably so that all instances can be updated in one go.
Not having implemented multi tenancy before, I'm looking for opinions on how to achieve
Easy upgrades
Data security
Scalability
Three different models to consider are listed on msdn
Separate databases. This is not easy to maintain as all schema changes will have to be applied to each customer's database individually. Are there other drawbacks? A pro is data separation and security. This also allows for slight modifications per customer (which might be more hassle than it's worth!)
Shared Database, Separate Schemas. A TenantID column is added to each table. Ensuring that each customer gets the correct data is potentially dangerous. Easy to maintain and scales well (?).
Shared Database, Separate Schemas. Similar to the first model, but each customer has its own set of tables in the database. Hard to restore backups for a single customer. Maintainability otherwise similar to model 1 (?).
Any recommendations on articles on the subject? Has anybody explored something similar with a Silverlight SaaS app? What do I need to consider on the client side?
Depends on the type of application and scale of data. Each one has downfalls.
1a) Separate databases + single instance of WCF/client. Keeping everything in sync will be a challenge. How do you upgrade X number of DB servers at the same time, what if one fails and is now out of sync and not compatible with the client/WCF layer?
1b) "Silos", separate DB/WCF/Client for each customer. You don't have the sync issue but you do have the overhead of managing many different instances of each layer. Also you will have to look at SQL licensing, I can't remember if separate instances of SQL are licensed separately ($$$). Even if you can install as many instances as you want, the overhead of multiple instances will not be trivial after a certain point.
3) Basically same issues as 1a/b except for licensing.
2) Best upgrade/management scenario. You are right that maintaining data isolation is a huge concern (1a technically shares this issue at a higher level). The other issue is if your application is data intensive you have to worry about data scalability. For example if every customer is expected to have tens/hundreds millions rows of data. Then you will start to run into issues and query performance for individual customers due to total customer base volumes. Clients are more forgiving for slowdowns caused by their own data volume. Being told its slow because the other 99 clients data is large is generally a no-go.
Unless you know for a fact you will be dealing with huge data volumes from the start I would probably go with #2 for now, and begin looking at clustering or moving to 1a/b setup if needed in the future.
We also have a SaaS product and we use solution #2 (Shared DB/Shared Schema with TenandId). Some things to consider for Share DB / Same schema for all:
As mention above, high volume of data for one tenant may affect performance of the other tenants if you're not careful; for starters index your tables properly/carefully and never ever do queries that force a table scan. Monitor query performance and at least plan/design to be able to partition your DB later on based some criteria that makes sense for your domain.
Data separation is very very important, you don't want to end up showing a piece of data to some tenant that belongs to other tenant. every query must have a WHERE TenandId = ... in it and you should be able to verify/enforce this during dev.
Extensibility of the schema is something that solutions 1 and 3 may give you, but you can go around it by designing a way to extend the fields that are associated with the documents/tables in your domain that make sense (ie. Metadata for tables as the msdn article mentions)
What about solutions that provide an out of the box architecture like Apprenda's SaaSGrid? They let you make database decisions at deploy and maintenance time and not at design time. It seems they actively transform and manage the data layer, as well as provide an upgrade engine.
I've similar case, but my solution is take both advantage.
Where data and how data being placed is the question from tenant. Being a tenant of course I don't want my data to be shared, I want my data isolated, secure and I can get at anytime I want.
Certain data it possibly share eg: company list. So database should be global and tenant database, just make sure to locked in operation tenant database schema, and procedure to update all tenant database at once.
Anyway SaaS model everything delivered as server / web service, so no matter where the database should come to client as service, then only render by client GUI.
Thanks
Existing answers are good. You should look deeply into the issue of upgrading and managing multiple databases. Without knowing the specific app, it might turn out easier to have multiple databases and not have to pay the extra cost of tracking the TenantID. This might not end up being the right decision, but you should certainly be wary of the dev cost of data sharing.