How can I access function of class B, when I have instantiated class A,
Instead of making abstract class? what is the simplest solution to this problem?
class A
{
public $a = 3;
public function addup($var)
{
return ($var + $var);
}
}
class B extends A
{
public function addup1($var)
{
return ($var * $var);
}
}
$obj = new A();
echo "Func from Class A: " . $obj->addup(3);
echo "<br>";
echo $obj->addup1(3);
echo "<br><br><br><br>";
$obj = new B();
echo "Func from Class A: " . $obj->addup(3);
echo "<br>";
echo "Func from Class B: " . $obj->addup1(3);
?>
Normally you can/should not. If you have a class car for example:
class Car {
public function drive() {
...
}
}
The car can basically only drive. He doesn't know any other actions. Car doesn't know anything about other classes extending it. Let's now extend the Car by creating a Batmobile.
class Batmobile extends Car {
public function shoot() {
...
}
}
The Batmobile has the ability to shoot with a machine gun. This is in addition to all the Car can do (drive in this case). A normal car on the other hand $fiat = new Car(); is not a batmobile, and therefore cannot shoot.
Back to your case. If you have an instance of A, all its functions are defined within this class. It does not have the method addup1(). You have multiple options right now:
Redesign your class, maybe the inheritance is not properly done. Or maybe the method addup1() can be moved to class A.
On php.net someone posted a comment (which I don't find very accurate). Nonetheless you could, as long as addup1() does NOT access any attributes of B, create the method in A and just call the one in B... See this comment.
Even though you could do the second solution, I would not recommend it. It is against the idea of inheritance. It's better to rethink about the classes and maybe change them somewhat.
Related
Imagine you have some Entity class and want another class that groups multiple instances of Entity.
How do you name it?
CompoundEntity?
CompositeEntity?
something else?
This is a common thing I do, and my colleagues use different naming convention. I have no idea what is better and also I'm not a native English speaker.
Concrete example:
public final class CompoundSetUpAction: SetUpAction {
private let setUpActions: [SetUpAction]
public init(
setUpActions: [SetUpAction])
{
self.setUpActions = setUpActions
}
public func setUp() -> TearDownAction {
return CompoundTearDownAction(
tearDownActions: Array(setUpActions.map { $0.setUp() }.reversed())
)
}
}
I am facing a design problem. This must only be solved by applying oops concepts. I am describing the problem below.
Problem: Suppose You have a class called X . It has two Paid (Chargeable) methods like m, n. Their may be many consumers classes of these methods. Someone pays for m, someone pays for n and someone pays for both m, n.
Now I have to design my X class in such a way that consumers can only see that method for which they make payment. How can we do this via OOPS concepts? I can make appropriate changes in my X class to achieve this design. Sample class is written below.
class X { // service class
public m(){ // do some stuff
}
public n(){ // do some stuff
}
}
Create 3 interfaces: one containing the m method, one containing n and a third containing both (the third interface can extend the two others). Then make your class X implement those interfaces.
You will then be able to expose the appropriate interface to your consumers, depending on their needs, while still using the same X class.
interface M { // exposed to customers paying for m
void m();
}
interface N { // exposed to customers paying for n
void n();
}
interface Mn extends M, N {} // exposed to customers paying for both
class X implements Mn {
#Override
public m(){ // do some stuff
}
#Override
public n(){ // do some stuff
}
}
I think you are not taking advantage of the class state. Class can store information in its instance fields about the user, and change its behavior accordingly.
One possible option would be:
class Payment {
int paymentType = 0; // fill with constructor for i.e.
public pay(int sum){
// some common behavior
switch(this.paymentType){
case 1:
// pay 1 logic
break;
case 2:
// pay 2 logic
break;
}
// some other common behavior
}
}
In another design you might use the Strategy pattern to have family of decoupled algorithms.
In the above code I assumed we are talking about some logically related code. If the code has nothing in common, you might even split it into other classes.
Update: I wouldn't advice on using it, but you can implement the Template Method pattern. The problem is you are going to overuse inheritance.
abstract class Payment {
public Pay(int sum){
// some common code
this.doPay(sum);
}
abstract protected doPay(int sum);
}
class PaymentOne : Payment {
protected doPay(int sum){
// pay 1 logic
}
}
class PaymentTwo : Payment {
protected doPay(int sum){
// pay 2 logic
}
}
You'd better use polymorphism concept
As example, based on assumption that m and n has different types:
class X{ // service class
public Pay(NType n){ // do some stuff
}
public Pay(MType m){ // do some stuff
}
public Pay(NType n, MType m){ // do some stuff
Pay(n);
Pay(m);
}
}
I'm trying to find a method of passing a constructor argument to the constructors of child classes.
These objects are immutable so I'd prefer to use constructor arguments.
The issue I have encountered is that ConstructorArgument does not inherit to child instantiations and the following statements are not interchangeable:
_parsingProcessor = _kernel.Get<IParsingProcessor>(new ConstructorArgument("dataFilePath", dataFilePath);
and
_parsingProcessor = _kernel.Get<IParsingProcessor>(new Parameter("dataFilePath", dataFilePath, true);
So, how can get an inheritable ConstructorArgument and when does it makes sense, if ever, to new the Parameter class?
Yes, you can do this, but it's probably not what you really want. If the container is not actually responsible for instantiating its own dependencies, then its dependencies probably shouldn't be sharing its constructor arguments - it just doesn't make sense.
I'm pretty sure I know what you're trying to do, and the recommended approach is to create a unique binding specifically for your one container, and use the WhenInjectedInto conditional binding syntax, as in the example below:
public class Hello : IHello
{
private readonly string name;
public Hello(string name)
{
this.name = name;
}
public void SayHello()
{
Console.WriteLine("Hello, {0}!", name);
}
}
This is the class that takes a constructor argument which we want to modify, depending on who is asking for an IHello. Let's say it's this boring container class:
public class MyApp : IApp
{
private readonly IHello hello;
public MyApp(IHello hello)
{
this.hello = hello;
}
public virtual void Run()
{
hello.SayHello();
Console.ReadLine();
}
}
Now, here's how you do up the bindings:
public class MainModule : NinjectModule
{
public override void Load()
{
Bind<IApp>().To<MyApp>();
Bind<IHello>().To<Hello>()
.WithConstructorArgument("name", "Jim");
Bind<IHello>().To<Hello>()
.WhenInjectedInto<MyApp>()
.WithConstructorArgument("name", "Bob");
}
}
Basically all this binding is doing is saying the name should be "Jim" unless it's being requested by Hello, which in this case it is, so instead it will get the name "Bob".
If you are absolutely certain that you truly want cascading behaviour and understand that this is very dangerous and brittle, you can cheat using a method binding. Assuming that we've now added a name argument to the MyApp class for some unspecified purpose, the binding would be:
Bind<IHello>().ToMethod(ctx =>
ctx.Kernel.Get<Hello>(ctx.Request.ParentContext.Parameters
.OfType<ConstructorArgument>()
.Where(c => c.Name == "name")
.First()));
Please, please, make sure you are positive that this is what you want before doing it. It looks easy but it is also very likely to break during a simple refactoring, and 95% of the "customized dependency" scenarios I've seen can be addressed using the WhenInjectedInto binding instead.
I hear (and read on this site) a lot about "favour composition over inheritance".
But what is Compositon? I understand inheritance from the point of Person : Mammal : Animal, but I can't really see the definition of Compostion anywhere.. Can somebody fill me in?
Composition refers to combining simple types to make more complex ones. In your example, composition could be:
Animal:
Skin animalSkin
Organs animalOrgans
Mammal::Animal:
Hair/fur mammalFur
warm-blooded-based_cirulation_system heartAndStuff
Person::Mammal:
string firstName
string lastName
If you wanted to go totally composition (and get rid of all inheritance) it would look like this:
Animal:
Skin animalSkin
Organs animalOrgans
Mammal:
private Animal _animalRef
Hair/fur mammalFur
warm-blooded-based_cirulation_system heartAndStuff
Person:
private Mammal _mammalRef
string firstName
string lastName
The advantage to this approach is that the types Mammal and Person do not have to conform to the interface of their previous parent. This could be a good thing because sometimes a change to the superclass can have serious effects on the subclasses.
They still can have access to the properties and behaviours of these classes through their private instances of these classes, and if they want to expose these former-superclass behaviours, they can simply wrap them in a public method.
I found a good link with good examples here: http://www.artima.com/designtechniques/compoinh.html
Composition is simply the parts that make up the whole. A car has wheels, an engine, and seats. Inheritance is a "is a " relationship. Composition is a "has a" relationship.
There are three ways to give behavior to a class. You can write that behavior into the class; you can inherit from a class that has the desired behavior; or you can incorporate a class with the desired behavior into your class as a field, or member variable. The last two represent forms of code reuse, and the final one - composition - is generally preferred. It doesn't actually give your class the desired behavior - you still need to call the method on the field - but it puts fewer constraints on your class design and results in easier to test and easier to debug code. Inheritance has its place, but composition should be preferred.
class Engine
{
}
class Automobile
{
}
class Car extends Automobile // car "is a" automobile //inheritance here
{
Engine engine; // car "has a" engine //composition here
}
Composition - Functionality of an object is made up of an aggregate of different classes. In practice, this means holding a pointer to another class to which work is deferred.
Inheritance - Functionality of an object is made up of it's own functionality plus functionality from its parent classes.
As to why composition is preferred over inheritance, take a look at the Circle-ellipse problem.
An example of Composition is where you have an instance of a class within another class, instead of inheriting from it
This page has a good article explaining why people say "favour composition over inheritance" with some examples of why.
composition
simply mean using instance variables that are references to other objects.
For an illustration of how inheritance compares to composition in the code reuse department, consider this very simple example:
1- Code via inheritance
class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public int peel() {
System.out.println("Peeling is appealing.");
return 1;
}
}
class Apple extends Fruit {
}
class Example1 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
When you run the Example1 application, it will print out "Peeling is appealing.", because Apple inherits (reuses) Fruit's implementation of peel(). If at some point in the future, however, you wish to change the return value of peel() to type Peel, you will break the code for Example1. Your change to Fruit breaks Example1's code even though Example1 uses Apple directly and never explicitly mentions Fruit.
for more info ref
Here's what that would look like:
class Peel {
private int peelCount;
public Peel(int peelCount) {
this.peelCount = peelCount;
}
public int getPeelCount() {
return peelCount;
}
//...
}
class Fruit {
// Return a Peel object that
// results from the peeling activity.
public Peel peel() {
System.out.println("Peeling is appealing.");
return new Peel(1);
}
}
// Apple still compiles and works fine
class Apple extends Fruit {
}
// This old implementation of Example1
// is broken and won't compile.
class Example1 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
2- Code via composition
Composition provides an alternative way for Apple to reuse Fruit's implementation of peel(). Instead of extending Fruit, Apple can hold a reference to a Fruit instance and define its own peel() method that simply invokes peel() on the Fruit. Here's the code:
class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public int peel() {
System.out.println("Peeling is appealing.");
return 1;
}
}
class Apple {
private Fruit fruit = new Fruit();
public int peel() {
return fruit.peel();
}
}
class Example2 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
for more information ref
I am new to OOP. Though I understand what polymorphism is, but I can't get the real use of it. I can have functions with different name. Why should I try to implement polymorphism in my application.
Classic answer: Imagine a base class Shape. It exposes a GetArea method. Imagine a Square class and a Rectangle class, and a Circle class. Instead of creating separate GetSquareArea, GetRectangleArea and GetCircleArea methods, you get to implement just one method in each of the derived classes. You don't have to know which exact subclass of Shape you use, you just call GetArea and you get your result, independent of which concrete type is it.
Have a look at this code:
#include <iostream>
using namespace std;
class Shape
{
public:
virtual float GetArea() = 0;
};
class Rectangle : public Shape
{
public:
Rectangle(float a) { this->a = a; }
float GetArea() { return a * a; }
private:
float a;
};
class Circle : public Shape
{
public:
Circle(float r) { this->r = r; }
float GetArea() { return 3.14f * r * r; }
private:
float r;
};
int main()
{
Shape *a = new Circle(1.0f);
Shape *b = new Rectangle(1.0f);
cout << a->GetArea() << endl;
cout << b->GetArea() << endl;
}
An important thing to notice here is - you don't have to know the exact type of the class you're using, just the base type, and you will get the right result. This is very useful in more complex systems as well.
Have fun learning!
Have you ever added two integers with +, and then later added an integer to a floating-point number with +?
Have you ever logged x.toString() to help you debug something?
I think you probably already appreciate polymorphism, just without knowing the name.
In a strictly typed language, polymorphism is important in order to have a list/collection/array of objects of different types. This is because lists/arrays are themselves typed to contain only objects of the correct type.
Imagine for example we have the following:
// the following is pseudocode M'kay:
class apple;
class banana;
class kitchenKnife;
apple foo;
banana bar;
kitchenKnife bat;
apple *shoppingList = [foo, bar, bat]; // this is illegal because bar and bat is
// not of type apple.
To solve this:
class groceries;
class apple inherits groceries;
class banana inherits groceries;
class kitchenKnife inherits groceries;
apple foo;
banana bar;
kitchenKnife bat;
groceries *shoppingList = [foo, bar, bat]; // this is OK
Also it makes processing the list of items more straightforward. Say for example all groceries implements the method price(), processing this is easy:
int total = 0;
foreach (item in shoppingList) {
total += item.price();
}
These two features are the core of what polymorphism does.
Advantage of polymorphism is client code doesn't need to care about the actual implementation of a method.
Take look at the following example.
Here CarBuilder doesn't know anything about ProduceCar().Once it is given a list of cars (CarsToProduceList) it will produce all the necessary cars accordingly.
class CarBase
{
public virtual void ProduceCar()
{
Console.WriteLine("don't know how to produce");
}
}
class CarToyota : CarBase
{
public override void ProduceCar()
{
Console.WriteLine("Producing Toyota Car ");
}
}
class CarBmw : CarBase
{
public override void ProduceCar()
{
Console.WriteLine("Producing Bmw Car");
}
}
class CarUnknown : CarBase { }
class CarBuilder
{
public List<CarBase> CarsToProduceList { get; set; }
public void ProduceCars()
{
if (null != CarsToProduceList)
{
foreach (CarBase car in CarsToProduceList)
{
car.ProduceCar();// doesn't know how to produce
}
}
}
}
class Program
{
static void Main(string[] args)
{
CarBuilder carbuilder = new CarBuilder();
carbuilder.CarsToProduceList = new List<CarBase>() { new CarBmw(), new CarToyota(), new CarUnknown() };
carbuilder.ProduceCars();
}
}
Polymorphism is the foundation of Object Oriented Programming. It means that one object can be have as another project. So how does on object can become other, its possible through following
Inheritance
Overriding/Implementing parent Class behavior
Runtime Object binding
One of the main advantage of it is switch implementations. Lets say you are coding an application which needs to talk to a database. And you happen to define a class which does this database operation for you and its expected to do certain operations such as Add, Delete, Modify. You know that database can be implemented in many ways, it could be talking to file system or a RDBM server such as MySQL etc. So you as programmer, would define an interface that you could use, such as...
public interface DBOperation {
public void addEmployee(Employee newEmployee);
public void modifyEmployee(int id, Employee newInfo);
public void deleteEmployee(int id);
}
Now you may have multiple implementations, lets say we have one for RDBMS and other for direct file-system
public class DBOperation_RDBMS implements DBOperation
// implements DBOperation above stating that you intend to implement all
// methods in DBOperation
public void addEmployee(Employee newEmployee) {
// here I would get JDBC (Java's Interface to RDBMS) handle
// add an entry into database table.
}
public void modifyEmployee(int id, Employee newInfo) {
// here I use JDBC handle to modify employee, and id to index to employee
}
public void deleteEmployee(int id) {
// here I would use JDBC handle to delete an entry
}
}
Lets have File System database implementation
public class DBOperation_FileSystem implements DBOperation
public void addEmployee(Employee newEmployee) {
// here I would Create a file and add a Employee record in to it
}
public void modifyEmployee(int id, Employee newInfo) {
// here I would open file, search for record and change values
}
public void deleteEmployee(int id) {
// here I search entry by id, and delete the record
}
}
Lets see how main can switch between the two
public class Main {
public static void main(String[] args) throws Exception {
Employee emp = new Employee();
... set employee information
DBOperation dboper = null;
// declare your db operation object, not there is no instance
// associated with it
if(args[0].equals("use_rdbms")) {
dboper = new DBOperation_RDBMS();
// here conditionally, i.e when first argument to program is
// use_rdbms, we instantiate RDBM implementation and associate
// with variable dboper, which delcared as DBOperation.
// this is where runtime binding of polymorphism kicks in
// JVM is allowing this assignment because DBOperation_RDBMS
// has a "is a" relationship with DBOperation.
} else if(args[0].equals("use_fs")) {
dboper = new DBOperation_FileSystem();
// similarly here conditionally we assign a different instance.
} else {
throw new RuntimeException("Dont know which implemnation to use");
}
dboper.addEmployee(emp);
// now dboper is refering to one of the implementation
// based on the if conditions above
// by this point JVM knows dboper variable is associated with
// 'a' implemenation, and it will call appropriate method
}
}
You can use polymorphism concept in many places, one praticle example would be: lets you are writing image decorer, and you need to support the whole bunch of images such as jpg, tif, png etc. So your application will define an interface and work on it directly. And you would have some runtime binding of various implementations for each of jpg, tif, pgn etc.
One other important use is, if you are using java, most of the time you would work on List interface, so that you can use ArrayList today or some other interface as your application grows or its needs change.
Polymorphism allows you to write code that uses objects. You can then later create new classes that your existing code can use with no modification.
For example, suppose you have a function Lib2Groc(vehicle) that directs a vehicle from the library to the grocery store. It needs to tell vehicles to turn left, so it can call TurnLeft() on the vehicle object among other things. Then if someone later invents a new vehicle, like a hovercraft, it can be used by Lib2Groc with no modification.
I guess sometimes objects are dynamically called. You are not sure whether the object would be a triangle, square etc in a classic shape poly. example.
So, to leave all such things behind, we just call the function of derived class and assume the one of the dynamic class will be called.
You wouldn't care if its a sqaure, triangle or rectangle. You just care about the area. Hence the getArea method will be called depending upon the dynamic object passed.
One of the most significant benefit that you get from polymorphic operations is ability to expand.
You can use same operations and not changing existing interfaces and implementations only because you faced necessity for some new stuff.
All that we want from polymorphism - is simplify our design decision and make our design more extensible and elegant.
You should also draw attention to Open-Closed Principle (http://en.wikipedia.org/wiki/Open/closed_principle) and for SOLID (http://en.wikipedia.org/wiki/Solid_%28Object_Oriented_Design%29) that can help you to understand key OO principles.
P.S. I think you are talking about "Dynamic polymorphism" (http://en.wikipedia.org/wiki/Dynamic_polymorphism), because there are such thing like "Static polymorphism" (http://en.wikipedia.org/wiki/Template_metaprogramming#Static_polymorphism).
You don't need polymorphism.
Until you do.
Then its friggen awesome.
Simple answer that you'll deal with lots of times:
Somebody needs to go through a collection of stuff. Let's say they ask for a collection of type MySpecializedCollectionOfAwesome. But you've been dealing with your instances of Awesome as List. So, now, you're going to have to create an instance of MSCOA and fill it with every instance of Awesome you have in your List<T>. Big pain in the butt, right?
Well, if they asked for an IEnumerable<Awesome>, you could hand them one of MANY collections of Awesome. You could hand them an array (Awesome[]) or a List (List<Awesome>) or an observable collection of Awesome or ANYTHING ELSE you keep your Awesome in that implements IEnumerable<T>.
The power of polymorphism lets you be type safe, yet be flexible enough that you can use an instance many many different ways without creating tons of code that specifically handles this type or that type.
Tabbed Applications
A good application to me is generic buttons (for all tabs) within a tabbed-application - even the browser we are using it is implementing Polymorphism as it doesn't know the tab we are using at the compile-time (within the code in other words). Its always determined at the Run-time (right now! when we are using the browser.)