Adding NumPy array to existing HDF5 file in PyTables? - numpy

I have two sliced Numpy arrays stored in memory, say a and b, shape 1*480*640, how can I add them to an existing HDF5 file in PyTables? The existing HDF5 file has three arrays: n1,n2,n3, I want the new HDF5 file to have 5 arrays: n1,n2,n3,a,b . Thx!

You can use createArray on the file object to do that (or if you need compression use createCArray/createEArray):
File.createArray('/','a', numpyArray)

Related

How to load a dataset from filenames in tensorflow, with input png and npy files

I have to load 2 images and 1 array from filenames with this format:
/nuove/corridoio_22092021/left/220921_141.png
/nuove/corridoio_22092021/right/220921_141.png
/nuove/corridoio_22092021/M/220921_141.npy
They are separated by a space..
I want to split each file path and load the images with tf.decode_png
but how to load the npy file in tensorflow?
Maybe I can use
dataset = tf.data.TextLineDataset([filenames_file])
but how should I proceed?
Use np.load to load the array and then use the array as required.

How can I open a large parquet file with Keras?

I've tried looking for this and haven't had any meaningful results.
I have a keras model that has multi input and my data was getting too large for my pandas approach so I preprocessed it and saved it parquet file. I'm not sure how to open it with keras.
I looked up tf.datasets but I still cannot figure out how to read a parquet file that I can pass to my model.
Does anyone know how to use open parquet files? I can't seem to figure out how to do this in tensorflow and can't find anything related to it in keras.
You can probably keep your pandas approach, but you would have to breakdown your data into chunks.
If you have already broken it down to create your parquet file, you should be able to use the same method to have only a subset of your data opened in pandas at a time.
If you need to extract the data from your parquet file here's a link on how to create chunks of data for a pandas dataframe:
How to read a CSV file subset by subset with Pandas?
Once you have a chunk of data you can call model.fit on that chunk of data and then go on to the next chunk and call model.fit
You can look into TensorFlow I/O which is a collection of file systems and file formats that are not available in TensorFlow's built-in support. Here you can find functionalities such tfio.IODataset.from_parquet, and also tfio.IOTensor.from_parquet to work with the parquet file formats.
!pip install tensorflow_io -U -q
import tensorflow_io as tfio
df = pd.DataFrame({"data": tf.random.normal([20], 0, 1, tf.float32),
"label": np.random.randint(2, size=(20))})
df.to_parquet("df.parquet")
pd.read_parquet('/content/df.parquet')[:2]
data label
0 0.721347 1
1 -1.215225 1
ds = tfio.IODataset.from_parquet('/content/df.parquet')
ds
FYI, I think you should also consider using the feather format rather than the parquet file format, AFAIK, the parquet file can be really heavy to load and can slow down your training pipelines, whereas feather is comparatively fast (very fast).

Loading a Single Series from a Pickled DataFrame in Pandas

After saving a Pandas DataFrame with df.to_pickle(file_name), it can be loaded with df = pd.read_pickle(file_name). But sometimes, you may only want to load the data for one Series at a particular time, and loading the entire DataFrame is inefficient. Is there a way to load just a single Series from a pickled DataFrame?
This is not possible because pickle files are serialized and reading a single column of a serialized file is not possible. You can read a single column of other file types (i.e. h5, csv, etc.) but not a serialized file.

Feeding .npy (numpy files) into tensorflow data pipeline

Tensorflow seems to lack a reader for ".npy" files.
How can I read my data files into the new tensorflow.data.Dataset pipline?
My data doesn't fit in memory.
Each object is saved in a separate ".npy" file. each file contains 2 different ndarrays as features and a scalar as their label.
It is actually possible to read directly NPY files with TensorFlow instead of TFRecords. The key pieces are tf.data.FixedLengthRecordDataset and tf.io.decode_raw, along with a look at the documentation of the NPY format. For simplicity, let's suppose that a float32 NPY file containing an array with shape (N, K) is given, and you know the number of features K beforehand, as well as the fact that it is a float32 array. An NPY file is just a binary file with a small header and followed by the raw array data (object arrays are different, but we're considering numbers now). In short, you can find the size of this header with a function like this:
def npy_header_offset(npy_path):
with open(str(npy_path), 'rb') as f:
if f.read(6) != b'\x93NUMPY':
raise ValueError('Invalid NPY file.')
version_major, version_minor = f.read(2)
if version_major == 1:
header_len_size = 2
elif version_major == 2:
header_len_size = 4
else:
raise ValueError('Unknown NPY file version {}.{}.'.format(version_major, version_minor))
header_len = sum(b << (8 * i) for i, b in enumerate(f.read(header_len_size)))
header = f.read(header_len)
if not header.endswith(b'\n'):
raise ValueError('Invalid NPY file.')
return f.tell()
With this you can create a dataset like this:
import tensorflow as tf
npy_file = 'my_file.npy'
num_features = ...
dtype = tf.float32
header_offset = npy_header_offset(npy_file)
dataset = tf.data.FixedLengthRecordDataset([npy_file], num_features * dtype.size, header_bytes=header_offset)
Each element of this dataset contains a long string of bytes representing a single example. You can now decode it to obtain an actual array:
dataset = dataset.map(lambda s: tf.io.decode_raw(s, dtype))
The elements will have indeterminate shape, though, because TensorFlow does not keep track of the length of the strings. You can just enforce the shape since you know the number of features:
dataset = dataset.map(lambda s: tf.reshape(tf.io.decode_raw(s, dtype), (num_features,)))
Similarly, you can choose to perform this step after batching, or combine it in whatever way you feel like.
The limitation is that you had to know the number of features in advance. It is possible to extract it from the NumPy header, though, just a bit of a pain, and in any case very hardly from within TensorFlow, so the file names would need to be known in advance. Another limitation is that, as it is, the solution requires you to either use only one file per dataset or files that have the same header size, although if you know that all the arrays have the same size that should actually be the case.
Admittedly, if one considers this kind of approach it may just be better to have a pure binary file without headers, and either hard code the number of features or read them from a different source...
You can do it with tf.py_func, see the example here.
The parse function would simply decode the filename from bytes to string and call np.load.
Update: something like this:
def read_npy_file(item):
data = np.load(item.decode())
return data.astype(np.float32)
file_list = ['/foo/bar.npy', '/foo/baz.npy']
dataset = tf.data.Dataset.from_tensor_slices(file_list)
dataset = dataset.map(
lambda item: tuple(tf.py_func(read_npy_file, [item], [tf.float32,])))
Does your data fit into memory? If so, you can follow the instructions from the Consuming NumPy Arrays section of the docs:
Consuming NumPy arrays
If all of your input data fit in memory, the simplest way to create a Dataset from them is to convert them to tf.Tensor objects and use Dataset.from_tensor_slices().
# Load the training data into two NumPy arrays, for example using `np.load()`.
with np.load("/var/data/training_data.npy") as data:
features = data["features"]
labels = data["labels"]
# Assume that each row of `features` corresponds to the same row as `labels`.
assert features.shape[0] == labels.shape[0]
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
In the case that the file doesn't fit into memory, it seems like the only recommended approach is to first convert the npy data into a TFRecord format, and then use the TFRecord data set format, which can be streamed without fully loading into memory.
Here is a post with some instructions.
FWIW, it seems crazy to me that TFRecord cannot be instantiated with a directory name or file name(s) of npy files directly, but it appears to be a limitation of plain Tensorflow.
If you can split the single large npy file into smaller files that each roughly represent one batch for training, then you could write a custom data generator in Keras that would yield only the data needed for the current batch.
In general, if your dataset cannot fit in memory, storing it as one single large npy file makes it very hard to work with, and preferably you should reformat the data first, either as TFRecord or as multiple npy files, and then use other methods.
Problem setup
I had a folder with images that were being fed into an InceptionV3 model for extraction of features. This seemed to be a huge bottleneck for the entire process. As a workaround, I extracted features from each image and then stored them on disk in a .npy format.
Now I had two folders, one for the images and one for the corresponding .npy files. There was an evident problem with the loading of .npy files in the tf.data.Dataset pipeline.
Workaround
I came across TensorFlow's official tutorial on show attend and tell which had a great workaround for the problem this thread (and I) were having.
Load numpy files
First off we need to create a mapping function that accepts the .npy file name and returns the numpy array.
# Load the numpy files
def map_func(feature_path):
feature = np.load(feature_path)
return feature
Use the tf.numpy_function
With the tf.numpy_function we can wrap any python function and use it as a TensorFlow op. The function must accept numpy object (which is exactly what we want).
We create a tf.data.Dataset with the list of all the .npy filenames.
dataset = tf.data.Dataset.from_tensor_slices(feature_paths)
We then use the map function of the tf.data.Dataset API to do the rest of our task.
# Use map to load the numpy files in parallel
dataset = dataset.map(lambda item: tf.numpy_function(
map_func, [item], tf.float16),
num_parallel_calls=tf.data.AUTOTUNE)

How to load and convert .mat file into numpy 2D array?

I have a data in mat file (observations and features) and i want to load it into numpy 2D array. I dont want to convert it into csv first and then load csv into numpy.
Use scipy's loadmat (API-docs).
The docs should be sufficient to get you going, but make sure to read the notes.
There is also the io-tutorial with some examples.