Makefile: Avoid compiling Fortran modules for new folder - module

I have a Fortran program that uses modules, i.e. it creates .mod-files during compilation.
I also wrote a Makefile that uses all the .f90-files from src/ puts all created .o-files in obj/ and the binary in the current folder, and everything works fine.
I now recompile my program in different folders for different calculations (say calc1/), i.e. I copy the Makefile into calc1/, type make all in calc1/ and all it does is the linking, because the object-files already exist. However, if the program includes any modules the compiler needs the corresponding .mod-files to be present in calc1/. Until now, I recompiled everything (make clean all), but with the program growing this takes too much time!
A possible solution I came up with is to have one specific folder for the binaries (bin/). But this is not a viable option because I have jobs in the queue, which obviously need a stable binary, while I also try new features in the meantime.
So, I'm looking for a solution that somehow treats the .mod-files similar to .o-files, e.g. places them in obj/.

I would expect that (most?) compilers would specify an option to change the module file path. with gfortran, the option is -J or -M (from the man page):
-Jdir
-Mdir
This option specifies where to put .mod files for compiled modules. It is also
added to the list of directories to searched by an "USE" statement.
The default is the current directory.
-M is deprecated to avoid conflicts with existing GCC options.
I think that most compilers look for .mod files in directories included with -I
EDIT
As of gfortran 4.6, -M is no longer supported. Use -J
based on one of my configure scripts, the flag is -module for ifort and pgf90 although I almost never use those compilers these days so somebody else should confirm that ...

Related

Recompile with -fPIC Gentoo

I'm new to Gentoo and trying to install a 3D modelling program called TexGen (http://texgen.sourceforge.net/index.php/Main_Page) using CMake, and I keep getting the error:
relocation R_X86_64_32 against `.rodata' can not be used when making a shared object; recompile with -fPIC
This occurs during the step:
[ 80%] Linking CXX shared module ../_Renderer.so
I've looked all over and tried setting the -fPIC flag in the cmake options file, but there's no change in the result. As I said I'm quite new (in the order of a few weeks) to Linux and Gentoo and any help would be greatly appreciated.
Actually Gentoo has a eclass(es) to build CMake based projects (see /usr/portage/cmake*.eclass). And AFAIK, it replace package options with yours (to be precise, it adds a new configuration type), configured in /etc/portage/make.conf (or /etc/paludis/bashrc if you use paludis). So, I not wondered that "hacking" CMakeLists.txt in the package ebuild do not help.
So, easiest way is to add that option to your Gentoo settings instead. Personaly I use this way to build boost library in my system (yep, I need boost's static libraries to be linked into dynamic one in some of my projects). And yes, I'm using paludis, but emerge probably has similar feature (a way to set per package compiler options).
The other way, instead of "hacking" compiler options directly (via CMAKE_<LANG>_FLAGS), take a look to CMAKE_POSITION_INDEPENDENT_CODE -- it'll add a proper compiler option for you, and probably eclass' manipulations with cache wouldn't affect this setting.
I got it to work (for installing ffmpeg) by simply reinstalling the whole thing from the beginning with all instances of $ ./configure replaced by $ ./configure --enable-shared (first make sure to delete all the folders and files including the .so files from the previous attempt).
Apparently this works because https://stackoverflow.com/a/13812368/10593190.

Can the object file name be changed from .obj during cmake compiler testing?

Ultimately, I'm trying to build Apache QPID to run in the HPE NonStop OSS environment (a Posix-like environment on the NonStop system). The latest version of QPID uses cmake to build so I first need to get cmake to work for that environment. My earlier attempts tried to build in OSS directly (I needed to build cmake first before trying to build QPID), but I ran into many problems there. So lately I'm trying to build in Windows using a set of cross-development tools (compilers etc.) for NonStop. I've downloaded a Windows version of cmake 2.8 (suggested by the QPID build instructions) and am trying to use that with the X-dev tools to build QPID for OSS.
One big issue I've run into has to do with how cmake does things to test compilers and so forth early on. It will invoke the compiler to create an intermediate object file from C (and/or C++) source file and after that it will invoke the compiler to link an object file from the intermediate file. It seems that cmake prefers to add .obj to file names to create the intermediate object file name. This will work OK with my cross-compiler when creating the file (the name passed with -o to the compiler) but it will not work when passing this name for link purposes. Here is a short bit of the output per the CMakeError.log file (from trying build an OSS version of cmake 2.8 itself):
Determining if the C compiler works failed with the following output:
Change Dir: C:/Source/cmake-2.8.0/bld/CMakeFiles/CMakeTmp
Run Build Command:C:/cygwin/bin/make.exe "cmTryCompileExec/fast"
/usr/bin/make -f CMakeFiles/cmTryCompileExec.dir/build.make CMakeFiles/cmTryCompileExec.dir/build
make[1]: Entering directory '/cygdrive/c/Source/cmake-2.8.0/bld/CMakeFiles/CMakeTmp'
"C:/Program Files (x86)/CMake 2.8/bin/cmake.exe" -E cmake_progress_report C:/Source/cmake-2.8.0/bld/CMakeFiles/CMakeTmp/CMakeFiles 1
Building C object CMakeFiles/cmTryCompileExec.dir/testCCompiler.c.obj
/cygdrive/c/NonStop/tndm_cmplrs-j20/usr/bin/c89.exe -o CMakeFiles/cmTryCompileExec.dir/testCCompiler.c.obj -c C:/Source/cmake-2.8.0/bld/CMakeFiles/CMakeTmp/testCCompiler.c
Linking C executable cmTryCompileExec
/cygdrive/c/NonStop/tndm_cmplrs-j20/usr/bin/c89.exe "CMakeFiles/cmTryCompileExec.dir/testCCompiler.c.obj" -o cmTryCompileExec
c89.exe: error: Invalid input file extension"CMakeFiles/cmTryCompileExec.dir/testCCompiler.c.obj".
The cross-compiler fails because it requires intermediate object files to use .o for the extension, in order to determine they are intermediate object files. There is no way to get the c89 compiler to recognize testCCompiler.c.obj as a file type it knows what to do with.
So I've been searching (trying to find a local expert, but no one in my organization knows cmake; also numerous Google searches but could not find an answer) to see if there is any way to get cmake to change the name of the output file it uses for these type of compiles and tests. I've found info and then set CMAKE_C_OUTPUT_EXTENSION in a toolchain file:
SET(CMAKE_C_OUTPUT_EXTENSION ".o")
but that has made no difference.
If I can find a way to get cmake to create object files with names like testCCompiler.c.o instead of testCCompiler.c.obj, then the c89 cross-compiler would work.
Is it possible to do this?
UPDATE: I've managed to figure out that setting CMAKE_C_OUTPUT_EXTENSION in the toolchain file doesn't help. This gets overwritten in the CMakeCInformation.cmake (depending on whether UNIX is set or not). I also tracked down that UNIX gets set to true in Platform/UnixPaths.cmake, which gets INCLUDEd by various Platform files. So I've created a Modules/Platform/OSS.cmake file which includes it to takes care of that. I'll probably need/want to add other settings there later as I determine more flags for compilers etc that should be set to specific values for the OSS environment.

pkg_check_modules cannot find *.pc.cmake

I am using a 3rd party library rbdl, which contains rbdl.pc.cmake, which 'I suppose' is included for using pkg_check_modules in a cmake file.
I update PKG_CONFIG_PATH to point at the rbdl folder
set(ENV{PKG_CONFIG_PATH} "$ENV{PKG_CONFIG_PATH}:${CMAKE_BINARY_DIR}/externals/rbdl")
pkg_check_modules(RBDL rbdl)
but pkg_check_modules says it cannot find the module.
When I manually duplicate rbdl.pc.cmake, rename the copy into rbdl.pc and run pkg-config --cflags --libs rbdl in terminal, then my cmake also start working!
Interestingly, now even if I delete rbdl.pc, rbdl module if perfectly found by rbdl.pc.cmake!
So my questions are:
What is the difference between *.pc and *.pc.cmake?
How do I correctly setup my cmake to work with original rbdl.pc.cmake?
Why rbdl.pc.cmake starts to be accepted by pkg_check_modules after that tweak with duplicating it, renaming the copy and running pkg-config manually?
You understand it wrong! rbdl.pc.cmake is just a template file. It is not supposed to be used by you! Take a look into CMakeLists.txt line 160 -- configure_file() used to render variables ("quoted" by # in template file) and produce a rbdl.pc (a real pkg-config) file. Latter should be installed (some way) and then will be available to pkg-config hence can be used in your project.
pkg-config is stupid do not interpret or validate compiler/linker flags any way, so your renamed file "works" (yeah, producing invalid command line for compiler/linker).
I wish you to read CMake documentation before trying to code something using it! It'll save your time and give you a necessary knowledge which stops you from doing stupid things like you described in your question ;-)

When should I rerun cmake?

After running the cmake command once to generate a build system, when, if ever, should I rerun the cmake command?
The generated build systems can detect changes in the associated CMakeLists.txt files and behave accordingly. You can see the logic for doing so in generated Makefiles. The exact rules for when this will happen successfully are mysterious to me.
When should I rerun cmake? Does the answer depend on the generator used?
This blog post (under heading: "Invoking CMake multiple times") points out the confusion over this issue and states that the answer is actually 'never', regardless of generator, but I find that surprising. Is it true?
The answer is simple:
The cmake binary of course needs to re-run each time you make changes to any build setting, but you wont need to do it by design; hence "never" is correct regarding commands you have to issue.
The build targets created by cmake automatically include checks for each file subsequently [=starting from the main CMakeLists.txt file] involved or included generating the current set of Makefiles/VS projects/whatever. When invoking make (assuming unix here) this automatically triggers a previous execution of cmake if necessary; so your generated projects include logic to invoke cmake itself! As all command-line parameters initially passed (e.g. cmake -DCMAKE_BUILD_TYPE=RELEASE .. will be stored in the CMakeCache.txt, you dont need to re-specify any of those on subsequent invocations, which is why the projects also can just run cmake and know it still does what you intended.
Some more detail:
CMake generates book-keeping files containing all files that were involved in Makefile/Project generation, see e.g. these sample contents of my <binary-dir>/CMakeFiles/Makefile.cmake file using MSYS makefiles:
# The top level Makefile was generated from the following files:
set(CMAKE_MAKEFILE_DEPENDS
"CMakeCache.txt"
"C:/Program Files (x86)/CMake/share/cmake-3.1/Modules/CMakeCCompiler.cmake.in"
"C:/Program Files (x86)/CMake/share/cmake-3.1/Modules/RepositoryInfo.txt.in"
"<my external project bin dir>/release/ep_tmp/IRON-cfgcmd.txt.in"
"../CMakeFindModuleWrappers/FindBLAS.cmake"
"../CMakeFindModuleWrappers/FindLAPACK.cmake"
"../CMakeLists.txt"
"../CMakeScripts/CreateLocalConfig.cmake"
"../Config/Variables.cmake"
"../Dependencies.cmake"
"CMakeFiles/3.1.0/CMakeCCompiler.cmake"
"CMakeFiles/3.1.0/CMakeRCCompiler.cmake")
Any modification to any of these files will trigger another cmake run whenever you choose to start a build of a target. I honestly dont know how fine-grained those dependencies tracking goes in CMake, i.e. if a target will just be build if any changes somewhere else wont affect the target's compilation. I wouldn't expect it as this can get messy quite quickly, and repeated CMake runs (correctly using the Cache capabilities) are very fast anyways.
The only case where you need to re-run cmake is when you change the compiler after you started a project(MyProject); but even this case is handled by newer CMake versions automatically now (with some yelling :-)).
additional comment responding to comments:
There are cases where you will need to manually re-run cmake, and that is whenever you write your configure scripts so badly that cmake cannot possibly detect files/dependencies you're creating. A typical scenario would be that your first cmake run creates files using e.g. execute_process and you would then include them using file(GLOB ..). This is BAD style and the CMake Docs for file explicitly say
Note: We do not recommend using GLOB to collect a list of source files from your source tree. If no CMakeLists.txt file changes when a source is added or removed then the generated build system cannot know when to ask CMake to regenerate.
Btw this comment also sheds light on the above explained self-invocation by the generated build system :-)
The "proper" way to treat this kind of situations where you create source files during configure time is to use add_custom_command(OUTPUT ...), so that CMake is "aware" of a file being generated and tracks changes correctly. If for some reason you can't/won't use add_custom_command, you can still let CMake know of your file generation using the source file property GENERATED. Any source file with this flag set can be hard-coded into target source files and CMake wont complain about missing files at configure time (and expects this file to be generated some time during the (first!) cmake run.
Looking into this topic for reading the version information from a debian/changelog file (generation phase), I ran in the topic that cmake execution should be triggered as debian/changelog is modified. So I had the need to add debian/changelog to CMAKE_MAKEFILE_DEPENDS.
In my case, debian/changelog is read through execute_process. Execute_process unfortunately gives no possibility to add files processed to CMAKE_MAKEFILE_DEPENDS. But I found that running configure_file will do it. Actually I am really missing something like DEPENDENCIES in execute_process.
However, as I had the need to configure the debian/changelog file for my needs, the solution came implicitly to me.
I actually also found a hint about this in the official documentation of configure_file:
"If the input file is modified the build system will re-run CMake to re-configure the file and generate the build system again."
So using configure_file should be a safe to trigger the re-run of cmake.
From a user perspective, I would expect other commands to extend CMAKE_MAKEFILE_DEPENDS, too. E.g. execute_process (on demand) but also file(READ) (implicitly like configure_file). Perhaps there are others. Each read file is likely to influence the generation phase. As an alternative it would be nice to have a command to just extend the dependency list (hint for the cmake developers, perhaps one comes along).

How is CMake used? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
It is notoriously difficult to get any useful information on CMake as a beginner. So far, I've seen a few tutorials on how to set up some very basic project or another. However, none of these explain the reasoning behind anything that is shown in them, always leaving many holes to fill.
What does calling CMake on a CMakeLists mean? Is it supposed to be called once per build tree or what? How do I use different settings for each build if they all use the same CMakeLists.txt file from the same source?
Why does each subdirectory need its own CMakeLists file? Would it make sense to use CMake on a CMakeLists.txt other than the one at the root of the project? If so, in what cases?
What's the difference between specifying how to build an executable or library from the CMakeLists file in their own subdirectory versus doing it in the CMakeLists file at the root of all source?
Can I make a project for Eclipse and another for Visual Studio, just changing the -G option when calling CMake? Is that even how it's used?
None of the tutorials, documentation pages or questions/answers I've seen so far give any useful insight towards understanding how to use CMake. The examples are just not thorough. No matter what tutorials I read, I feel like I'm missing something important.
There are many questions asked by CMake newbies like me that don't ask this explicitly, but that make obvious the fact that, as newbs, we have no idea how to deal with CMake or what to make of it.
What is CMake for?
According to Wikipedia:
CMake is [...] software for managing the build process of software
using a compiler-independent method. It is designed to support
directory hierarchies and applications that depend on multiple
libraries. It is used in conjunction with native build environments
such as make, Apple's Xcode, and Microsoft Visual Studio.
With CMake, you no longer need to maintain separate settings specific to your compiler/build environment. You have one configuration, and that works for many environments.
CMake can generate a Microsoft Visual Studio solution, an Eclipse project or a Makefile maze from the same files without changing anything in them.
Given a bunch of directories with code in them, CMake manages all the dependencies, build orders and other tasks that your project needs done before it can be compiled. It does NOT actually compile anything. To use CMake, you must tell it (using configuration files called CMakeLists.txt) what executables you need compiled, what libraries they link to, what directories there are in your project and what is inside of them, as well as any details like flags or anything else you need (CMake is quite powerful).
If this is correctly set up, you then use CMake to create all of the files that your "native build environment" of choice needs to do its job. In Linux, by default, this means Makefiles. So once you run CMake, it will create a bunch of files for its own use plus some Makefiles. All you need to do thereafter is type "make" in the console from the root folder every time you're done editing your code, and bam, a compiled and linked executable is made.
How does CMake work? What does it do?
Here is an example project setup that I will use throughout:
simple/
CMakeLists.txt
src/
tutorial.cxx
CMakeLists.txt
lib/
TestLib.cxx
TestLib.h
CMakeLists.txt
build/
The contents of each file are shown and discussed later on.
CMake sets your project up according to the root CMakeLists.txt of your project, and does so in whatever directory you executed cmake from in the console. Doing this from a folder that isn't the root of your project produces what is called an out-of-source build, which means files created during compilation (obj files, lib files, executables, you know) will be placed in said folder, kept separate from the actual code. It helps reduce clutter and is preferred for other reasons as well, which I will not discuss.
I do not know what happens if you execute cmake on any other than the root CMakeLists.txt.
In this example, since I want it all placed inside the build/ folder, first I have to navigate there, then pass CMake the directory in which the root CMakeLists.txt resides.
cd build
cmake ..
By default, this sets everything up using Makefiles as I've said. Here is what the build folder should look like now:
simple/build/
CMakeCache.txt
cmake_install.cmake
Makefile
CMakeFiles/
(...)
src/
CMakeFiles/
(...)
cmake_install.cmake
Makefile
lib/
CMakeFiles/
(...)
cmake_install.cmake
Makefile
What are all of these files? The only thing you have to worry about is the Makefile and the project folders.
Notice the src/ and lib/ folders. These have been created because simple/CMakeLists.txt points to them using the command add_subdirectory(<folder>). This command tells CMake to look in said folder for another CMakeLists.txt file and execute that script, so every subdirectory added this way must have a CMakeLists.txt file within. In this project, simple/src/CMakeLists.txt describes how to build the actual executable and simple/lib/CMakeLists.txt describes how to build the library. Every target that a CMakeLists.txt describes will be placed by default in its subdirectory within the build tree. So, after a quick
make
in console done from build/, some files are added:
simple/build/
(...)
lib/
libTestLib.a
(...)
src/
Tutorial
(...)
The project is built, and the executable is ready to be executed. What do you do if you want the executables put in a specific folder? Set the appropriate CMake variable, or change the properties of a specific target. More on CMake variables later.
How do I tell CMake how to build my project?
Here are the contents, explained, of each file in the source directory:
simple/CMakeLists.txt:
cmake_minimum_required(VERSION 2.6)
project(Tutorial)
# Add all subdirectories in this project
add_subdirectory(lib)
add_subdirectory(src)
The minimum required version should always be set, according to the warning CMake throws when you don't. Use whatever your version of CMake is.
The name of your project can be used later on, and hints towards the fact you can manage more than one project from the same CMake files. I won't delve into that, though.
As mentioned before, add_subdirectory() adds a folder to the project, which means CMake expects it to have a CMakeLists.txt within, which it will then run before continuing. By the way, if you happen to have a CMake function defined you can use it from other CMakeLists.txts in subdirectories, but you have to define it before you use add_subdirectory() or it won't find it. CMake is smarter about libraries, though, so this is likely the only time you will run into this kind of problem.
simple/lib/CMakeLists.txt:
add_library(TestLib TestLib.cxx)
To make your very own library, you give it a name and then list all the files it's built from. Straightforward. If it needed another file, foo.cxx, to be compiled, you would instead write add_library(TestLib TestLib.cxx foo.cxx). This also works for files in other directories, for instance add_library(TestLib TestLib.cxx ${CMAKE_SOURCE_DIR}/foo.cxx). More on the CMAKE_SOURCE_DIR variable later.
Another thing you can do with this is specify that you want a shared library. The example: add_library(TestLib SHARED TestLib.cxx). Fear not, this is where CMake begins to make your life easier. Whether it's shared or not, now all you need to handle to use a library created in this way is the name you gave it here. The name of this library is now TestLib, and you can reference it from anywhere in the project. CMake will find it.
Is there a better way to list dependencies? Definitely yes. Check down below for more on this.
simple/lib/TestLib.cxx:
#include <stdio.h>
void test() {
printf("testing...\n");
}
simple/lib/TestLib.h:
#ifndef TestLib
#define TestLib
void test();
#endif
simple/src/CMakeLists.txt:
# Name the executable and all resources it depends on directly
add_executable(Tutorial tutorial.cxx)
# Link to needed libraries
target_link_libraries(Tutorial TestLib)
# Tell CMake where to look for the .h files
target_include_directories(Tutorial PUBLIC ${CMAKE_SOURCE_DIR}/lib)
The command add_executable() works exactly the same as add_library(), except, of course, it will generate an executable instead. This executable can now be referenced as a target for things like target_link_libraries(). Since tutorial.cxx uses code found in the TestLib library, you point this out to CMake as shown.
Similarly, any .h files #included by any sources in add_executable() that are not in the same directory as the source have to be added somehow. If not for the target_include_directories() command, lib/TestLib.h would not be found when compiling Tutorial, so the entire lib/ folder is added to the include directories to be searched for #includes. You might also see the command include_directories() which acts in a similar fashion, except that it does not need you to specify a target since it outright sets it globally, for all executables. Once again, I'll explain CMAKE_SOURCE_DIR later.
simple/src/tutorial.cxx:
#include <stdio.h>
#include "TestLib.h"
int main (int argc, char *argv[])
{
test();
fprintf(stdout, "Main\n");
return 0;
}
Notice how the "TestLib.h" file is included. No need to include the full path: CMake takes care of all that behind the scenes thanks to target_include_directories().
Technically speaking, in a simple source tree like this you can do without the CMakeLists.txts under lib/ and src/ and just adding something like add_executable(Tutorial src/tutorial.cxx) to simple/CMakeLists.txt. It's up to you and your project's needs.
What else should I know to properly use CMake?
(AKA topics relevant to your understanding)
Finding and using packages: The answer to this question explains it better than I ever could.
Declaring variables and functions, using control flow, etc.: check out this tutorial that explains the basics of what CMake has to offer, as well as being a good introduction in general.
CMake variables: there are plenty, so what follows is a crash course to get you on the right track. The CMake wiki is a good place to get more in-depth information on variables and ostensibly other things as well.
You may want to edit some variables without rebuilding the build tree. Use ccmake for this (it edits the CMakeCache.txt file). Remember to configure when done with the changes and then generate makefiles with the updated configuration.
Read the previously referenced tutorial to learn about using variables, but long story short:
set(<variable name> value) to change or create a variable.
${<variable name>} to use it.
CMAKE_SOURCE_DIR: The root directory of source. In the previous example, this is always equal to /simple
CMAKE_BINARY_DIR: The root directory of the build. In the previous example, this is equals to simple/build/, but if you ran cmake simple/ from a folder such as foo/bar/etc/, then all references to CMAKE_BINARY_DIR in that build tree would become /foo/bar/etc.
CMAKE_CURRENT_SOURCE_DIR: The directory in which the current CMakeLists.txt is in. This means it changes throughout: printing this from simple/CMakeLists.txt yields /simple, and printing it from simple/src/CMakeLists.txt yields /simple/src.
CMAKE_CURRENT_BINARY_DIR: You get the idea. This path would depend not only on the folder the build is in, but also on the current CMakeLists.txt script's location.
Why are these important? Source files will obviously not be in the build tree. If you try something like target_include_directories(Tutorial PUBLIC ../lib) in the previous example, that path will be relative to the build tree, that is to say it will be like writing ${CMAKE_BINARY_DIR}/lib, which will look inside simple/build/lib/. There are no .h files in there; at most you will find libTestLib.a. You want ${CMAKE_SOURCE_DIR}/lib instead.
CMAKE_CXX_FLAGS: Flags to pass on to the compiler, in this case the C++ compiler. Also worth noting is CMAKE_CXX_FLAGS_DEBUG which will be used instead if CMAKE_BUILD_TYPE is set to DEBUG. There are more like these; check out the CMake wiki.
CMAKE_RUNTIME_OUTPUT_DIRECTORY: Tell CMake where to put all executables when built. This is a global setting. You can, for instance, set it to bin/ and have everything neatly placed there. EXECUTABLE_OUTPUT_PATH is similar, but deprecated, in case you stumble upon it.
CMAKE_LIBRARY_OUTPUT_DIRECTORY: Likewise, a global setting to tell CMake where to put all library files.
Target properties: you can set properties that affect only one target, be it an executable or a library (or an archive... you get the idea). Here is a good example of how to use it (with set_target_properties().
Is there an easy way to add sources to a target automatically? Use GLOB to list everything in a given directory under the same variable. Example syntax is FILE(GLOB <variable name> <directory>/*.cxx).
Can you specify different build types? Yes, though I'm not sure about how this works or the limitations of this. It probably requires some if/then'ning, but CMake does offer some basic support without configuring anything, like defaults for the CMAKE_CXX_FLAGS_DEBUG, for instance.
You can either set your build type from within the CMakeLists.txt file via set(CMAKE_BUILD_TYPE <type>) or by calling CMake from console with the appropriate flags, for example cmake -DCMAKE_BUILD_TYPE=Debug.
Any good examples of projects that use CMake? Wikipedia has a list of open-source projects that use CMake, if you want to look into that. Online tutorials have been nothing but a letdown to me so far in this regard, however this Stack Overflow question has a pretty cool and easy-to-understand CMake setup. It's worth a look.
Using variables from CMake in your code: Here's a quick and dirty example (adapted from some other tutorial):
simple/CMakeLists.txt:
project (Tutorial)
# Setting variables
set (Tutorial_VERSION_MAJOR 1)
set (Tutorial_VERSION_MINOR 1)
# Configure_file(<input> <output>)
# Copies a file <input> to file <output> and substitutes variable values referenced in the file content.
# So you can pass some CMake variables to the source code (in this case version numbers)
configure_file (
"${PROJECT_SOURCE_DIR}/TutorialConfig.h.in"
"${PROJECT_SOURCE_DIR}/src/TutorialConfig.h"
)
simple/TutorialConfig.h.in:
// Configured options and settings
#define Tutorial_VERSION_MAJOR #Tutorial_VERSION_MAJOR#
#define Tutorial_VERSION_MINOR #Tutorial_VERSION_MINOR#
The resulting file generated by CMake, simple/src/TutorialConfig.h:
// Configured options and settings
#define Tutorial_VERSION_MAJOR 1
#define Tutorial_VERSION_MINOR 1
With clever use of these you can do cool things like turning off a library and such. I do recommend taking a look at that tutorial as there are some slightly more advanced things that are bound to be very useful on larger projects, sooner or later.
For everything else, Stack Overflow is brimming with specific questions and concise answers, which is great for everyone except the uninitiated.