WCF data serialization : can it go faster? - wcf

This question is sort of a sequel to that question.
When we want to build a WCF service which works with some kind of data, it's natural that we want it to be fast and efficient. In order to achieve that, we have to make sure all segments of data road trip work as fast as they could, from data storage back-end such as SQL Server, to a WCF client who requested that data.
While seeking for an answer on that previous question, we have learned, thanks to Slauma and others who contributed through comments, that the time consuming part of Entity Framework's (first) large query is object materialization and attaching entities to the context when the result from the database is returned. We have seen that everything works much faster on subsequent queries.
Assuming those large queries are used as read-only operations, we came to a conclusion that we could set EF MergeOption to NoTracking, yielding better first query performance. What we have done with NoTracking was telling EF to create separate object for each record retrieved from the database - even when they have the same key. This will cause additional processing if we have .Include() statement in our query, which will lead to data with much larger size being returned.
The data may be so big that we could easily ask ourselves - did we really help our cause by using NoTracking option, even if we made the query faster (and maybe only the first one, depending on the number of .Include() statements, because subsequent queries without NoTracking option with multiple .Include() statements run faster simply because NoTracking option causes a lot more objects to be created when data returns from the server)?
The biggest problem is how to efficiently serialize this amount of data - and deserialize it on the client. With serialization already as slow as it is (I am using DataContractSerializer with PreserveObjectReferences set to true because I am sending EF 4.x generated POCOs to my client and vice versa), do we want to generate even more data (thanks to NoTracking)? To be honest, I haven't seen the data originated from the query with NoTracking option on ~11.000 objects not including navigation properties obtained via .Include(), arriving at the client side yet. Last time I tried to pull this off, the timeout of 00:10:00 was triggered (!)
So if you are still reading this wall of text, you tell me how to solve this situation. Which serializer to use in order to achieve acceptable results? Currently, if I don't use the NoTracking option, the serialization, transport and deserialization of ~11.000, via wsHttpBinding-like custom binding on the local machine take ~5 seconds. What's scary to me is that this large table is most likely going to contain ~500.000 records eventually.

Have you considered creating a View Model for your object and doing a projection in the select statement. That should be a lot faster so:
var result = from person in DB.Entities.Persons
.Include("District")
.Include("District.City")
.Include("District.City.State")
.Include("Nationality")
select new PersonViewModel()
{
Name = person.Name,
City = person.District.City,
State = person.District.City.State
Nationality = person.Nationality.Name
};
This would require you to create a ViewModel class to hold the flattened data for the PersonViewModel.
You might be able to further speed up things by creating a database view and letting Entity Framework select directly from there.
If you rally want the front-end to populate a grid with 500.000 records, then I'd remove the webservice layer altogether and use a DataReader to speed up the process. Entity Framework and WCF aren't suitable for transforming the data at a proper performance. What you're basically doing here is:
Database -> TDS -> .NET objects -> XML -> Plain text -> XML -> .NET Objects -> UI
While this could easily be reduced to:
Database -> TDS -> UI
Then use EntityFramwork to handle the changes to the entities in your business logic. This is in line with the Command and Query Separation pattern. Use a technology suitable for high performance querying of data and link that directly to your app. Then use a command strategy to implement your business logic.
OData services might also provide a better way to link your UI directly to the data, as it can be used to quickly query your data allowing you to implement quick filtering without the user really noticing.
If the security settings are prohibiting direct querying through OData or direct access to the SQL database, consider materializing the objects yourself. Select the data directly from either a view or a query and use a IDataReader to directly populate your ViewModel. That will probably give you the highest performance.
There are a lot of alternatives to Entity Framework created especially because EF isn't cut out for large datasets. See FluentData DapperDotNet, Massive or PetaPoco. You might want to use these side-by-side with entity Framework to handle your large, flat data queries.

I use Json.Net's implementation of Bson in my RIA application. More info here.
I yield return an IEnumerable, as I read from the database and serialize the rows. I find the speed to be acceptable and I return Entities with roughly 20 properties. This approach should minimize the concurrent memory use on the server.

Based on what I have gathered by looking at various reviews and performance benchmarks, I would choose protobuf-net as a serializer. It's just a matter of design whether it can be plugged into my service configuration. More info about that here.
Although not completely an answer to this question, jessehouwing had the best answer and I am marking it as accepted.

Related

Benefits of stored procedures vs. other forms of grabbing data from a database [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
What are the pros and cons to keeping SQL in Stored Procs versus Code
Just curious on the advantages and disadvantages of using a stored procedure vs. other forms of getting data from a database. What is the preferred method to ensure speed, accuracy, and security (we don't want sql injections!).
(should I post this question to another stack exchange site?)
As per the answer to all database questions 'it depends'. However, stored procedures definitely help in terms of speed because of plan caching (although properly parameterized SQL will benefit from that too). Accuracy is no different - an incorrect query is incorrect whether it's in a stored procedure or not. And in terms of security, they can offer a useful way of limiting access for users - seeing as you don't need to give them direct access to the underlying tables - you can just allow them to execute the stored procedures that you want. There are, however, many many questions on this topic and I'd advise you to search a bit and find out some more.
There are several questions on Stackoverflow about this problem. I really don't think you'll get a "right" answer here, both can work out very well, and both can work horribly. I think if you are using Java then the general pattern is to use an ORM framework like Hibernate/JPA. This can be completely safe from SQL injection attacks as long as you use the framework correctly. My experience with .Net developers is that they are more likely to use stored procedure backed persistence, but that seems to be more open than it was before. Both NHibernate and other MS technologies seem to be gaining popularity.
My personal view is that in general an ORM will save you some time from lots of verbose coding since it can automatically generate much of the SQL you use in a typical CRUD type system. To gain this you will likely give up a little performance and some flexibility. If your system is low to medium volume (10's of thousands of requests per day) then an ORM will be just fine for you. If you start getting in to the millions of requests per day then you may need something a little more bare metal like straight SQL or stored procedures. Note than an ORM doesn't prevent you from going more direct to the DB, it's just not normally what you would use.
One final note, is that I think ORM persistence makes an application much more testable. If you use stored procedures for much of your persistence then you are almost bound to start getting a bunch of business logic in these. To test them you have to actually persist data and interact with the DB, this makes testing slow and brittle. Using an ORM framework you can either avoid most of this testing or use an in memory DB when you really want to test persistence.
See:
Stored Procedures and ORM's
Manual DAL & BLL vs. ORM
This may be better on the Programmers SE, but I'll answer here.
CRUD stored procedures used to be, and sometimes still are, the best practice for data persistence and retrieval on a SQL DBMS. Every such DBMS has stored procedures, so you're practically guaranteed to be able to use this solution regardless of the coding language and DBMS, and code which uses the solution can be pointed to any DB that has the proper stored procs and it'll work with minimal code changes (there are some syntax changes required when calling SPs in different DBMSes; often these are integrated into a language's library support for accessing SPs on a particular DBMS). Perhaps the biggest advantage is centralized access to the table data; you can lock the tables themselves down like Fort Knox, and dispense access rights for the SPs as necessary to more limited user accounts.
However, they have some drawbacks. First off, SPs are difficult to TDD, because the tools don't really exist within database IDEs; you have to create tests in other code that exercise the SPs (and so the test must set up the DB with the test data that is expected). From a technical standpoint, such a test is not and cannot be a "unit test", which is a small, narrow test of a small, narrow area of functionality, which has no side effects (such as reading/writing to the file system). Also, SPs are one more layer that has to be changed when making a needed change to functionality. Adding a new field to a query result requires changing the table, the retrieval source code, and the SP. Adding a new way to search for records of a particular type requires the statement to be created and tested, then encapsulated in a SP, and the corresponding method created on the DAO.
The new best practice where available, IMO, is a library called an object-relational mapper or ORM. An ORM abstracts the actual data layer, so what you're asking for becomes the code objects themselves, and you query for them based on properties of those objects, not based on table data. These queries are almost always code-configurable, and are translated into the DBMS's flavor of SQL based on one or more "mappings" that you define between the object model and the data model (objects of type A are persisted as records in table B, where this property C is written to field D).
The advantages are more flexibility within the code actually looking for data in the form of these code objects. The criteria of a query is usually able to be customized in-code; if a new query is needed that has a different WHERE clause, you just write the query, and the ORM will translate it into the new SQL statement. Because the ORM is the only place where SQL is actually used (and most ORMs use system stored procs to execute parameterized query strings where available) injection attacks are virtually impossible. Lastly, depending on the language and the ORM, queries can be compiler-checked; in .NET, a library called Linq is available that provides a SQL-ish keyword syntax, that is then converted into method calls that are given to a "query provider" that can translate those method calls into the data store's native query language. This also allows queries to be tested in-code; you can verify that the query used will produce the desired results given an in-memory collection of objects that stands in for the actual DBMS.
The disadvantages of an ORM is that the ORM library is usually language-specific; Hibernate is available in Java, NHibernate (and L2E and L2SQL) in .NET, and a few similar libraries like Pork in PHP, but if you're coding in an older or more esoteric language there's simply nothing of the sort available. Another one is that security becomes a little trickier; most ORMs require direct access to the tables in order to query and update them. A few will tolerate being pointed to a view for retrieval and SPs for updating (allowing segregation of view/SP and table security and the ability to restrict the retrievable fields), but now you're mixing the worst of both worlds; you still have to define mappings, but now you also have code in the data layer. The easiest way to overcome this is to implement your security elsewhere; force applications to get data using a web service, which provides the data using the ORM and has specific, limited "front doors". Also, many ORMs have some performance problems when used in certain ways; most are designed to "lazy-load" data, where data is retrieved the moment it's actually needed and not before, which increases up-front performance when you don't need every record you asked for. However, when you DO need every record you asked for, this creates extra round trips. You have to structure queries in specific ways to get around this expected use-case behavior.
Which is better? You have to decide. I can tell you now that using an ORM is MUCH easier to set up and get working correctly than SPs, and it's much easier to make (and limit the scope of) changes to the schema and to queries. In the modern development house, where the priority is to make it work first, and then make it perform well and/or be secure against intrusion, that's a HUGE plus. In most cases where you think security is an issue, it really isn't, and when security really is an issue, putting the solution in the DB layer is usually the wrong place, because the DBMS is the very last line of defense against intrusion; if the DBMS itself has to be counted on to stop something unwanted from happening, you have failed to do so (or even encouraged it to happen) in many layers of software and firmware above it.

How to go from a full SQL querying to something like a NoSQL?

In one of my process I have this SQL query that take 10-20% of the total execution time. This SQL query does a filter on my Database, and load a list of PricingGrid object.
So I want to improve these performance.
So far I guessed 2 solutions :
Use a NoSQL solution, AFAIK these are good solutions for improving reading process.
But the migration seems hard and needs a lot of work (like import the data from sql server to nosql in a regular basis)
I don't have any knowledge , I even don't know which one I should use (the first I'd use is Ravendb because I follow ayende and it's done by the .net community).
I might have some stuff to change in my model to make my object ok for a nosql database
Load all my PricingGrid object in memory (in a static IEnumerable)
This might be a problem when my server won't have enough memory to load everything
I might reinvent the wheel (indexes...) invented by the NoSQL providers
I think I'm not the first one wondering this, so what would be the best solution ? Is there any tools that could help me ?
.net 3.5, SQL Server 2005, windows server 2005
Migrating your data from SQL is only the first step.
Moving to a document store (like RavenDB or MongoDB) also means that you need to:
Denormalize your data
Perform schema validation in your code
Handle concurrency of complex operations in your code since you no longer have transactions (at least not the same way)
Perform rollbacks in the event of partial commits (changes)
Depending on your updates, reads and network model you might also need to handle conflicts
You provided very limited information but it sounds like your needs include a single database server and that your data fits well in the relational model.
In such a case I would vote against a NoSQL solution, it is more likely that you can speed up your queries with database optimizations and still retain all the added value of a RDBMS.
Non-relational databases are tools for a specific job (no matter how they sell them), if you need them it is usually because your data doesn't fit well in the relational model or if you have a need to distribute your data over multiple machines (size or availability). For instance, I use MongoDB for a write-intensive high throughput job management application. It is centralized and the data is very transient so the "cost" of having low durability is acceptable. This doesn't sound like the case for you.
If prefer to use a NoSQL solution perhaps you should try using Memcached+MySQL (InnoDB) this will allow you to get the speed benefits of an in-memory cache (in the form of a memcached daemon plugin) with the underlying protection and capabilities of an RDBMS (MySQL). It should also ease data migration and somewhat reduce the amount of changes required in your code.
I myself have never used it, I find that I either need NoSQL for the reasons I stated above or that I can optimize the RDBMS using stored procedures, indexes and table views in a way which is sufficient for my needs.
Asaf has provided great information in regards to the usage of NoSQL and when it is most appropriate. Given that your main concern was performance, I would tend to agree with his opinion - it would take you much more time and effort to adopt a completely new (and very different) data persistence platform than it would to trick out your SQL Server cluster. That said, my answer is mainly to address the "how" part of your question.
Addressing misunderstandings:
Denormalizing Data - You do not need to manually denormalize your existing data. This will be done for you when it is migrated over. More than anything you need to simply think about your data in a different fashion - root aggregates, entity and value types, etc.
Concurrency/Transactions - Transactions are possible in both Mongo and Raven, they are simply done in a different fashion. One of the inherent ways Raven does this is by using an ORM-like "unit of work" pattern with its RavenSession objects. Yes, your data validation needs to be done in code, but you already should be doing it there anyway. In my experience this is an over-hyped con.
How:
Install Raven or Mongo on a primary server, run it as a service.
Create or extend an existing application that uses the database you intend to port. This application needs all the model classes/libraries that your SQL database provides persistence for.
a. In your "data layer" you likely have a repository class somewhere. Extract an interface form this, and use it to build another repository class for your Raven/Mongo persistence. Both DB's have plenty good documentation for using their APIs to push/pull/update changes in the document graphs. It's pretty damn simple.
b. Load your SQL data into C# objects in memory. Pull back your top-level objects (just the entities) and load their inner collections and related data in memory. Your repository is probably already doing this (ex. when fetching an Order object, ensure not only its properties but associated collections like Items are loaded in memory.
c. Instantiate your Raven/Mongo repository and push the data to it. Primary entities become "top level documents" or "root aggregates" serialized in JSON, and their collections' data nested within. Save changes and close the repository. Note: You may break this step down into as many little pieces as your data deems necessary.
Once your data is migrated, play around with it and ensure you are satisfied. You may want to modify your application Models a little to adjust the way they are persisted to Raven/Mongo - for instance you may want to make both Orders and Items top-level documents and simply use reference values (much like relationships in RDBMS systems). Watch out here though, as doing so sort-of goes against the principal and performance behind NoSQL as now you have to tap the DB twice to get the Order and the Items.
If satisfied, shard/replicate your mongo/raven servers across your remaining available server boxes.
Obviously there are tons of little details I did not explain, but that is the general process, and much of it depends on the applications already consuming the database and may be tricky if more than one app/system talks to it.
Lastly, just to reiterate what Asaf said... learn as much as you can about NoSQL and its best use-cases. It is an amazing tool, but not golden solution for all data persistence. In your case try to really find the bottlenecks in your current solution and see if they are solvable. As one of my systems guys says, "technology for technology's sake is bullshit"

Avoid loading unnecessary data from db into objects (web pages)

Really newbie question coming up. Is there a standard (or good) way to deal with not needing all of the information that a database table contains loaded into every associated object. I'm thinking in the context of web pages where you're only going to use the objects to build a single page rather than an application with longer lived objects.
For example, lets say you have an Article table containing id, title, author, date, summary and fullContents fields. You don't need the fullContents to be loaded into the associated objects if you're just showing a page containing a list of articles with their summaries. On the other hand if you're displaying a specific article you might want every field loaded for that one article and maybe just the titles for the other articles (e.g. for display in a recent articles sidebar).
Some techniques I can think of:
Don't worry about it, just load everything from the database every time.
Have several different, possibly inherited, classes for each table and create the appropriate one for the situation (e.g. SummaryArticle, FullArticle).
Use one class but set unused properties to null at creation if that field is not needed and be careful.
Give the objects access to the database so they can load some fields on demand.
Something else?
All of the above seem to have fairly major disadvantages.
I'm fairly new to programming, very new to OOP and totally new to databases so I might be completely missing the obvious answer here. :)
(1) Loading the whole object is, unfortunately what ORMs do, by default. That is why hand tuned SQL performs better. But most objects don't need this optimization, and you can always delay optimization until later. Don't optimize prematurely (but do write good SQL/HQL and use good DB design with indexes). But by and large, the ORM projects I've seen resultin a lot of lazy approaches, pulling or updating way more data than needed.
2) Different Models (Entities), depending on operation. I prefer this one. May add more classes to the object domain, but to me, is cleanest and results in better performance and security (especially if you are serializing to AJAX). I sometimes use one model for serializing an object to a client, and another for internal operations. If you use inheritance, you can do this well. For example CustomerBase -> Customer. CustomerBase might have an ID, name and address. Customer can extend it to add other info, even stuff like passwords. For list operations (list all customers) you can return CustomerBase with a custom query but for individual CRUD operations (Create/Retrieve/Update/Delete), use the full Customer object. Even then, be careful about what you serialize. Most frameworks have whitelists of attributes they will and won't serialize. Use them.
3) Dangerous, special cases will cause bugs in your system.
4) Bad for performance. Hit the database once, not for each field (Except for BLOBs).
You have a number of methods to solve your issue.
Use Stored Procedures in your database to remove the rows or columns you don't want. This can work great but takes up some space.
Use an ORM of some kind. For .NET you can use Entity Framework, NHibernate, or Subsonic. There are many other ORM tools for .NET. Ruby has it built in with Rails. Java uses Hibernate.
Write embedded queries in your website. Don't forget to parametrize them or you will open yourself up to hackers. This option is usually frowned upon because of the mingling of SQL and code. Also, it is the easiest to break.
From you list, options 1, 2 and 4 are probably the most commonly used ones.
1. Don't worry about it, just load everything from the database every time: Well, unless your application is under heavy load or you have some extremely heavy fields in your tables, use this option and save yourself the hassle of figuring out something better.
2. Have several different, possibly inherited, classes for each table and create the appropriate one for the situation (e.g. SummaryArticle, FullArticle): Such classes would often be called "view models" or something similar, and depending on your data access strategy, you might be able to get hold of such objects without actually declaring any new class. Eg, using Linq-2-Sql the expression data.Articles.Select(a => new { a .Title, a.Author }) will give you a collection of anonymously typed objects with the properties Title and Author. The generated SQL will be similar to select Title, Author from Article.
4. Give the objects access to the database so they can load some fields on demand: The objects you describe here would usaly be called "proxy objects" and/or their properties reffered to as being "lazy loaded". Again, depending on your data access strategy, creating proxies might be hard or easy. Eg. with NHibernate, you can have lazy properties, by simply throwing in lazy=true in your mapping, and proxies are automatically created.
Your question does not mention how you are actually mapping data from your database to objects now, but if you are not using any ORM framework at the moment, do have a look at NHibernate and Entity Framework - they are both pretty solid solutions.

NHibernate latency is very high

I am using NHibernate for ORM and have consolidated the loading of lots of entities into one big query.
I am actually loading a word dictionary, around 500K entries, and each word relates to others. Running the loading process in the background could be very tricky in our application, as we would have to manually load an entry that has not been loaded on time, as any word could be asked for at any time. Our only requirements are that all the data be loaded as fast as possible.
I also tried using a stateless session, but got an exception that stateless sessions can't fetch collections (for some reason, maybe it has to do with the fact there is no cache for stateless sessions?)
The problem is that although the query takes no more than 25 seconds in SQLServer, it takes well over 3 minutes for ICriteria.List().
I used NHProf to profile the loading process and found that the creation of the entities is a costly affair, which takes up most of the loading time in NHibernate.
Is there anything I could do to reduce this latency? Is the memory allocation expensive, or is it the "filling in" of the data?
Thanks!
Perhaps you should consider the fact that NHibernate (like most ORMs) is not particularly suited (or intended) for these types of bulk-loading scenarios. How many rows are you trying to load, give or take? What are you trying to do? Pre-populate a cache? Do batch-like processing?
My gut feeling is that you should seriously consider the purpose of your app and choose the underlying technologies accordingly. Perhaps you can shed some light on your intentions/requirements?
EDIT OK, from your comments I understand what it is you're trying to do here. The first thing I'd do is create a simple prototype using raw ADO.NET to load the same data, to get a feel for the best performance attainable using standard data access and in-memory collections. Next, fiddle around with different collection types to see what performs well when populating and searching. If loading data like this is still too slow, it's time to start looking at other methods of loading the data: file-based from a local data file, hydrating pre-serialized objects, some form of fast on-demand loading, etc.
Loading 500k entities into an NHibernate session is not a good idea. The session is made to be short lived and hold a relatively small number of entities.
If you want to do this kind of batch processing in NHibernate you should take a look at the StatelessSession instead of the ordinary session. Using a stateless session would most likely drastically improve performance in this scenario. However, when using a stateless session you lose the benefits of the NHibernate first level cache, such as change tracking.
More information about the StatelessSession can be found in this article and in the NH docs at nhibernate.info.
In this scenario I would also recommend that you consider using straight ADO.NET instead of NHibernate. I am not saying that you should switch you whole data access strategy to ADO.NET but you might want to consider using ADO.NET for the batch operations and using NHibernate for the other cases.
Profiling the creation process (for example with the VS performance analyser) should tell you exactly what is the costly operation. If you have played already with lazy loading tuning then I think the only good solution is to encapsulate the returned list to enable paging an return smaller chunks in a few iterations. I am not sure whether NHibernate support lazy result lists like JPA does (i.e. not loading entities from data reader until needed).

Which approach to create the data access layer has the highest performance?

I have to create a very high performance application. Currently, I am using Entity Framework for my data access layer. My application has to insert some communication data almost every second. I found that Entity Framework is slow; it has about 2 seconds delay to finish the SaveChanges() method.
I was thinking I have the following options:
1. Create the data access layer myself using ADO.NET; using stored procedures or ad-hoc queries
2. Use Enterprise Library Data access Layer
3. Use NHibernate
4. Use Repository Factory: http://pooyakhamooshi.blogspot.com/search?q=repository
What do you think? which one is quicker for inserting data? Which one is quicker to set up?
If it's only a question of performance, it's impossible to go past using ADO.NET directly because every framework that you will use will use ADO.NET under the scenes. The performance gain has to be worth it though, and unless you're inserting millions upon millions of records, it's not likely to be worth it.
I would suggest you look at profiling your application to see why your application is taking 2 seconds to save information, it shouldn't be that slow. Maybe you've got an n + 1 performance problem. Fixing this will probably give you the performance you want using Entity Framework (or any other standard DAL for that matter). Focus your efforts on that.
Plain ADO.NET again depends how you'd implement it but performance-wise it should be the best but would take longer to develop it.
I found this site very helpful: http://ormbattle.net/
BLToolkit seems to be the best free ORM tool performance-wise; it's the first time I've heard of it!