Plot a graph of Time vs RSSI for a 433Mhz RF ASK Receiver - embedded

Hi Im using the following RF module
http://www.apogeekits.com/rf_receiver_module_rx433.htm
on an embedded board with the PIC16F628A. Sadly, I realized that the signal strength was in analog form and couldn't get any ideas to get the RSSI reading off the pin because well my PIC is digital DUH!.
My basic idea was
To get the RSSI value from my Receiver
Send it to the PIC
Link the PIC to a PC via RS232
Plot a graph of time vs RSSI of the receiver (so I can make out how close my TX is to my RX)
I thought it was bloody brilliant at first but ive hit a dead end here. Any ideas on getting the RSSI data to my PC from this receiver would be nice.
Thanks in Advance

You can get a PIC that has an integrated ADC for sampling the analog signal. Or, you can use an external ADC chip to do the conversion. You would connect that to your PIC using SPI or I2C.

The simplest thing to do is obviously to use a more appropriate microcontroller - one with an ADC! There are many (most), including PICs (though that wouldn't be my first choice).
Attaching an external SPI or I2C ADC might be a bit tedious since having no SPI or I2C on your part, you'd have to bit-bash it. If you do that, use an SPI part - its simpler. Your sample rate will suffer and may end-up being a bit jittery if you are not careful.
Another solution is to use a voltage controlled PWM, then use the timer input capture to time the pulse width. That will give you good regularity and potentially good resolution. You can get a chip (example) to do that, or grow your own. That last option requires a triangle wave input as well as the measured (control) voltage, but on the same site...
In a similar vein, you could use a low frequency VCO (example) and use the output to clock one of the timers, then using a second timer periodically sampling the first and reset it. The count will relate to the voltage, though not necessarily a linear relationship, linearisation could be none on the PIC or at the receiving PC - I'd go for the latter - your micro will suck at arithmetic (performance wise) - even integer arithmetic, especially if it involves division.

Related

How to log a particular address from an STM32 NUCLEO-F334R8 with an inbuilt ST-LINK in real time using SWD & openOCD without halting the processor?

I am trying to learn how to debug an MCU non-intrusively using SWD & openOCD.
while (1)
{
my_count++;
HAL_GPIO_TogglePin(LD2_GPIO_Port,LD2_Pin);
HAL_Delay(750);
}
The code running on my MCU has a free running counter "my_count" . I want to sample/trace the data stored in the address holding "my_count" in real time :
I was doing it this way:
while(1){// generic algorithm no specific language
mdw 0x00000000200000ac; //openOCD command to read from an address
}
0x200000ac is the address of the variable my_count from the .map file.
But, this method is very slow and experiences data drops at high frequencies.
Is there any other way to trace the data at high frequencies without experiencing data drops?
I made some napkin math, and I have an idea that may work.
As per Reference Manual, page 948, the max baud rate for UART of STM32F334 is 9Mbit/s.
If we want to send memory at the specific address, it will be 32 bits. 1 bit takes 1/9Mbps or 1.111*10^(-7)s, multiply that by 32 bits, that makes it 3.555 microseconds. Obviously, as I said, it's purely napkin math. There are start and stop bits involved. But we have a lot of wiggle room. You can easily fit 64 bits into transmission too.
Now, I've checked with the internet, it seems the ST-Link based on STM32F103 can have max baud rate of 4.5Mbps. A bummer, but we simply need to double our timings. 3.55*2 = 7.1us for 32-bit and 14.2us for 64-bit transmission. Even given there is some start and stop bit overhead, we still seem to fit into our 25us time budget.
So the suggestion is the following:
You have a timer set to 25us period that fires an interrupt, that activates DMA UART transmission. That way your MCU actually has very little overhead since DMA will autonomously handle the transmission, while your MCU can do whatever it wants in the meantime. Entering and exiting the timer ISR will be in fact the greatest part of the overhead caused by this, since in the ISR you will literally flip a pair of bits to tell DMA to send stuff over UART # 4.5Mbps.

Max number encoder pulses through interrupt change on PorB

I am using a 16F877A pic with 20MHz crystal and a change interruption on portB, pin 6-7 connected to an encoder. I'm using the encoder to calculate the velocity of a wheel and I have a doubt about the maximum ppr that I can use to avoid the program to stop or freeze? Thanks
I watched a student have this problem in a lab next to me.
Without interrupt shadow registers, you'll find the maximum quadrature decoding rate probably slower than you want. IIRC under 100000pps
You can measure it easily by running your wheel backwards and forwards with a motor and going faster until the counts for forward and reverse passes no longer line up.
Microchip recommend using the PIC16F18877 in new designs, which has automatic register shadowing on interrupt. All the 18 series PIC have this feature too and it raises the rate significantly to IIRC over 200000pps.
I'm sorry I can't give hard numbers, the exact figures are at an earlier employer.

Simple robust error correction for transmission of ascii over serial (RS485)

I have a very low speed data connection over serial (RS485):
9600 baud
actual data transmission rate is about 25% of that.
The serial line is going through an area of extremely high EMR. Peak fluctuations can reach 3000 KV.
I am not in the position (yet) to force a change in the physical medium, but could easily offer to put in a simple robust forward error correction scheme. The scheme needs to be easy to implement on a PIC18 series micro.
Ideas?
This site claims to implement Reed-Solomon on the PIC18. I've never used it myself, but perhaps it could be a helpful reference?
Search for CRC algorithm used in MODBUS ASCII protocol.
I develop with PIC18 devices and currently use the MCC18 and PICC18 compilers. I noticed a few weeks ago that the peripheral headers for PICC18 incorrectly map the Busy2USART() macro to the TRMT bit instead of the TRMT2 bit. This caused me major headaches for short time before I discovered the problem. Example, a simple transmission:
putc2USART(*p_value++);
while Busy2USART();
putc2USART(*p_value);
When the Busy2USART() macro was incorrectly mapped to the TRMT bit, I was never waiting for bytes to leave the shift register because I was monitoring the wrong bit. Before I realized the inaccurate header file, the only way I was able to successfully transmit a byte over 485 was to wait 1 ms between bytes. My baud rate was 91912 and the delays between bytes killed my throughput.
I also suggest implementing a means of collision detection and checksums. Checksums are cheap, even on a PIC18. If you are able to listen to your own transmissions, do so, it will allow you to be aware of collisions that may result from duplicate addresses on the same loop and incorrect timings.

Send and receive data trough the power network

I'm not interested in a hardware solution, I want to know about software that may "read" modulated signal received trough the power supply - some sort of a low-level driver that would access the power signal in a convenient place and demodulate it.
Is there a way to receive signal from the computer's power supply? I'm interested in an API or library that would allow the computer to be seen as a node in a Power Line Communication network and receive data directly through the power cable, without the need for a converter. Is there any active research in this field?
Edit:
There is software that reads monitors and displays internal component voltages - DC voltage after being converted and filtered by the power supply - now I need is a method of data encoding that would be invariant to conversion and filtering, the original signal embedded in AC being present in some form within the converted DC signal.
This is not possible, as described in the question. Yes, with extra hardware you can do it. No, with the standard hardware in a PC, you could not.
As others have noted, among other problems, the only information you can get from a generic PC is a bit of voltage info for the CPU. It's not going to give a picture of the AC signal, nor any signal modulated on top of it. You'll be watching a few highly regulated DC signals deep inside the computer, probably converted at a relatively low rate too. Almost by definition, if you could see external information on any of those signals, your machine is already suffering a hardware failure and chances are the CPU will be crashing soon...
*blink* No...
Edit: I mean, there's the possibility to use the powerlines as network cables, but only with special adapters. And it is just designed for home networks.
Edit2: You can't read something from the power supply of a computer...it's not designed for that. You would have to create your own component/adapter for this.
Am I mis-reading this? Wouldnt this be a pure hardware solution?
This is highly improbable without adding some hardware.
You see, the power supplies in a regular PC are switching power supplies which effectively decouple the AC input from the supplied DC voltage needed on the PC side. The AC side just basically provides power that fuels the high-speed power switching circuitry.
Also, a DC signal, by definition, doesn't provide a signal per se: it is a "static" power level (and yes the power level does vary a bit in the time domain but not as an easy to leverage function).
Yes there can be an AD (Analog to Digital) monitoring chip that can be used on the PC side to read the voltage of the DC component supplied to the motherboard etc., but that doesn't mean there is still a signal that can be harvested: the original power line "signal" might have been through enough filters that there isn't a "signal" left to be processed.
Lastly, one needs to consider that power supplies design varies from company to company; this fact will undoubtedly affect any possible design of a communication solution.
what you describe is possible but unfortunately, you need an adapter to convert the signal running on the powerlines to sensible network traffic.
the power line acts as a physical medium, thus is at the lowest level f the OSI stack. conversion from electrical signal to sensible network traffic requires a hardware adapter, same for your an ethernet adapter. your computer is unable to understand this traffic since its power supply was not build to transmit those informations. but note that you can easily find an adapter and it will works the same as an ethernet adapter, that is be accessible through the standard BSD socket library.
This is ENTIRELY possible, although you would need to either buy or build some hardware to make it happen. In addition, the software solution would be very, very complex.
The computer's power supply would be out of the picture for the most part. You need to read data straight from the wall with as little extraneous noise as possible. From the electrical engineering perspective, this is a very thoroughly covered topic. In the end, all you're really doing is an analog to digital conversion, and the rest keeps your circuit from being fried.
The software solution would basically be eliminating random noise, and looking for embedded signals. The math behind analog signal analysis is very complex, and you can spend a few semesters in college covering the topic, and the rest of your career trying to master it. If you're good at it, there's a cushy job for you on wallstreet predicting the stock market.
And that only covers reading incoming signals. Transmitting is a whole 'nother sport.
Now, it also sounds like you might be interested in a hack. That is...
You could buy a
commercial-off-the-shelf power-line
Ethernet adapter and tear it apart.
They have two prongs that plug into
a standard wall outlet. You could
remove these and wire them to the
INSIDE of a power supply.
To do that, you'd have to tear apart a power
supply as well, which is incredibly
dangerous and I hereby warn you and
anyone else to NEVER attempt this.
The entire Ethernet adapter could be
tucked into the power supply and you
could basically have an Ethernet
port on the surface of your power
supply (either inside or outside the
computer).
Simply wire that to a
standard Ethernet adapter and voila
(!), you have nothing but a power
cable connecting your computer to
the wall outlet, AND you magically have
Ethernet!
Note that there also has to be another power-line
Ethernet adapter somewhere else for
you to establish a network and make the whole project useful.
How can you read modulated data from the power supply, you are talking about voltage and ohms and apart from a possible electrical shock which would be just shocking :) There are specialized electrical plugs with ethernet jacks in them that you can use.
I just hazard a guess that this is totally transparent as per Adrien Plisson's answer, i.e. you would have all of the OSI layer and is no different. You can write code to read from the sockets.
AFAIK no company that produces this electrical plug would ever open up the API for competition reasons, it is still in early stages as adoption of that is low because obviously it is very expensive (120 euro here in my country for a pair of 'em), as it does not deliver the quoted speed, say 100Mbps power plug, may get maybe 85Mbps due to varying situations and phenomena with power (think surges, brown outs, interference).
My 2cents.
Hope this helps,
Best regards,
Tom.

Lighting Control with the Arduino

I'd like to start out with the Arduino to make something that will (preferably) dim my room lights and turn on some recessed lighting for my computer when a button or switch is activated.
First of all, is this even possible with the Arduino?
Secondly, how would I switch on and off real lights with it? Some sort of relay, maybe?
Does anyone know of a good tutorial or something where at least parts of this are covered? I'll have no problems with the programming, just don't know where to start with hardware.
An alternative (and safer than playing with triacs – trust me I've been shocked by one once and that's enough!) is to use X-10 home automation devices.
There is a PC (RS232) device (CM12U UK or CM11 US) you can get to control the others. You can also get lamp modules that fit between your lamp and the wall outlet which allows you to dim the lamp by sending signals over the mains and switch modules which switch loads on and off.
The Arduino has a TTL level RS232 connector (it's basically what the USB connection uses) – Pins 0 and 1 on the Diecimila so you could use that, connect it via a level converter which you can buy or make and connect to the X-10 controller, theirs instructions on the on the Arduino website for making a RS232 port.
Alternatively you could use something like the FireCracker for X-10 which uses 310MHz (US) or 433MHz (UK) and have your Arduino send out RF signals which the TM12U converts into proper X-10 mains signals for the dimmers etc.
In the US the X-10 modules are really cheep as well (sadly not the case in the UK).
Most people do it using triacs. A triac is like two diodes in anti-parallel (in parallel, but with their polarity reversed) with a trigger pin. A triac conducts current in either direction only when it's triggered. Once triggered, it acts as a regular diode, it continues to conduct until the current drops bellow its threshold.
You can see it as a bi-directional switch on a AC line and can vary the mean current by triggering it in different moments relative to the moment the AC sine-wave crosses zero.
Roughly, it works like this: At the AC sine-wave zero, your diodes turn off and your lamp doesn't get any power. If you trigger the diodes, say, halfway through the sine's swing, you lamp will get half the normal current it would get, so it lights with half of it's power, until the sine-wave crosses zero again. At this point you start over.
If you trigger the triac sooner, your lamp will get current for a longer time interval, glowing brighter. If you trigger your triac latter, your lamp glows fainter.
The same applies to any AC load.
It is almost the same principle of PWM for DC. You turn your current source on and off quicker than your load can react, The amount of time it is turned on is proportional to the current your load will receive.
How do you do that with your arduino?
In simple terms you must first find the zero-crossing of the mains, then you set up a timer/delay and at its end you trigger the triac.
To detect the zero-crossing one normally uses an optocoupler. You connect the led side of the coupler with the mains and the transistor side with the interrupt pin of your arduino.
You can connect your arduino IO pins directly to the triacs' triggers, bu I would use another optocoupler just to be on the safe side.
When the sine-wave approaches zero, you get a pulse on your interrupt pin.
At this interrupt you set up a timer. the longer the timer, the less power your load will get. You also reset your triacs' pins state.
At this timers' interrupt you set your IO pins to trigger the triacs.
Of course you must understand a little about the hardware side so you don't fry your board, and burn your house,
And it goes without saying you must be careful not to kill yourself when dealing with mains AC =).
HERE is the project that got me started some time ago.
It uses AVRs so it should be easy to adapt to an arduino.
It is also quite complete, with schematics.
Their software is a bit on the complex side, so you should start with something simpler.
There is just a ton of this kind of stuff at the Make magazine site. I think you can even find some examples of similar hacks.
I use MOSFET for dimming 12V LED strips using Arduino. I chose IRF3710 for my project with a heat sink to be sure, and it works fine. I tested with 12V halogen lamp, it worked too.
I connect PWM output pin from Arduino directly to mosfet's gate pin, and use analogWrite in code to control brightness.
Regarding 2nd question about controlling lights, you can switch on/off 220V using relays, as partially seen on my photo, there are many boards for this, I chose this:
As a quick-start, you can get yourself one of those dimmerpacks (50-80€ for four lamps).
then build the electronics for the arduino to send DMX controls:
Arduino DMX shield
You'll get yourself both the arduino-expirience + a good chance of not frying your surrounding with higher voltage..