Send and receive data trough the power network - api

I'm not interested in a hardware solution, I want to know about software that may "read" modulated signal received trough the power supply - some sort of a low-level driver that would access the power signal in a convenient place and demodulate it.
Is there a way to receive signal from the computer's power supply? I'm interested in an API or library that would allow the computer to be seen as a node in a Power Line Communication network and receive data directly through the power cable, without the need for a converter. Is there any active research in this field?
Edit:
There is software that reads monitors and displays internal component voltages - DC voltage after being converted and filtered by the power supply - now I need is a method of data encoding that would be invariant to conversion and filtering, the original signal embedded in AC being present in some form within the converted DC signal.

This is not possible, as described in the question. Yes, with extra hardware you can do it. No, with the standard hardware in a PC, you could not.
As others have noted, among other problems, the only information you can get from a generic PC is a bit of voltage info for the CPU. It's not going to give a picture of the AC signal, nor any signal modulated on top of it. You'll be watching a few highly regulated DC signals deep inside the computer, probably converted at a relatively low rate too. Almost by definition, if you could see external information on any of those signals, your machine is already suffering a hardware failure and chances are the CPU will be crashing soon...

*blink* No...
Edit: I mean, there's the possibility to use the powerlines as network cables, but only with special adapters. And it is just designed for home networks.
Edit2: You can't read something from the power supply of a computer...it's not designed for that. You would have to create your own component/adapter for this.

Am I mis-reading this? Wouldnt this be a pure hardware solution?

This is highly improbable without adding some hardware.
You see, the power supplies in a regular PC are switching power supplies which effectively decouple the AC input from the supplied DC voltage needed on the PC side. The AC side just basically provides power that fuels the high-speed power switching circuitry.
Also, a DC signal, by definition, doesn't provide a signal per se: it is a "static" power level (and yes the power level does vary a bit in the time domain but not as an easy to leverage function).
Yes there can be an AD (Analog to Digital) monitoring chip that can be used on the PC side to read the voltage of the DC component supplied to the motherboard etc., but that doesn't mean there is still a signal that can be harvested: the original power line "signal" might have been through enough filters that there isn't a "signal" left to be processed.
Lastly, one needs to consider that power supplies design varies from company to company; this fact will undoubtedly affect any possible design of a communication solution.

what you describe is possible but unfortunately, you need an adapter to convert the signal running on the powerlines to sensible network traffic.
the power line acts as a physical medium, thus is at the lowest level f the OSI stack. conversion from electrical signal to sensible network traffic requires a hardware adapter, same for your an ethernet adapter. your computer is unable to understand this traffic since its power supply was not build to transmit those informations. but note that you can easily find an adapter and it will works the same as an ethernet adapter, that is be accessible through the standard BSD socket library.

This is ENTIRELY possible, although you would need to either buy or build some hardware to make it happen. In addition, the software solution would be very, very complex.
The computer's power supply would be out of the picture for the most part. You need to read data straight from the wall with as little extraneous noise as possible. From the electrical engineering perspective, this is a very thoroughly covered topic. In the end, all you're really doing is an analog to digital conversion, and the rest keeps your circuit from being fried.
The software solution would basically be eliminating random noise, and looking for embedded signals. The math behind analog signal analysis is very complex, and you can spend a few semesters in college covering the topic, and the rest of your career trying to master it. If you're good at it, there's a cushy job for you on wallstreet predicting the stock market.
And that only covers reading incoming signals. Transmitting is a whole 'nother sport.
Now, it also sounds like you might be interested in a hack. That is...
You could buy a
commercial-off-the-shelf power-line
Ethernet adapter and tear it apart.
They have two prongs that plug into
a standard wall outlet. You could
remove these and wire them to the
INSIDE of a power supply.
To do that, you'd have to tear apart a power
supply as well, which is incredibly
dangerous and I hereby warn you and
anyone else to NEVER attempt this.
The entire Ethernet adapter could be
tucked into the power supply and you
could basically have an Ethernet
port on the surface of your power
supply (either inside or outside the
computer).
Simply wire that to a
standard Ethernet adapter and voila
(!), you have nothing but a power
cable connecting your computer to
the wall outlet, AND you magically have
Ethernet!
Note that there also has to be another power-line
Ethernet adapter somewhere else for
you to establish a network and make the whole project useful.

How can you read modulated data from the power supply, you are talking about voltage and ohms and apart from a possible electrical shock which would be just shocking :) There are specialized electrical plugs with ethernet jacks in them that you can use.
I just hazard a guess that this is totally transparent as per Adrien Plisson's answer, i.e. you would have all of the OSI layer and is no different. You can write code to read from the sockets.
AFAIK no company that produces this electrical plug would ever open up the API for competition reasons, it is still in early stages as adoption of that is low because obviously it is very expensive (120 euro here in my country for a pair of 'em), as it does not deliver the quoted speed, say 100Mbps power plug, may get maybe 85Mbps due to varying situations and phenomena with power (think surges, brown outs, interference).
My 2cents.
Hope this helps,
Best regards,
Tom.

Related

Hacking computer hardware to do experiment control

I am a physicist, and I had a revelation a few weeks ago about how I might be able to use my personal computer to get much finer control over laboratory experiments than is typically the case. Before I ran off to try this out though, I wanted to check the feasibility with people who have more expertise than myself in such matters.
The idea is to use the i/o ports---VGA, ethernet, speaker jacks, etc.---on the computer to talk directly to the sensors and actuators in the experimental setup. E.g. cut open one side of an ethernet cable (with the other end attached to the computer) and send each line to a different device. I knew a postdoc who did something very similar using a BeagleBone. He wrote some assembly code that let him sync everything with the internal clock and used the GPIO pins to effectively give him a hybrid signal generator/scope that was completely programmable. It seems like the same thing should be possible with a laptop, and this would have the additional benefit that you can do data analysis from the same device.
The main potential difficulty that I foresee is that the hardware on a BeagleBone is designed with this sort of i/o in mind, whereas I expect the hardware on a laptop will probably be harder to control directly. I know for example (from some preliminary investigation, http://ask.metafilter.com/125812/Simple-USB-control-how-to-blink-an-LED-via-code) that USB ports will be difficult to access this way, and VGA is (according to VGA 15 pin port data read and write using Matlab) impossible. I haven't found anything about using other ports like ethernet or speaker jacks, though.
So the main question is: will this idea be feasible (without investing many months for each new variation of the hardware), and if so what type of i/o (ethernet, speaker jacks, etc.) is likely to be the best bet?
Auxiliary questions are:
Where can I find material to learn how I might go about executing this plan? I'm not even sure what keywords to plug in on Google.
Will the ease with which I can do this depend strongly on operating system or hardware brand?
The only cable I can think of for a pc that can get close to this would be a parallel printer cable which is pretty much gone away. It's a 25 wire cable that data is spread across so that it can send more data at the same time. I'm just not sure if you can target a specific line or if it's more of a left to right fill as data is sent.
To use one on a laptop today would definitely be difficult. You won't find any laptops with parallel ports. There are usb to parallel cables and serial to parallel cables but I would guess that the only control you would have it to the usb or serial interface and not the parallel.
As for Ethernet, you have 4 twisted pair with only 2 pair in use and 2 pair that are extra.
There's some hardware that available called Zwave that you might want to look into. Zwave will allow you to build a network of devices that communicate in a mesh. I'm not sure what kind of response time you need.
I actually just thought of something that might be a good solution. Check out security equipment. There's a lot of equipment available for pc's that monitor doors, windows, sensors, etc. That industry might what your looking for.
I think the easiest way would be to use the USB port as a Human Interface Device (HID) and using a custom built PIC program and a PIC that includes the USB functionality to encode the data to be sent to the computer and in that way be able to program it independently from the OS due to the fact that all mayor OS have the HID USB functionality.
Anyways if you used your MIC/VGA/HDMI whatever other port you still need a device to encode the data or transmit it, and another program inside the computer to decode that data being sent.
And remember that different hardware has different software (drivers) that might decode the raw data in other odd ways rendering your IO hardware dependent.
Hope this helps, but thats why the USB was invented in the first place to make it hardware and os independent.

Is it possible to have CAN on Arduino without extra hardware?

I would like to have Arduino operating in a CAN network. Does the software that provides OSI model network layer exist for Arduino? I would imagine detecting the HI/LOW levels with GPIO/ADC and sending the signal to the network with DAC. It would be nice to have that without any extra hardware attached. I don't mind to have a terminating resistor required by the CAN network though.
By Arduino I mean any of them. My intention is to keep the development environmen.
If such a software does not exist, is there any technical obstacle for that, like limited flash size (again, I don't mean particular board with certain Atmega chip).
You can write a bit banging CAN driver, but it has many limitations.
First it's the timeing, it's hard to achieve the bit timing and also the arbitration.
You will be able to get 10kb or perhaps even 50kb but that consumes a huge amount of your cpu time.
And the code itself is a pain.
You have to calculate the CRC on the fly (easy) but to implement the collision detection and all the timing parameters is not easy.
Once, I done this for a company, but it was a realy bad idea.
Better buy a chip for 1 Euro and be happy.
There are several CAN Bus Shield boards available (e.g: this, and this), and that would be a far better solution. It is not just a matter of the controller chip, the bus interface, line drivers, and power all need to be considered. If you have the resources and skills you can of course create your own board or bread-board for less.
Even if you bit-bang it via GPIO you would need some hardware mods I believe to handle bus contention detection, and it would be very slow and may not interoperate well with "real" CAN controllers on the bus.
If your aim is to communicate between devices of your own design rather than off-the shelf CAN devices, then you don't need CAN for that, and something proprietary will suffice, and a UART will perform faster that a bit-banged CAN implementation.
I don't think, that such software exists. CAN bus is more complex, than for example I2C. Basically you would have to implement functionality of both CAN controller and CAN transceiver. See this thread for more details (in German).
Alternatively you could use one of the CAN shields. Another option were to use BeagleBone with suitable CAN cape.
Also take a look at AVR-CAN.

Is hardware impossible to debug without software?

Disclaimer: I am (mostly) hardware ignorant. This is probably my problem. However I find it hard to accept that it is not possible to debug hardware so therefore I just wanted to get some second opinions.
We have an issue. Where certain actions (swapping Usb devices in and out at run-time) can blow either the Usb hub or chip on our Usb board (it's custom hardware). It's a fuzzy problem (it appears that the degree of "blownness" can vary a bit) and the problem manifests itself in intermittent fashions with various symptoms that are very difficult to reliably reproduce (typically random corruption of packets).
This results in difficulty in ascertaining if a newly reported problem is due to this hardware fault or is actually a bug in the software. We have since implemented protection on these devices but if an unprotected device is used with a protected device it has a possibility of then tainting the (now protected) device. One of the ports is also not protected meaning that someone could still "kill off" a unit that should be safe by accidentally using the wrong port.
The upshot of this is that it is impossible to tell which of our devices suffer this issue without completely replacing ALL the hardware (we've bitten the bullet for most of our production hardware but there is still a lot of dev and QA hardware out there with this issue).
I would imagine that it could be possible, given a piece of hardware that one could use some kind of hardware diagnostics tools to determine whether the kit is faulty or not. Am I living in a dream world? My hardware department tell me that the only tests that can prove the fault would be software tests... but as I have stated the symptoms are very difficult to reproduce. As I'm not that experienced with hardware I don't know if this is the only answer or not. I therefore ask the world.
Built In Test Equipment is used for performing a Built In Test
BITE for BIT
(No bytes involved.)
It is completely, utterly normal for military/aerospace equipment to have extra hardware to test itself with.
The original IBM PC hard a surprising quantity of test hardware built in.
In the case of your equipment, a test device and some statistical analysis would do the trick.
This could be done in hardware in a dongle, but frankly would be easier to with some software.
Use two back-to-back USB to RS232 serial converters to make a USB loopback device.
Send lots of data , checksum packets and measure error rates.
I'm assuming your errors occur on the in->out as well as the out-<in side.
Really, your hardware guys need to look at some application notes; USB IS hotplug-safe IF done according to the book.
There is a cool example out on the net of opto-coupling a USB chip's connection to the board it's onto prevent this sort of thing. The USB chip is connected to the host, powered from the host, and the interface to the USB chip is SPI, which is opto-coupled back to the rest of the board.
As for you, the chips are failing partially. Injured devices may work fine for months then die. An electro-static discharge ("a static zap") can do the same thing that you describe. A device can be injured by shocks too small for you to feel.
The wires and features in semiconductors are microscopic, and easily damaged by stray electricity.
If the hardware design is mostly right probably the liekly cause of the problems you've been experiancing is ESD when the devices are handled to plug/unplug. Your devie has it's own power supply and it's ground voltage floats relative to the other end of the USB cable, until it is connected.
Hope this helps.
No it's not.
A lot of hardware manufacturers begin with hardware testing. Inputs and outputs (IO) is just a matter of evaluating where circuit flow is going. Consider the abstraction that both software and hardware deal in boolean operations.
Hardware is just a little less human readable!
When it comes down to it, hardware's line of communication is (at its most basic) HIGH and LOW through various pins.
I have a brother (in the automobile tech industry) who has used and electrometer to measure voltage on pins to isolate where the problem is (I'm not really smart enough in that field to go into more detail on how he does it).
Your problem is that the only known symptom is so hard to detect (packet corruption in USB stream), that you're going to need software (at some level) to detect it.
If you can work out why packets are getting corrupted (bad voltages?) then maybe you could detect that with hardware?
Otherwise you need some kind of robust testing kit, and software to send/receive lots of packets to look for corruption?
No. That's what oscilloscopes and logic analyzers are for. Also there is more specialized equipment such as USB testers.
The simpler the hardware is, and the more access you have to the signals, the more likely you are to be able to diagnose it in a 'purely hardware' kind of way. For example if you had a simple parallel port card plugged into a PCI slot, it would be relatively straightforward to put a bus analyzer on the PCI bus, and the adapter's output, and see if the outputs did the right thing when the card was addressed. But note you'd still need to attempt to access that card from the PCI bus, which would mean either (A) some kind of PCI bus simulation, which would be one heck of a big pile of test hardware, or (B) a cheap off-the-shelf PC with a few lines of test code.
But then at the other end of the spectrum, suppose you're dealing with a large FPGA. You can get one heck of a lot of logic into an FPGA, and you won't necessarily have access to all the test points you'd like. I've personally encountered a bug with a serial port embedded in an FPGA, where a race condition with the shift register preload register would occasionally corrupt a byte. Hypothetically the VHDL could have been reworked to bring out test points, and a pile of scopes and analyzers gathered, but from a management standpoint it was much more cost effective to try to tease the problem out with software. Under normal usage, the bug in question would have turned up once every blue moon. We iterated through speculation about the conditions that would elicit the bug, and refining the test code, until we had test software that could reproduce the bug 2-3 times a minute. At that point we could actually provide clues to the VHDL guys that helped them fix the problem quickly.
Long story short, inside of a week a hardware bug was smoked out via software, whereas starting with the same information and going 'hardware only' would likely have not been any faster, and would have required a lot of expensive test equipment. So, yeah, you probably can do it without software, but as usual it's a trade-off, and you have to find the right balance point between the amount of software vs hardware for the job.

What microcontroller (and other components) would I need to create a timer device?

As a hobby project to keep myself out of trouble, I'd like to build a little programmer timer device. It will basically accept a program which is a list of times and then count down from each time.
I'd like to use a C or Java micro controller. I have used BASIC in the past to make a little autonomous robot, so this time around I'd like something different.
What micro controller and display would you recommend? I am looking to keep it simple, so the program would be loaded into memory via computer (serial is ok, but USB would make it easier)
Just use a PIC like 16F84 or 16F877 for this. It is more than enough.
As LCD use a 16 x 2 LCD. It is easy to use + will give a nice look to your project.
LCD
The language is not a matter. You can use PIC C, Micro C or any thing you like. The LCD's interface is really easy to drive.
As other components you will just need the crystal and 2 capacitors as oscillator + pull up resister. The rest of the components depend on the input method that you are going to use to set the times.
If you are using a computer to load the list then you will need additional circuit to change the protocols. Use MAX 232 to do that. If you want to use USB, you need to go ahead and use a PIC with USB support. (18F series)
(source: sodoityourself.com)
This is a set of nice tutorials you can use. You can purchase the products from them as well. I purchased once from them.
I would go with the msp430. An ez430 is $20 and you can get them at digikey or from ti directly, then sets of 3 microcontroller boards for $10 after that. llvm and gcc (and binutils) compiler support. Super simple to program, extremely small and extremely low power.
There are many ways to do this, and a number of people have already given pretty good suggestions AVR or PIC are good starting points for a microcontroller to work with that doesn't require too much in the way of complicated setup (hardware & software) or expense (these micros are very cheap). Honestly I'm somewhat surprised that nobody has mentioned Arduino here yet, which happens to have the advantage of being pretty easy to get started with, provides a USB connection (USB->Serial, really), and if you don't like the board that the ATMega MCU is plugged into, you can later plug it in wherever you might want it. Also, while the provided programming environment provides some high level tools to easily protype things you're still free to tweak the registers on the device and write any C code you might want to run on it.
As for an LCD display to use, I would recommend looking for anything that's either based on an HD44780 or emulates the behavior of one. These will typically use a set of parallel lines for talking to the display, but there are tons code examples for interfacing with these. In Arduino's case, you can find examples for this type of display, and many others, on the Arduino Playground here: http://www.arduino.cc/playground/Code/LCD
As far as a clock is concerned, you can use the built-in clock that many 8-bit micros these days provide, although they're not always ideal in terms of precision. You can find an example for Arduino on doing this sort of thing here: http://www.arduino.cc/playground/Code/DateTime. If you want something that might be a little more precise you can get a DS1307 (Arduino example: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1191209057/0).
I don't necessarily mean to ram you towards an Arduino, since there are a huge number of ways to do this sort of thing. Lately I've been working with 32-bit ARM micros (don't do that route first, much steeper learning curve, but they have many benefits) and I might use something in that ecosystem these days, but the Arduino is easy to recommend because it's relatively inexpensive, there's a large community of people out there using it, and chances are you can find a code example for at least part of what you're trying to do. When you need something that has more horsepower, configuration options, or RAM, there are options out there.
Here are a few places where you can find some neat hardware (Arduino-related and otherwise) for projects like the one you're describing:
SparkFun Electronics
Adafruit Industries
DigiKey (this is a general electronics supplier, they have a bit of everything)
There are certainly tons more, though :-)
I agree with the other answers about using a PIC.
The PIC16F family does have C compilers available, though it is not ideally suited for C code. If performance is an issue, the 18F family would be better.
Note also that some PICs have internal RC oscillators. These aren't as precise as external crystals, but if that doesn't matter, then it's one less component (or three with its capacitors) to put on your board.
Microchip's ICD PIC programmer (for downloading and debugging your PIC software) plugs into the PC's USB port, and connects to the microcontroller via an RJ-11 connector.
Separately, if you want the software on the microcontroller to send data to the PC (e.g. to print messages in HyperTerminal), you can use a USB to RS232/TTL converter. One end goes into your PC's USB socket, and appears as a normal serial port; the other comes out to 5 V or 3.3 V signals that can be connected directly to your processor's UART, with no level-shifting required.
We've used TTL-232R-3V3 from FDTI Chip, which works perfectly for this kind of application.
There are several ways to do this, and there is a lot of information on the net. If you are going to use micro controllers then you might need to invest in some programming equipment for them. This won't cost you much though.
Simplest way is to use the sinus wave from the power grid. In Europe the AC power has a frequency of 50Hz, and you can use that as the basis for your clock signal.
I've used Atmel's ATtiny and ATmega, which are great for programming simple and advanced projects. You can program it with C or Assembly, there are lots of great projects for it on the net, and the programmers available are very cheap.
Here is a project I found by Googling AVR 7 segment clock.
A second vote for PIC. Also, I recommend the magazine Circuit Cellar Ink. Some technical bookstores carry it, or you can subscribe: http://www.circellar.com/
PIC series will be good, since you are creating a timer, I recommend C or Assembly (Assembly is good), and use MPLAB as the development environment. You can check how accurate your timer with 'Stopwatch' in MPLAB. Also PIC16F877 has built in Hardware Serial Port. Also PIC16F628 has a built in Hardware serial port. But PIC16F877 has more ports. For more accurate timers, using higher frequency oscillators is recommended.

Is there software or code to alter USB power output

I had a look at this and this but no one sounded particularly sure of their ideas and I'm kind of after a different thing anyway. I want to hook my usb power cables (red and black) up to my phone so I don't have to use a battery (the battery is dead anyway and this is just an experiment). The problem is that USB standards ensure that a minimum of 4.35V is supplied, when I only want 3.7V. Does anyone know for sure that you can or cannot regulate power output programmatically? Some other queries I have are: What kind of power does the sleep mode provide? And what would I need to code something in to play with this, C++?
No, you won't find a computer that allows you to set this voltage in software. It would break the USB specification.
You can get 150mA by default, and 500mA if your USB device negotiates it with the computer (requiring a little bit of logic in the device). Multiply by 5V to get the provided power.
A bit more info on the answer from Pascal:
The normal operation (Non-Configured mode) is 100mA
In theory, the operating system should check the MaxPower value of the device's configuration descriptor to decide if to allow it to draw more than 100mA.
In practice, PCs do not do it (and have no way to control it). So you can try taking 500mA.
(Of course connecting a bus powered hub and linking more then one 500mA device, should, not work.)
If the device is not actively used, the OS may (and should) suspend it. When suspended the power is limited to 1-0.5mA (Again, in theory, since it can not be controlled by software).