remoteIO input square wave frequency is low - objective-c

i input to the audioJack a square wave in the frequency of 2-3 khZ for about 5 seconds.
the square wave is 1 and 0 - no negative values.
i get some periodic signal that going between -32000 to 32000 (but my signal is positive!? )
i have check how many times my values are crossing the zero- i get 500 in 5 seconds, which means 100 per second .
what am i missing here ? 3khz is 3000 per second.
my sampling code is in my previous post :
error in audio Unit code -remoteIO for iphone
any explanation on the frequency domain here? am i missing samples ? how can i improve it? should i do :
float bufferLength = 0.005;
AudioSessionSetProperty(kAudioSessionProperty_PreferredHardwareIOBufferDuration, sizeof(bufferLength), &bufferLength);
status = AudioOutputUnitStart(audioUnit);
thanks alot!

Related

How to count peaks on chart in LabVIEW above some specific value. How to count amount of hills (Heart Rate Monitor)

I want to create some simple heart rate monitor in LabVIEW.
I have sensor which gives me heart workflow (upper graph): Waveform
On second graph (lower graph) is amount of hills (0 - valley, 1 - hill) and that hills are heart beats (that is voltage waveform). From this I want to get amount of those hills, then multiply this number by 6 and I'll get heart rate per minute.
Measuring card I use: NI USB-6009.
Any idea how to do that?
I can sent a VI file if anyone will be able to help me.
You could use Threshold Peak Detector VI
This VI does not identify the locations or the amplitudes of peaks
with great accuracy, but the VI does give an idea of where and how
often a signal crosses above a certain threshold value.
You could also use Waveform Peak Detection VI
The Waveform Peak Detection VI operates like the array-based Peak
Detector VI. The difference is that this VI's input is a waveform data
type, and the VI has error cluster input and output terminals.
Locations displays the output array of the peaks or valleys, which is
still in terms of the indices of the input waveform. For example, if
one element of Locations is 100, that means that there is a peak or
valley located at index 100 in the data array of the input waveform.
Figure 6 shows you a method for determining the times at which peaks
or valleys occur.
NI have a great tutorial that should answer all your questions, it can be found here:
I had some fun recreating some of your exercise here. I simulated a squarewave. In my sample of the square wave, I know how many samples I have and the sampling frequency. As a result, I calculate how much time my data sample represents. I then count the number of positive edges in the sample. I do some division to calculate beats/second and multiplication for beats/minute. The sampling frequency, Fs, and number of samples, N or #s are required to calculate your beats per minute metric. Their uses are shown below.
The contrived VI
Does that lead you to a solution for your application?

How to generate timestamps from the 33-bit PCR count

So I have been trying to wrap my head around mpeg-ts timing, and the PCR (program clock reference). I understand that this is used for video/audio synchronisation at the decoder.
My basic understanding so far is that everything is driven by a 27 Mhz clock (oscillator). This clock loops at a rate of 27 Mhz, counting from 0 - 299 and keeps repeating itself. Each time this "rollover" from 299 back to 0 occurs, then a 33-bit PCR counter is incremented by 1. In effect, the 33-bit PCR counter is therefore itself running at a rate of 90 kHz. So another way of saying this is that the 27 Mhz clock is divided by 300, giving us a 90 kHz clock.
This 90 kHz clock is then used for the 33-bit PCR counter.
I understand that historically 90 kHz was chosen because mpeg-1 used a 90kHz timebase. [see source here]
Anyway... I have read that the PCR 33-bit count values range from 0x000000000 all the way through to 0x1FFFFFFFF. And according to this, it shows what these values mean in terms of time as we humans understand it (Hours, Mins, Secs, etc):
00:00:00.000 (0x000000000)
to
26:30:43.717 (0x1FFFFFFFF)
So ultimately, my question is relating to how do these hex codes get translated into those time stamps. What would the equations be if someone gave me a hex code, and now I need to reproduce the time stamp?
I would appreciate any help :)
==========
I am closer to an answer myself. Looking at the range from 0x000000000 to 0x1FFFFFFFF, this is basically 0 to 8589934591 in decimal. Since the PCR clock is 90Khz, to get the number of seconds it takes to go from 0 to 8589934591 we can do 8589934591/90000 which gives us 95443.71768 seconds.
Unless you are creating a strict bitrate encoder for broadcast over satellite or terrestrial radio, the PCR doesn't matter that much.
Scenario:
You are broadcasting to a wireless receiver with no return channel, The receiver has a clock running at what it thinks is 90000 ticks per second. Your encoder is also running at 90000 tickets per second. How can you be sure the receiver and the broadcaster have the EXACT same definition of a second? Maybe one side is running a little fast or slow. To keep the clocks in sync, the encoder sends the current time occasionally, This value is the PCR. For example, if you are broadcasting at 15,040,000 bits per second, the receiver receives a 188 byte packet every 0.0000125 seconds. Every now and then (100 ms) the encoder will insert its current time. The receiver can compare this time to its internal clock and determine if is running faster or slower than the broadcast encoder. To keep the strict 235,000 packets per second (15,040,000/(188*8) = 235,000) the encoder will insert null packets. On the internet, the null packets take bandwidth, and have no value, so they are eliminated. Hence the PCR has almost no value anymore because its time is no longer relative the the reception rate.
To answer your question. Set the 27hz value to zero, use a recent DTS minus a small static amount (like 100ms), for the 90khz value.

Why does my waveform graph display pulses of width 3 ms when I specify them to be 2 ms in LabVIEW?

I am trying to generate pulse waves with a width of 2 milliseconds and frequency of approximately 100 Hz as shown below:
According to this website: http://www.ni.com/white-paper/2991/en#toc1
under the section "Introduction to Pulse Width Modulation" it describes the duty cycle to be 20% if pulse width is 2 ms with a frequency of 100 Hz (or 10 milliseconds).
As you can see in the diagram above the "duty cycle %" indicator correctly computes a percentage close to 20%.
If I perform the calculations correctly, why am I getting a waveform of pulses that have a width of 3 ms instead of 2 ms shown below?
Following is the back panel diagram containing the logic I am using to generate the waveform:
Your generation frequency is 1 kHz, so you are at the minimum resolution.
Your pulse is 2 ms high. I would advise you to make the samplerate higher.

I/O Disk Drive Calculations

So I am studying for an up and coming exam, one of the questions involves calculating various disk drive properties. I have spent a fair while researching sample questions and formula but because I'm a bit unsure on what I have come up with I was wondering could you possibly help confirm my formulas / answers?
Information Provided:
Rotation Speed = 6000 RPM
Surfaces = 6
Sector Size = 512 bytes
Sectors / Track = 500 (average)
Tracks / Surfaces = 1,000
Average Seek Time = 8ms
One Track Seek Time = 0.4 ms
Maximum Seek Time = 10ms
Questions:
Calculate the following
(i) The capacity of the disk
(ii) The maximum transfer rate for a single track
(iii) Calculate the amount of cylinder skew needed (in sectors)
(iv) The Maximum transfer rate (in bytes) across cylinders (with cylinder skew)
My Answers:
(i) Sector Size x Sectors per Track x Tracks per Surface x No. of surfaces
512 x 500 x 1000 x 6 = 1,536,000,000 bytes
(ii) Sectors per Track x Sector Size x Rotation Speed per sec
500 x 512 x (6000/60) = 25,600,000 bytes per sec
(iii) (Track to Track seek time / Time for 1 Rotation) x Sectors per Track + 4
(0.4 / 0.1) x 500 + 4 = 24
(iv) Really unsure about this one to be honest, any tips or help would be much appreciated.
I fairly sure a similar question will appear on my paper so it really would be a great help if any of you guys could confirm my formulas and derived answers for this sample question. Also if anyone could provide a bit of help on that last question it would be great.
Thanks.
(iv) The Maximum transfer rate (in bytes) across cylinders (with cylinder skew)
500 s/t (1 rpm = 500 sectors) x 512 bytes/sector x 6 (reading across all 6 heads maximum)
1 rotation yields 1536000 bytes across 6 heads
you are doing 6000 rpm so that is 6000/60 or 100 rotations per second
so, 153,600,000 bytes per second (divide by 1 million is 153.6 megabytes per second)
takes 1/100th of a second or 10ms to read in a track
then you need a .4ms shift of the heads to then read the next track.
10.0/10.4 gives you a 96.2 percent effective read rate moving the heads perfectly.
you would be able to read at 96% of the 153.6 or 147.5 Mb/s optimally after the first seek.
where 1 Mb = 1,000,000 bytes

VB FFT - stuck understanding relationship of results to frequency

Trying to understand an fft (Fast Fourier Transform) routine I'm using (stealing)(recycling)
Input is an array of 512 data points which are a sample waveform.
Test data is generated into this array. fft transforms this array into frequency domain.
Trying to understand relationship between freq, period, sample rate and position in fft array. I'll illustrate with examples:
========================================
Sample rate is 1000 samples/s.
Generate a set of samples at 10Hz.
Input array has peak values at arr(28), arr(128), arr(228) ...
period = 100 sample points
peak value in fft array is at index 6 (excluding a huge value at 0)
========================================
Sample rate is 8000 samples/s
Generate set of samples at 440Hz
Input array peak values include arr(7), arr(25), arr(43), arr(61) ...
period = 18 sample points
peak value in fft array is at index 29 (excluding a huge value at 0)
========================================
How do I relate the index of the peak in the fft array to frequency ?
If you ignore the imaginary part, the frequency distribution is linear across bins:
Frequency#i = (Sampling rate/2)*(i/Nbins).
So for your first example, assumming you had 256 bins, the largest bin corresponds to a frequency of 1000/2 * 6/256 = 11.7 Hz.
Since your input was 10Hz, I'd guess that bin 5 (9.7Hz) also had a big component.
To get better accuracy, you need to take more samples, to get smaller bins.
Your second example gives 8000/2*29/256 = 453Hz. Again, close, but you need more bins.
Your resolution here is only 4000/256 = 15.6Hz.
It would be helpful if you were to provide your sample dataset.
My guess would be that you have what are called sampling artifacts. The strong signal at DC ( frequency 0 ) suggests that this is the case.
You should always ensure that the average value in your input data is zero - find the average and subtract it from each sample point before invoking the fft is good practice.
Along the same lines, you have to be careful about the sampling window artifact. It is important that the first and last data point are close to zero because otherwise the "step" from outside to inside the sampling window has the effect of injecting a whole lot of energy at different frequencies.
The bottom line is that doing an fft analysis requires more care than simply recycling a fft routine found somewhere.
Here are the first 100 sample points of a 10Hz signal as described in the question, massaged to avoid sampling artifacts
> sinx[1:100]
[1] 0.000000e+00 6.279052e-02 1.253332e-01 1.873813e-01 2.486899e-01 3.090170e-01 3.681246e-01 4.257793e-01 4.817537e-01 5.358268e-01
[11] 5.877853e-01 6.374240e-01 6.845471e-01 7.289686e-01 7.705132e-01 8.090170e-01 8.443279e-01 8.763067e-01 9.048271e-01 9.297765e-01
[21] 9.510565e-01 9.685832e-01 9.822873e-01 9.921147e-01 9.980267e-01 1.000000e+00 9.980267e-01 9.921147e-01 9.822873e-01 9.685832e-01
[31] 9.510565e-01 9.297765e-01 9.048271e-01 8.763067e-01 8.443279e-01 8.090170e-01 7.705132e-01 7.289686e-01 6.845471e-01 6.374240e-01
[41] 5.877853e-01 5.358268e-01 4.817537e-01 4.257793e-01 3.681246e-01 3.090170e-01 2.486899e-01 1.873813e-01 1.253332e-01 6.279052e-02
[51] -2.542075e-15 -6.279052e-02 -1.253332e-01 -1.873813e-01 -2.486899e-01 -3.090170e-01 -3.681246e-01 -4.257793e-01 -4.817537e-01 -5.358268e-01
[61] -5.877853e-01 -6.374240e-01 -6.845471e-01 -7.289686e-01 -7.705132e-01 -8.090170e-01 -8.443279e-01 -8.763067e-01 -9.048271e-01 -9.297765e-01
[71] -9.510565e-01 -9.685832e-01 -9.822873e-01 -9.921147e-01 -9.980267e-01 -1.000000e+00 -9.980267e-01 -9.921147e-01 -9.822873e-01 -9.685832e-01
[81] -9.510565e-01 -9.297765e-01 -9.048271e-01 -8.763067e-01 -8.443279e-01 -8.090170e-01 -7.705132e-01 -7.289686e-01 -6.845471e-01 -6.374240e-01
[91] -5.877853e-01 -5.358268e-01 -4.817537e-01 -4.257793e-01 -3.681246e-01 -3.090170e-01 -2.486899e-01 -1.873813e-01 -1.253332e-01 -6.279052e-02
And here is the resulting absolute values of the fft frequency domain
[1] 7.160038e-13 1.008741e-01 2.080408e-01 3.291725e-01 4.753899e-01 6.653660e-01 9.352601e-01 1.368212e+00 2.211653e+00 4.691243e+00 5.001674e+02
[12] 5.293086e+00 2.742218e+00 1.891330e+00 1.462830e+00 1.203175e+00 1.028079e+00 9.014559e-01 8.052577e-01 7.294489e-01
I'm a little rusty too on math and signal processing but with the additional info I can give it a shot.
If you want to know the signal energy per bin you need the magnitude of the complex output. So just looking at the real output is not enough. Even when the input is only real numbers. For every bin the magnitude of the output is sqrt(real^2 + imag^2), just like pythagoras :-)
bins 0 to 449 are positive frequencies from 0 Hz to 500 Hz. bins 500 to 1000 are negative frequencies and should be the same as the positive for a real signal. If you process one buffer every second frequencies and array indices line up nicely. So the peak at index 6 corresponds with 6Hz so that's a bit strange. This might be because you're only looking at the real output data and the real and imaginary data combine to give an expected peak at index 10. The frequencies should map linearly to the bins.
The peaks at 0 indicates a DC offset.
It's been some time since I've done FFT's but here's what I remember
FFT usually takes complex numbers as input and output. So I'm not really sure how the real and imaginary part of the input and output map to the arrays.
I don't really understand what you're doing. In the first example you say you process sample buffers at 10Hz for a sample rate of 1000 Hz? So you should have 10 buffers per second with 100 samples each. I don't get how your input array can be at least 228 samples long.
Usually the first half of the output buffer are frequency bins from 0 frequency (=dc offset) to 1/2 sample rate. and the 2nd half are negative frequencies. if your input is only real data with 0 for the imaginary signal positive and negative frequencies are the same. The relationship of real/imaginary signal on the output contains phase information from your input signal.
The frequency for bin i is i * (samplerate / n), where n is the number of samples in the FFT's input window.
If you're handling audio, since pitch is proportional to log of frequency, the pitch resolution of the bins increases as the frequency does -- it's hard to resolve low frequency signals accurately. To do so you need to use larger FFT windows, which reduces time resolution. There is a tradeoff of frequency against time resolution for a given sample rate.
You mention a bin with a large value at 0 -- this is the bin with frequency 0, i.e. the DC component. If this is large, then presumably your values are generally positive. Bin n/2 (in your case 256) is the Nyquist frequency, half the sample rate, which is the highest frequency that can be resolved in the sampled signal at this rate.
If the signal is real, then bins n/2+1 to n-1 will contain the complex conjugates of bins n/2-1 to 1, respectively. The DC value only appears once.
The samples are, as others have said, equally spaced in the frequency domain (not logarithmic).
For example 1, you should get this:
alt text http://home.comcast.net/~kootsoop/images/SINE1.jpg
For the other example you should get
alt text http://home.comcast.net/~kootsoop/images/SINE2.jpg
So your answers both appear to be correct regarding the peak location.
What I'm not getting is the large DC component. Are you sure you are generating a sine wave as the input? Does the input go negative? For a sinewave, the DC should be close to zero provided you get enough cycles.
Another avenue is to craft a Goertzel's Algorithm of each note center frequency you are looking for.
Once you get one implementation of the algorithm working you can make it such that it takes parameters to set it's center frequency. With that you could easily run 88 of them or what ever you need in a collection and scan for the peak value.
The Goertzel Algorithm is basically a single bin FFT. Using this method you can place your bins logarithmically as musical notes naturally go.
Some pseudo code from Wikipedia:
s_prev = 0
s_prev2 = 0
coeff = 2*cos(2*PI*normalized_frequency);
for each sample, x[n],
s = x[n] + coeff*s_prev - s_prev2;
s_prev2 = s_prev;
s_prev = s;
end
power = s_prev2*s_prev2 + s_prev*s_prev - coeff*s_prev2*s_prev;
The two variables representing the previous two samples are maintained for the next iteration. This can be then used in a streaming application. I thinks perhaps the power calculation should be inside the loop as well. (However it is not depicted as such in the Wiki article.)
In the tone detection case there would be 88 different coeficients, 88 pairs of previous samples and would result in 88 power output samples indicating the relative level in that frequency bin.
WaveyDavey says that he's capturing sound from a mic, thru the audio hardware of his computer, BUT that his results are not zero-centered. This sounds like a problem with the hardware. It SHOULD BE zero-centered.
When the room is quiet, the stream of values coming from the sound API should be very close to 0 amplitude, with slight +- variations for ambient noise. If a vibratory sound is present in the room (e.g. a piano, a flute, a voice) the data stream should show a fundamentally sinusoidal-based wave that goes both positive and negative, and averages near zero. If this is not the case, the system has some funk going on!
-Rick