SQL DELETE - Maximum number of rows - sql

What limit should be placed on the number of rows to delete in a SQL statement?
We need to delete from 1 to several hundred thousand rows and need to apply some sort of best practise limit in order to not absolutely kill the SQL server or fill up the logs every time we empty a waste-basket.
This question is not specific to any type of database.

That's a very very broad question that basically boils down to "it depends". The factors that influence it include:
What is your level of concurrency? A delete statement places an exclusive lock on affected rows. Depending on the databse engine, deleted data distribution, etc., that could escalate to page or entire table. Can your data readers afford to be blocked for the duration of the delete?
How complex is the delete statement? How many other tables are you joining to, or are there complex WHERE clauses? Sometimes the identification of rows to delete can be more "expensive" than the delete itself, so one big delete may be "cheaper".
Are you fearful about deadlocks? As you decrease the size of your delete, your deadlock "foot print" is reduced. Ideally, single-row deletes will always succeed.
Do you care about throughput performance? As with any SQL statement, there is a generally constant amount of overhead (connection stuff, query parsing, returning results, etc.). From a single-connection point of view, a 1000-line delete will be faster than 1000 x 1-line deletes.
Don't forget about index maintenance overhead, fragmentation cleanup, or any triggers. They can also affect your system.
In general, though, I benchmark at 1000-lines per statement. Most systems I've worked with (sub-"enterprise") end up with a sweet-spot between 500 and 5000 records per delete. I like to do something like this:
set rowcount 500
select 1 -- Just to force ##rowcount > 0
while ##ROWCOUNT > 0
delete from [table]
[where ...]

Though limiting the number of rows affected by your delete using the set rowcount option and then performing a loop is very good (and I've used it many a time before), be aware that from SQL 2012 onwards this will not be an option (see BOL).
Therefore, another option may be to limit the number of rows being deleted using the TOP clause. i.e.
SELECT 1
WHILE ##ROWCOUNT > 0
BEGIN
DELETE TOP (#)
FROM mytable
[WHERE ...]
END

Unless you have a lot of triggers or integrity constraints to verify, deletion shouldn't be that expensive an operation.
But if you're that concerned about performance, my initial hunch would be to mark the appropriate rows as deleted and then physically delete them later during a periodic cleanup. But I'm not a big fan of this because you'll have to change any queries on that table to exclude logically- but not physically-deleted rows.

Whenever I see a database that routinely deletes large amounts of rows in bulk, it makes me think the data model or processing design is not optimal. Why load 1 million rows and then delete them? If you need to do something like purge historical data, then consider table partitioning.

I run into this question and found my own answer to be quite effective: do a subselect.
delete from urls where url in ( select top 10000 url from urls)

a general answer is to drop the table and re-create it, that is a good performing solution, but applies for the full table

Related

Azure SQL server deletes

I have a SQL server with 16130000 rows. I need to delete around 20%. When I do a simple:
delete from items where jobid=12
Takes forever.
I stopped the query after 11 minutes. Selecting data is pretty fast why is delete so slow? Selecting 850000 rows takes around 30 seconds.
Is it because of table locks? And can you do anything about it? I would expect delete rows should be faster because you dont transfer data on the wire?
Best R, Thomas
Without telling us what reservation size you are using, it is hard to give feedback on whether X records in Y seconds is expected or not. I can tell you about how the system works so that you can make this determination with a bit more investigation by yourself, however. The log commit rate is limited by the reservation size you purchase. Deletes are fundamentally limited on the ability to write out log records (and replicate them to multiple machines in case your main machine dies). When you select records, you don't have to go over the network to N machines and you may not even need to go to the local disk if the records are preserved in memory, so selects are generally expected to be faster than inserts/updates/deletes because of the need to harden log for you.
You can read about the specific limits for different reservation sizes are here:
DTU Limits and vCore Limits
One common problem customers hit is to do individual operations in a loop (like a cursor or driven from the client). This implies that each statement has a single row updated and thus has to harden each log record serially because the app has to wait for the statement to return before submitting the next statement. You are not hitting that since you are running a big delete as a single statement. That could be slow for other reasons such as:
Locking - if you have other users doing operations on the table, it could block the progress of the delete statement. You can potentially see this by looking at sys.dm_exec_requests to see if your statement is blocking on other locks.
Query Plan choice. If you have to scan a lot of rows to delete a small fraction, you could be blocked on the IO to find them. Looking at the query plan shape will help here, as will set statistics time on (I suggest you change the query to do TOP 100 or similar to get a sense of whether you are doing lots of logical read IOs vs. actual logical writes). This could imply that your on-disk layout is suboptimal for this problem. The general solutions would be to either pick a better indexing strategy or to use partitioning to help you quickly drop groups of rows instead of having to delete all the rows explicitly.
Try to use batching techniques to improve performance, minimize log usage and avoid consuming database space.
declare
#batch_size int,
#del_rowcount int = 1
set #batch_size = 100
set nocount on;
while #del_rowcount > 0
begin
begin tran
delete top (#batch_size)
from dbo.LargeDeleteTest
set #del_rowcount = ##rowcount
print 'Delete row count: ' + cast(#del_rowcount as nvarchar(32))
commit tran
end
Drop any foreign keys, delete the rows and then recreate the foreign keys can speed up things also.

SQL transaction affecting a big amount of rows

The situation is as follows:
A big production client/server system where one central database table has a certain column that has had NULL as default value but now has 0 as default value. But all the rows created before that change of course still have value as null and that generates a lot of unnecessary error messages in this system.
Solution is of course simple as that:
update theTable set theColumn = 0 where theColumn is null
But I guess it's gonna take a lot of time to complete this transaction? Apart from that, will there be any other issues I should think of before I do this? Will this big transaction block the whole database, or that particular table during the whole update process?
This particular table has about 550k rows and 500k of them has null value and will be affected by the above sql statement.
The impact on the performance of other connected clients depends on:
How fast the servers hardware is
How many indexes containing the column your update statement has to update
Which transaction isolation settings the other clients connect to the database
The db engine will acquire write locks, so when your clients only need read access to the table, it should not be a big problem.
500.000 records sounds not too much for me, but as i said, the time and resources the update takes depends on many factors.
Do you have a similar test system, where you can try out the update?
Another solution is to split the one big update into many small ones and call them in a loop.
When you have clients writing frequently to that table, your update statement might get blocked "forever". I have seen databases where performing the update row by row was the only way of getting the update through. But that was a table with about 200.000.000 records and about 500 very active clients!
it's gonna take a lot of time to complete this transaction
there's no definite way to say this. Depends a lot on the hardware, number of concurrent sessions, whether the table has got locks, the number of interdependent triggers et al.
Will this big transaction block the whole database, or that particular table during the whole update process
If the "whole database" is dependent on this table then it might.
will there be any other issues I should think of before I do this
If the table has been locked by other transaction - you might run into a row-lock situation. In rare cases, perhaps a dead lock situation. Best would be to ensure that no one is utilizing the table, check for any pre-exising locks and then run the statement.
Locking issues are vendor specific.
Asuming no triggers on the table, half a million rows is not much for a dediated database server even with many indexes on the table.

What is the purpose of ROWLOCK on Delete and when should I use it?

Ex)
When should I use this statement:
DELETE TOP (#count)
FROM ProductInfo WITH (ROWLOCK)
WHERE ProductId = #productId_for_del;
And when should be just doing:
DELETE TOP (#count)
FROM ProductInfo
WHERE ProductId = #productId_for_del;
The with (rowlock) is a hint that instructs the database that it should keep locks on a row scope. That means that the database will avoid escalating locks to block or table scope.
You use the hint when only a single or only a few rows will be affected by the query, to keep the lock from locking rows that will not be deleted by the query. That will let another query read unrelated rows at the same time instead of having to wait for the delete to complete.
If you use it on a query that will delete a lot of rows, it may degrade the performance as the database will try to avoid escalating the locks to a larger scope, even if it would have been more efficient.
Normally you shouldn't need to add such hints to a query, because the database knows what kind of lock to use. It's only in situations where you get performance problems because the database made the wrong decision, that you should add such hints to a query.
Rowlock is a query hint that should be used with caution (as is all query hints).
Omitting it will likely still result in the exact same behaviour and providing it will not guarantee that it will only use a rowlock, it is only a hint afterall. If you do not have a very in depth knowledge of lock contention chances are that the optimizer will pick the best possible locking strategy, and these things are usually best left to the database engine to decide.
ROWLOCK means that SQL will lock only the affected row, and not the entire table or the page in the table where the data is stored when performing the delete. This will only affect other people reading from the table at the same time as your delete is running.
If a table lock is used it will cause all queries to the table to wait until your delete has completed, with a row lock only selects reading the specific rows will be made to wait.
Deleting top N where N is a number of rows will most likely lock the table in any case.
SQL Server defaults to page locks. This is the most efficient way for SQL server to process multiple date sets. But SQL server is not multi-user friendly sometimes; therefore you may need to incorporate locking methods so you can get your data to flow in and out of the database. This is why people approach that problem by using locking hints.
If everyone designed there database tables so that everything processed each row at page width - the system would be very fast. But no one spends that detailed amount of time.
So, you might see people use with(nolock) on their SELECT statements and the use of with(rowlock) on their UPDATE and DELETE statements. An INSERT does not matter because it will lock the PAGE automatically. Sometimes by using with(rowlock), you can get better multi-user (multiple user connections) performance.
The problem with(nolock) is that you can return the committed record sitting there in the DB already, plus the dirty record that is about to update the sitting record; thus a double return of records to your SELECT statement. If you know the personality of your system on how the data runs through it, you can use with(nolock) to your advantage quite a bit though.
When do you know when to use with(rowlock)? When your system isn't letting user play nice with each other in the same table / record. Though, query re-write / tune first and then adjust your locking as a last resort.
But as a DBA, always blame the developer's code. It is your solemnly sworn duty to do such. If you are the developer writing this code, just blame yourself.

Optimizing Delete on SQL Server

Deletes on sql server are sometimes slow and I've been often in need to optimize them in order to diminish the needed time.
I've been googleing a bit looking for tips on how to do that, and I've found diverse suggestions.
I'd like to know your favorite and most effective techinques to tame the delete beast, and how and why they work.
until now:
be sure foreign keys have indexes
be sure the where conditions are indexed
use of WITH ROWLOCK
destroy unused indexes, delete, rebuild the indexes
now, your turn.
The following article, Fast Ordered Delete Operations may be of interest to you.
Performing fast SQL Server delete operations
The solution focuses on utilising a view in order to simplify the execution plan produced for a batched delete operation. This is achieved by referencing the given table once, rather than twice which in turn reduces the amount of I/O required.
I have much more experience with Oracle, but very likely the same applies to SQL Server as well:
when deleting a large number of rows, issue a table lock, so the database doesn't have to do lots of row locks
if the table you delete from is referenced by other tables, make sure those other tables have indexes on the foreign key column(s) (otherwise the database will do a full table scan for each deleted row on the other table to ensure that deleting the row doesn't violate the foreign key constraint)
I wonder if it's time for garbage-collecting databases? You mark a row for deletion and the server deletes it later during a sweep. You wouldn't want this for every delete - because sometimes a row must go now - but it would be handy on occasion.
Summary of Answers through 2014-11-05
This answer is flagged as community wiki since this is an ever-evolving topic with a lot of nuances, but very few possible answers overall.
The first issue is you must ask yourself what scenario you're optimizing for? This is generally either performance with a single user on the db, or scale with many users on the db. Sometimes the answers are the exact opposite.
For single user optimization
Hint a TABLELOCK
Remove indexes not used in the delete then rebuild them afterward
Batch using something like SET ROWCOUNT 20000 (or whatever, depending on log space) and loop (perhaps with a WAITFOR DELAY) until you get rid of it all (##ROWCOUNT = 0)
If deleting a large % of table, just make a new one and delete the old table
Partition the rows to delete, then drop the parition. [Read more...]
For multi user optimization
Hint row locks
Use the clustered index
Design clustered index to minimize page re-organization if large blocks are deleted
Update "is_deleted" column, then do actual deletion later during a maintenance window
For general optimization
Be sure FKs have indexes on their source tables
Be sure WHERE clause has indexes
Identify the rows to delete in the WHERE clause with a view or derived table instead of referencing the table directly. [Read more...]
To be honest, deleting a million rows from a table scales just as badly as inserting or updating a million rows. It's the size of the rowset that's the problem, and there's not much you can do about that.
My suggestions:
Make sure that the table has a primary key and clustered index (this is vital for all operations).
Make sure that the clustered index is such that minimal page re-organisation would occur if a large block of rows were to be deleted.
Make sure that your selection criteria are SARGable.
Make sure that all your foreign key constraints are currently trusted.
(if the indexes are "unused", why are they there at all?)
One option I've used in the past is to do the work in batches. The crude way would be to use SET ROWCOUNT 20000 (or whatever) and loop (perhaps with a WAITFOR DELAY) until you get rid of it all (##ROWCOUNT = 0).
This might help reduce the impact upon other systems.
The problem is you haven't defined your conditions enough. I.e. what exactly are you optimizing?
For example, is the system down for nightly maintenance and no users are on the system? And are you deleting a large % of the database?
If offline and deleting a large %, may make sense to just build a new table with data to keep, drop the old table, and rename. If deleting a small %, you likely want to batch things in as large batches as your log space allows. It entirely depends on your database, but dropping indexes for the duration of the rebuild may hurt or help -- if even possible due to being "offline".
If you're online, what's the likelihood your deletes are conflicting with user activity (and is user activity predominantly read, update, or what)? Or, are you trying to optimize for user experience or speed of getting your query done? If you're deleting from a table that's frequently updated by other users, you need to batch but with smaller batch sizes. Even if you do something like a table lock to enforce isolation, that doesn't do much good if your delete statement takes an hour.
When you define your conditions better, you can pick one of the other answers here. I like the link in Rob Sanders' post for batching things.
If you have lots of foreign key tables, start at the bottom of the chain and work up. The final delete will go faster and block less things if there are no child records to cascade delete (which I would NOT turn on if I had a large number fo child tables as it will kill performance).
Delete in batches.
If you have foreign key tables that are no longer being used (you'd be surprised how often production databses end up with old tables nobody will get rid of), get rid of them or at least break the FK/PK connection. No sense cheking a table for records if it isn't being used.
Don't delete - mark records as delted and then exclude marked records from all queries. This is best set up at the time of database design. A lot of people use this because it is also the best fastest way to get back records accidentlally deleted. But it is a lot of work to set up in an already existing system.
I'll add another one to this:
Make sure your transaction isolation level and database options are set appropriately. If your SQL server is set not to use row versioning, or you're using an isolation level on other queries where you will wait for the rows to be deleted, you could be setting yourself up for some very poor performance while the operation is happening.
On very large tables where you have a very specific set of criteria for deletes, you could also partition the table, switch out the partition, and then process the deletions.
The SQLCAT team has been using this technique on really really large volumes of data. I found some references to it here but I'll try and find something more definitive.
I think, the big trap with delete that kill the performance is that sql after each row deleted, it updates all the related indexes for any column in this row. what about delting all indexes before bulk delete?
There are deletes and then there are deletes. If you are aging out data as part of a trim job, you will hopefully be able to delete contiguous blocks of rows by clustered key. If you have to age out data from a high volume table that is not contiguous it is very very painful.
If it is true that UPDATES are faster than DELETES, you could add a status column called DELETED and filter on it in your selects. Then run a proc at night that does the actual deletes.
Do you have foreign keys with referential integrity activated?
Do you have triggers active?
Simplify any use of functions in your WHERE clause! Example:
DELETE FROM Claims
WHERE dbo.YearMonthGet(DataFileYearMonth) = dbo.YearMonthGet(#DataFileYearMonth)
This form of the WHERE clause required 8 minutes to delete 125,837 records.
The YearMonthGet function composed a date with the year and month from the input date and set day = 1. This was to ensure we deleted records based on year and month but not day of month.
I rewrote the WHERE clause to:
WHERE YEAR(DataFileYearMonth) = YEAR(#DataFileYearMonth)
AND MONTH(DataFileYearMonth) = MONTH(#DataFileYearMonth)
The result: The delete required about 38-44 seconds to delete those 125,837 records!

Oracle SQL technique to avoid filling trans log

Newish to Oracle programming (from Sybase and MS SQL Server). What is the "Oracle way" to avoid filling the trans log with large updates?
In my specific case, I'm doing an update of potentially a very large number of rows. Here's my approach:
UPDATE my_table
SET a_col = null
WHERE my_table_id IN
(SELECT my_table_id FROM my_table WHERE some_col < some_val and rownum < 1000)
...where I execute this inside a loop until the updated row count is zero,
Is this the best approach?
Thanks,
The amount of updates to the redo and undo logs will not at all be reduced if you break up the UPDATE in multiple runs of, say 1000 records. On top of it, the total query time will be most likely be higher compared to running a single large SQL.
There's no real way to address the UNDO/REDO log issue in UPDATEs. With INSERTs and CREATE TABLEs you can use a DIRECT aka APPEND option, but I guess this doesn't easily work for you.
Depends on the percent of rows almost as much as the number. And it also depends on if the update makes the row longer than before. i.e. going from null to 200bytes in every row. This could have an effect on your performance - chained rows.
Either way, you might want to try this.
Build a new table with the column corrected as part of the select instead of an update. You can build that new table via CTAS (Create Table as Select) which can avoid logging.
Drop the original table.
Rename the new table.
Reindex, repoint contrainst, rebuild triggers, recompile packages, etc.
you can avoid a lot of logging this way.
Any UPDATE is going to generate redo. Realistically, a single UPDATE that updates all the rows is going to generate the smallest total amount of redo and run for the shortest period of time.
Assuming you are updating the vast majority of the rows in the table, if there are any indexes that use A_COL, you may be better off disabling those indexes before the update and then doing a rebuild of those indexes with NOLOGGING specified after the massive UPDATE statement. In addition, if there are any triggers or foreign keys that would need to be fired/ validated as a result of the update, getting rid of those temporarily might be helpful.