I'm trying to make a little archer game, and the problem I'm having has to do with 2 pixels in particular, I'll call them _arm and _arrow. When a real archer is pulling back an arrow, he doesn't immediately pull the arrow back as far as his strength allows him, the arrow takes a little bit of time to be pulled back.
The _arm's angle is equal to the vector from a point to where the user touched on the screen. The rotation is perfect, so the _arm is good. The _arrow needs to be on the same line as _arrow, they are 1 pixel wide each so it looks as though the _arrow is exactly on top of the _arm.
I tried to decrement from the x/y coordinates based on a variable that changes with time, and I set the _arrow's location equal to the _arm's location, and tried to make it look like the _arrow was being pulled back. however, if you rotated, the x/y would mess up because it is not proportional on the x and y axis, so basically _arrow will either be slightly above the arm or slightly below it depending on the angle of the vector, based on touch.
How could I used the x/y position of _arm and the vector of touch to make the arrow appear as though it was being pulled back by a small amount, yet keep the arrow on top of the _arm sprite so that it's position would be similar to the arm, but slightly off yet still on top of the _arm pixel at all times. If you need anymore info, just leave a comment.
I'm not sure I've fully understood, but I'll have a go at answering anyway:
To make the arrow move and rotate to the same place as the consider adding the arrow as a child of the arm. You can still render it behind if you like by making its z is less than one: [arm addChild:arrow z:-1]
To then make the arrow move away from the arm as the bow is drawn, you then just set the position of the arrow with respect to the arm.
The problem I do see with this solution however is that this grouping of the sprites may be a little unusual after the arrow leaves the bow. Here you probably don't want the arrow to be a child of the arm as the coordinate systems are no longer related.
Even though they're sure what I "suggested would have solved [the] problem" here is the
Poster's solution
I had to get the x and y coords of the arm based of angle, then I got the sin/cos of a number that was based of the same angle as the arm and subtraced from that.
Related
So I have my game, made with SpriteKit and Obj-C. I want to know a couple things.
1) What is the best way to make scroll-views in SpriteKit?
2) How do I get this special kind of scroll-view to work?
The kind of scroll-view I'd like to use is one that, without prior knowledge, seems like it could be pretty complicated. You're scrolling through the objects in it, and when they get close to the center of the screen, they get larger. When they're being scrolled away from the center of the screen, they get smaller and smaller until, when their limit is met, they stop minimizing. That limitation goes for getting bigger when getting closer to the center of the screen, too.
Also, I should probably note that I have tried a few different solutions for cheap remakes of scroll views, like merely adding the objects to a SKNode and moving the SKNode's position relative to the finger's, and its movement . . . but that is not what I want. Now, if there is no real way to add a scroll-view to my game, this is what I'm asking. Will I simply have to do some sort of formula? Make the images bigger when they get closer to a certain spot, and maybe run that formula each time -touchesMoved is called? If so, what sort of formula would that be? Some complicated Math equation subtracting the node's position from the center of the screen, and sizing it accordingly? Something like that? If that's the case, will you please give me some smart Math formula to do that, and give it to me in code (possibly a full-out function) format?
If ALL else fails, and there is no good way to do this, what would some other way be?
It is possible to use UIScrollViews with your SpriteKit scenes, but there's a bit of a workaround involved there. My recommendation is to take a look at this github project, that is what I based my UIScrollView off of in my own projects. From the looks of it, most of the stuff you'd want has actually been converted to Swift now, rather than Objective-C when I first looked at the project, so I don't know how that'll fare with you.
The project linked above would result in your SKScene being larger than the screen (I assume that is why it would need to be scrolled), so determining what is and is not close to the center of the scene won't be difficult. One thing you can do is use the update loop in SpriteKit to constantly update the size of Sprites (Perhaps just those on-screen) based on their distance from a fixed, known center point. For instance, if you have a screen of width and height 10, then the midpoint would be x,y = 5,5. You could then say that size = 1.0 - (2 * distance_from_midpoint). Given you are at the midpoint, the size will be 1.0 (1.0 - (2 * 0)), the farther away you get, the smaller your scale will be. This is a crude example that does not account for a max or min fixed size, and so you will need to work with it.
Good luck with your project.
Edit:
Alright, I'll go a bit out of my way here and help you out with the equation, although mine still isn't perfect.
Now, this doesn't really give you a minimum scale, but it will give you a maximum one (Basically at the midpoint). This equation here does have some flaws though. For one, you might use this to find the x and y scale of your objects based on their distance from a midpoint. However, you don't really want two different components to your scale. What if your Sprite is right next to the x midpoint, and the x_scale spits out 0.95? Well, that's almost full-sized. But if it is far away from the midpoint on the y axis, and it gives you a y scale of, say 0.20, then you have a problem.
To solve that, I just take the magnitude or hypotenuse of the vector between the current coordinate and the coordinate of the current sprite. That hypotenuse gives me an number that represents the true distance, which eliminates the problem with clashing scale values.
I've made an example of how to calculate this inside Google's Go-Playground, so you can run the code and see what different scales you get based on what coordinate you plug in. Also, the equation used in there is slightly modified, It's basically the same thing as above but without the maxscale - part of the front part of the equation.
Hope this helps out!
Embedding Attempt:
see this code in play.golang.org
When using Matrix.CreateTranslation(x,y,z) I get bizarre results. I have tested using fixed values, one variable at a time and have determined the following:
When altering the X coordinates, the model moves from the top left corner to the bottom right corner.
When altering the Y coordinates, the model moves up and down as it should.
I do not plan to alter the Z coordinates, but because of the nature of my program I can't figure out exactly what it does.
I have my model drawn. Rotation works fine. I am performing my translations in the correct order (at least I think): scale * rotation * translation.
I think the problem lies in my camera settings, but I have no idea exactly what the problem is. I am trying to create a top-down-style RTS camera.
Here are my camera settings:
campos = new Vector3(5000.0F, 5000.0F, 5000.0F)
effect.View = Matrix.CreateLookAt(campos, Vector3.Down, Vector3.Up)
I can provide more information as needed.
The second argument of Matrix.CreateLookAt is not the direction the camera is facing, but the targeted point.
If you try to make the camera look down, use
Matrix.CreateLookAt(campos, campos + Vector3.Down, Vector3.Forward)
This will tell the camera to always look at the point one unit below the camera.
Your translation probably doesn't work well because the camera is not looking at the point you want it to, and therefore looks like the model is moving diagonally.
This question is very similar to that posed here.
My problem is that I have a map, something like this:
This map is made using 2D Perlin noise, and then running through the created heightmap assigning types and color values to each element in the terrain based on the height or the slope of the corresponding element, so pretty standard. The map array is two dimensional and the exact dimensions of the screen size (pixel-per-pixel), so at 1200 by 800 generation takes about 2 seconds on my rig.
Now zooming in on the highlighted rectangle:
Obviously with increased size comes lost detail. And herein lies the problem. I want to create additional detail on the fly, and then write it to disk as the player moves around (the player would simply be a dot restricted to movement along the grid). I see two approaches for doing this, and the first one that came to mind I quickly implemented:
This is a zoomed-in view of a new biased local terrain created from a sampled element of the old terrain, which is highlighted by the yellow grid space (to the left of center) in the previous image. However this system would require a great deal of modification, as, for example, if you move one unit left and up of the yellow grid space, onto the beach tile, the terrain changes completely:
So for that to work properly you'd need to do an excessive amount of, I guess the word would be interpolation, to create a smooth transition as the player moved the 40 or so grid-spaces in the local world required to reach the next tile over in the over world. That seems complicated and very inelegant.
The second approach would be to break up the grid of the original map into smaller bits, maybe dividing each square by 4? I haven't implemented this and I'm not sure how I would in a way that would actually increase detail, but I think that would probably end up being the best solution.
Any ideas on how I could approach this? Keep in mind it has to be local and on-the-fly. Just increasing the resolution of the map is something I want to avoid at all costs.
Rewrite your Perlin noise to be a function of position. Then you can increase the octaves (and thus the detail level) and resample the area at a higher resolution.
OK.
I'm in essense trying to make my own interpretation of the NES hardware, so I can make a game that ideally would resemble what a NES game would look like. I'm currently stuck with how to adjust how to draw the playfield to the video memory (back buffer).
BACKBUFFER
The NES had restrictions on the nametable, or backbuffer. For my example, the backbuffer is 256x240pixels big, or the size of one screen. If I drew this to the TV, it would fill up the screen perfectly. Now, if I drew this to the screen with an offset of X=5, the entire image would be shifted and would wrap around the screen.
For example.....
ORIGINAL, NO OFFSET: DRAWN WITH OFFSET OF X=5:
ABCDEFGHIJK GHIJKABCDEF
DRAWN WITH OFFSET OF X=-5:
FGHIJKABCDE
The screen is split up into squares 8x8 pixels each, totalling 32x30 rows and columns. (256x240 pixels). The offset is represented in pixels - not columns; so in theory, I could offset the screen by 5 pixels and every column would be shifted to the right by five pixels.
LEVEL DESIGN
My stages are made up of screens, containing data that is represented in 16x15 rows and columns, each by 16x16 pixels. This is to emulate how many NES games stored level data - each tile holds info about what should be in each 8x8 block.
E.g.:
AA
BC with A,B,C,D representing what 8x8 graphic should go where
Level design is represented by this as well, with each number being a different screen and - meaning nothing, null.
-----
-123-
---4-
--54-
-----
CHARACTER PLACEMENT
This is easy. I already know how I can determine which table, row, and column my characters are on based on their absolute positioning. I can also determine the relative positioning within the screen.
With this info, I can easily figure out which columns are to the left and right of the character, if any (if the character is at the left side of screen 1, thered be no more level left)
SO HERE'S THE QUESTION DUN DUN DUN
How do I draw my levels to the screen, so that they scroll from one to the next.
It would be relatively easy to draw one full screen at a time, and when the character gets to the edge just flip to another screen.
However, the problem I'm conceptually having is that I need to 'stream' the level data onto the screen. That, lets say the character moves 24 pixels to the right. The BG needs to move as well.
So, I need to adjust the scrolling of the backbuffer by 24 pixels. However, just scrolling alone will cause the screen to wrap over, diplsaying old portion of the level. So, while scrolling I need to make sure to draw new pieces of the level to the back buffer. But before I can do that, I need to figure out which tiles need to get drawn first. And if the person goes 24 pixels to the left, I need to redraw tiles onto the backbuffer and change the offset accordingly as well.
And let's not forget that if the character moves right and there's no more level data to be drawn, there should be no offset but instead the character gets closer to the side of the screen (instead of being centered in the middle of the screen via the X axis).
Basically, I just have a lot of different numbers and values stuck in my mind right now - trying to wrap my head around many concepts and they caused my brain to turn into goo. Anyone have any perspective on how I can approach this?
EDIT: Using VB.Net. C# is applicable as well ( I program in both)
The way the NES did it was with 4 name tables, each 256x240. When you scrolled one off the screen, the adjacent one would scroll on. To get "worlds" bigger than 512x480, you update the name table at the positions that are offscreen.
Generally, a cartridge would have a giant table in ROM with all of the level data, and would track the overall position with 1 or 2 RAM variables. Then when the game scrolled, it would update the RAM variables, use those to lookup the level data table and copy in the new level data into the parts of the name table that were offscreen.
So actually your back buffer should be 512x480, and you only show a 256x240 portion of it.
Have you looked at the disassembly for any NES games that have large scrolling worlds? I think a partial disassembly of Metroid is out there somewhere...
...yeah, found some docs at romhacking.net
Metroid disassembly; not real well commented but with a little effort it shouldn't be too hard to figure it out.
Another disassembly that is commented better.
EDIT: In the 2nd disassembly posted above, look in MetroidGameEnginePage.txt at the "SetupRoom" routine and the "DrawRoom" routine; also the routine at label LEB4D shows how the name table is updated in one case. Also look at the extensive comments above the "GetNameTable" routine. In general, a text search for "name table" throughout the document will get you lots more.
EDIT EDIT: Also at romhacking.net; the memory map for SMB might be useful.
I would set up a grid of image controls and load the levels from a database that stores what column and row each picture is relative to the level. Once the image that represents the game's character gets far enough to the right (you would have to store its location in some module level variables) of the screen you would load the next column of images (while shifting all of the other images one to the left and removing the first column).
I do not really understand the way I'm suppose to render a side-scroller? How do I know what to render when my character move? What kind of positionning should I use for the characters?
I hope my question is clear
The easiest way i've found to do it is have a characterX and characterY variable [integer or float, whatever you want] Then have a cameraX and cameraY variable. Every object in the scene is drawn at theObjectX-cameraX, theObjectY-cameraY...
CameraX/CameraY are tweened by a similar-to-midpoint formula so eventually they'll reach playerx/playery[Cx = (Cx*99+Px)/100] ... yeah
By doing this, every object moves in the stage's space, and is transformed only on render [saving you from headaches]
Use a matrix to define a camera reference frame.
Use space partitioning to split up your level into screens/windows.
Think of your player sprite as any other entity, like enemies and interactive objects.
Now what you want is the abstraction of a camera. You can define a camera as a 3x3 matrix with this layout:
[rotX_X, rotY_X, 0]
[rotX_Y, rotY_Y, 0]
[transX, transY, 1]
The 2x2 sub-matrix in the top-left corner is a rotation matrix. transX and transY defines the translation part, i.e the origin. You also get scaling for free. Just simply scale the rotation part with a scalar, and you have yourself a zoom.
For this to work properly with rotation, your sprites need to be polygons/primitives, say like triangles or quads; you can't just apply the matrix to the positions of the sprites when drawing. If you don't need rotation, just transforming the center point will work fine.
If you want the camera to follow the player, use the player's position as the camera origin. That is the translation vector [transX, transY]
So how do you apply the matrix to entity positions and model vertices? You do a vector-matrix multiplication.
v' = vM^-1, where v' is the new vector, v is the old vector, and M^-1 is the matrix inverse. A camera needs to be an inverse transform because it defines a local coordinate system. An analogy could be: If you are in front of me and I turn left from my reference frame, I am turning your right. This applies to all affine and linear transformations, like scaling, rotation and translation.
Split up your level into sub-parts so you can cull objects and scenery which does not need to be rendered. Your viewport is of a certain size/resolution. Only render scenery and entities which intersect with your viewport. Instead of checking each and every entity against the viewport bounds, assign each entity to a certain sub-screen and test the bounds of the sub-screen against the viewport and camera bounds. If your divide your levels into parts which are the same size as your viewport, then the maximum number of screens visible
at any particular time is:
2 if your camera only scrolls left and right.
4 if your camera scrolls left, right, up and down.
4 if your camera scrolls in any direction, and additionally can be rotated.
A screen-change is an event you can use to activate entities belonging to that screen. That could be enemies, background animations, doors or whatever you like.
If this is your first foray into writing a side-scroller, I'd suggest considering using an already existing game engine (like Construct or Gamemaker or XNA or whatever fits your experience level) so you don't have to worry about what order to render things and how to make it all work. Mess with that a bit--probably exploring a few of them--to get a feel for how they do things then venture out to your own once you've gotten used to it.
Not that there's anything wrong with baptism by fire but it can get pretty overwhelming in my opinion.