I'm in the design/skeleton coding phase of my C++ game with Lua scripting, but I have run into a design issue:
The game will have many copies of the same kind of entities, with behavior controlled by the same script. Is there a straightforward way I can share the script between entities of the same type in a single lua_state? I have only been able to find this question asked a couple of times on the Internet; I have read mixed feedback on whether or not it's a good idea to load the same script in different lua_state's, and not in-depth feedback on alternatives.
It's simple and bullet-proof, but I think loading, compiling, and storing addition copies of the same byte code with each instance of the same entity type created is a tragic waste, so I would like to figure out a smarter solution.
These are the two solutions I have thought of. I'm not new to programming or C or OO concepts but I am still learning when it comes to Lua and especially the Lua/C API. I think my ideas are sound but I am not even sure how I would go about implementing them.:
Implement OO in the Lua script and have each entity be represented by a Lua object; all the Lua logic would act on the object. This would also have the benefit (or the "benefit") of allowing the global environment to be changed by anything single entity.
Encapsulate each entity in its own environment using setfenv and copy references of all of the functions from the global space. As I understand it the env is just a different table than the default global, but I've looked into setfenv but I don't know how I would do that.
1 and 2 are just different sides of the same coin, more or less. It's simply a matter of where the object goes. In type 1, the object is an explicit part of the Lua script. Which means the script decides how it wants to set up its objects.
In type 2, the object is the environment. It is still a Lua table, but one created for it by the external code. The script cannot break free of the confines of this object, except in the ways that the external code allows.
The easiest way for me to implement type 1 would be with Luabind. I'd have an AI object as a C++ class, which Lua would be able to derive from. Running the "main script" for that AI would create an instance of that class. You would pass the script parameters, like the name of the entity it controls, maybe a reference it can use to control it, etc.
Type 2 is fairly simple. First, you create the new environment by creating an empty table and populating it with the global variables that you want the user to be able to have access to. These would be for things like talking to game-state (find other objects in the scene, etc), ways to move the entity in question around, and so forth. There are metatable tricks you can play to effectively make these values immutable and constant, so the user can't modify them later.
Then, you load the script with lua_loadstring or lua_loadfile. This puts a function on the Lua stack that represents that Lua script. Then you apply this table as that script function's environment with lua_setfenv. You can then run that script, passing whatever variables you wish (the name of the entity, etc).
Related
I have a class called Camera in the .NET library and once I instantiate the object I want to create a reference of it so that this instance can be used from other VIs. How do I make a reference or how do I make it global ?
Thanks,
There are a couple ways to approach your question.
Possible answer 1: You're looking to let multiple parallel subVIs use the object at the same time. The .NET wire is already a reference wire. Forking that wire does not copy the object. Just wire it into the other VIs, however many there are, and let them all use the reference.
Possible answer 2: You're trying to obtain the existing reference in another VI without passing the reference on a wire through a subVI conpane or Call By Reference node. In this case, you would pass the .NET object refnum the same way you would pass any other bit of data in LabVIEW when avoiding wires. In general, the rule is "avoid passing data outside of dataflow." Seriously... try to pass the refnum through a conpane... if this program is going to have any significant lifetime, you'll be happier when you can take that approach. BUT... when such outside-of-dataflow passing is necessary, there are many tools -- queues, notifiers, global VIs, data value references, functional globals. Which of those tools is the right one depends greatly on what you're actually trying to achieve. The simplest is to create a global VI, but that introduces a lot of polling checks as the second VI has to keep polling the global to see if the first VI has stored the value yet or not. A notifier refnum is probably the most flexible option that I can point you toward... create a named notifier of your .NET refnum type. Both first and second VI can obtain the notifier by name. The second VI then blocks on Wait For Notificiation waiting for the first VI to write the refnum into the notifier. See http://zone.ni.com/reference/en-XX/help/371361L-01/glang/create_notifier/ for more information on notifiers. Or Google the other terms that I listed if that seems insufficient for your needs.
Say I have a class, Master, that starts up my program, and I have another class, TerminalIO, that has functions and data for talking to stdin and stdout. I then instantiate a Master object from main().
In code within the methods of TerminalIO, how would I access the properties and functions of Master?
The reason I'm asking about this is because my program needs to store some shared data (both enums and regular variables), and I was wanting to know of an efficient way to do that. I'm not so sure this is the best way, but it's certainly better than toying with the package keyword and trying to store "global" data at module level or whathaveyou.
I think it's worth noting that I will have many other objects that also want access to this shared data, so a simple reference may not be the best of ideas.
You will have to get a reference to Master inside your TerminalIO.
There are a couple of ways you could use:
Have Master be a singleton, so there is only one instance which you can access with Master.instance, so you'll have something like Master.instance.masterProperty.
Having a TerminalIO factory method in Master which constructs a TerminalIO and passes a Master reference to the constructor.
I often find myself needing reference to an object that is several objects away, or so it seems. The options I see are passing a reference through a middle-man or just making something available statically. I understand the danger of global scope, but passing a reference through an object that does nothing with it feels ridiculous. I'm okay with a little bit passing around, I suppose. I suspect there's a line to be drawn somewhere.
Does anyone have insight on where to draw this line?
Or a good way to deal with the problem of distributing references amongst dependent objects?
Use the Law of Demeter (with moderation and good taste, not dogmatically). If you're coding a.b.c.d.e, something IS wrong -- you've nailed forevermore the implementation of a to have a b which has a c which... EEP!-) One or at the most two dots is the maximum you should be using. But the alternative is NOT to plump things into globals (and ensure thread-unsafe, buggy, hard-to-maintain code!), it is to have each object "surface" those characteristics it is designed to maintain as part of its interface to clients going forward, instead of just letting poor clients go through such undending chains of nested refs!
This smells of an abstraction that may need some improvement. You seem to be violating the Law of Demeter.
In some cases a global isn't too bad.
Consider, you're probably programming against an operating system's API. That's full of globals, you can probably access a file or the registry, write to the console. Look up a window handle. You can do loads of stuff to access state that is global across the whole computer, or even across the internet... and you don't have to pass a single reference to your class to access it. All this stuff is global if you access the OS's API.
So, when you consider the number of global things that often exist, a global in your own program probably isn't as bad as many people try and make out and scream about.
However, if you want to have very nice OO code that is all unit testable, I suppose you should be writing wrapper classes around any access to globals whether they come from the OS, or are declared yourself to encapsulate them. This means you class that uses this global state can get references to the wrappers, and they could be replaced with fakes.
Hmm, anyway. I'm not quite sure what advice I'm trying to give here, other than say, structuring code is all a balance! And, how to do it for your particular problem depends on your preferences, preferences of people who will use the code, how you're feeling on the day on the academic to pragmatic scale, how big the code base is, how safety critical the system is and how far off the deadline for completion is.
I believe your question is revealing something about your classes. Maybe the responsibilities could be improved ? Maybe moving some code would solve problems ?
Tell, don't ask.
That's how it was explained to me. There is a natural tendency to call classes to obtain some data. Taken too far, asking too much, typically leads to heavy "getter sequences". But there is another way. I must admit it is not easy to find, but improves gradually in a specific code and in the coder's habits.
Class A wants to perform a calculation, and asks B's data. Sometimes, it is appropriate that A tells B to do the job, possibly passing some parameters. This could replace B's "getName()", used by A to check the validity of the name, by an "isValid()" method on B.
"Asking" has been replaced by "telling" (calling a method that executes the computation).
For me, this is the question I ask myself when I find too many getter calls. Gradually, the methods encounter their place in the correct object, and everything gets a bit simpler, I have less getters and less call to them. I have less code, and it provides more semantic, a better alignment with the functional requirement.
Move the data around
There are other cases where I move some data. For example, if a field moves two objects up, the length of the "getter chain" is reduced by two.
I believe nobody can find the correct model at first.
I first think about it (using hand-written diagrams is quick and a big help), then code it, then think again facing the real thing... Then I code the rest, and any smells I feel in the code, I think again...
Split and merge objects
If a method on A needs data from C, with B as a middle man, I can try if A and C would have some in common. Possibly, A or a part of A could become C (possible splitting of A, merging of A and C) ...
However, there are cases where I keep the getters of course.
But it's less likely a long chain will be created.
A long chain will probably get broken by one of the techniques above.
I have three patterns for this:
Pass the necessary reference to the object's constructor -- the reference can then be stored as a data member of the object, and doesn't need to be passed again; this implies that the object's factory has the necessary reference. For example, when I'm creating a DOM, I pass the element name to the DOM node when I construct the DOM node.
Let things remember their parent, and get references to properties via their parent; this implies that the parent or ancestor has the necessary property. For example, when I'm creating a DOM, there are various things which are stored as properties of the top-level DomDocument ancestor, and its child nodes can access those properties via the reference which each one has to its parent.
Put all the different things which are passed around as references into a single class, and then pass around just that one class instance as the only thing that's passed around. For example, there are many properties required to render a DOM (e.g. the GDI graphics handle, the viewport coordinates, callback events, etc.) ... I put all of these things into a single 'Context' instance which is passed as the only parameter to the methods of the DOM nodes to be rendered, and each method can get whichever properties it needs out of that context parameter.
I've had this problem many times before, and I've never had a solution I felt good about.
Let's say I have a Transaction base class and two derived classes AdjustmentTransaction and IssueTransaction.
I have a list of transactions in the UI, and each transaction is of the concrete type AdjustmentTransaction or IssueTransaction.
When I select a transaction, and click an "Edit" button, I need to decide whether to show an AdjustmentTransactionEditorForm or an IssueTransactionEditorForm.
The question is how do I go about doing this in an OO fashion without having to use a switch statement on the type of the selected transaction? The switch statement works but feels kludgy. I feel like I should be able to somehow exploit the parallel inheritance hierarchy between Transactions and TransactionEditors.
I could have an EditorForm property on my Transaction, but that is a horrible mixing of my UI peanut butter with my Model chocolate.
Thanks in advance.
You need to map your "EditorForm" to a transaction at some point. You have a couple options:
A switch statement...like you, I think this stinks, and scales poorly.
An abstract "EditorForm" property in base Transaction class, this scales better, but has poor seperation of concerns.
A Type -> Form mapper in your frontend. This scales fairly well, and keeps good seperation.
In C#, I'd implement a Type -> Form mapper like this:
Dictionary <Type,Type> typeMapper = new Dictionary<Type,Type>();
typeMapper.Add(typeof(AdjustTransaction), typeof(AdjustTransactionForm));
// etc, in this example, I'm populating it by hand,
// in real life, I'd use a key/value pair mapping config file,
// and populate it at runtime.
then, when edit is clicked:
Type formToGet;
if (typeMapper.TryGetValue(CurrentTransaction.GetType(), out formToGet))
{
Form newForm = (Form)Activator.CreateInstance(formToGet);
}
You probably don't want to tie it to the inheritance tree--that will bind you up pretty good later when you get a slight requirements change.
The relationship should be specified somewhere in an external file. Something that describes the relationship:
Editing AdujustmentTransaction = AdjustmentTransactionEditorForm
Editing IssueTransaction = IssueTransactionEditorForm
With a little bit of parsing and some better language than I've used here, this file could become very generalized and reusable--you could reuse forms for different objects if required, or change which form is used to edit an object without too much effort.
(You might want users named "Joe" to use "JoeIssueTransactionEditorForm" instead, this could pretty easily be worked into your "language")
This is essentially Dependency Injection--You can probably use Spring to solve the problem in more general terms.
Do I miss something in the question? I just ask because the obvious OO answer would be: Polymorph
Just execute Transaction.editWindow() (or however you want to call it), and
overwrite the method in AdjustmentTransaction and IssueTrasaction with the required functionality. The call to element.editWindow() then opens the right dialog for you.
An alternative to the Dictionary/Config File approach would be
1) to define a interface for each of the transaction editors.
2) In your EXE or UI assembly have each of the forms register itself with the assembly that creates the individual transaction.
3) The class controlling the registration should be a singleton so you don't have multiple form instances floating around.
3) When a individual transaction is created it pulls out the correct form variable from the registration object and assigns it do an internal variable.
4) When the Edit method is called it just uses the Show method of the internal method to start the chain of calls that will result in the display of that transacton editor.
This eliminates the need for config files and dictionaries. It continues to separate the UI from the object. Plus you don't need any switch statement
The downside is having to write the interface for each every form in addition to the form itself.
If you have a great deal of different types of editors (dozens) then in that case I recommend that you use the Command Pattern
You have a master command that contains the dictonary recommend by Jonathan. That commands in turns will use that dictornary to execute one of a number of other command that calls the correct form with the correct object. The forms continue to be separate from the object themselves. The forms reside in the Command assembly. In addition you don't have to update the EXE to add another editor only the Command assembly. Finally by putting things inside of Command you can implement Undo/Redo a lot easier. (Implement a Unexecute as well as a Execute)
This is a question with many answers - I am interested in knowing what others consider to be "best practice".
Consider the following situation: you have an object-oriented program that contains one or more data structures that are needed by many different classes. How do you make these data structures accessible?
You can explicitly pass references around, for example, in the constructors. This is the "proper" solution, but it means duplicating parameters and instance variables all over the program. This makes changes or additions to the global data difficult.
You can put all of the data structures inside of a single object, and pass around references to this object. This can either be an object created just for this purpose, or it could be the "main" object of your program. This simplifies the problems of (1), but the data structures may or may not have anything to do with one another, and collecting them together in a single object is pretty arbitrary.
You can make the data structures "static". This lets you reference them directly from other classes, without having to pass around references. This entirely avoids the disadvantages of (1), but is clearly not OO. This also means that there can only ever be a single instance of the program.
When there are a lot of data structures, all required by a lot of classes, I tend to use (2). This is a compromise between OO-purity and practicality. What do other folks do? (For what it's worth, I mostly come from the Java world, but this discussion is applicable to any OO language.)
Global data isn't as bad as many OO purists claim!
After all, when implementing OO classes you've usually using an API to your OS. What the heck is this if it isn't a huge pile of global data and services!
If you use some global stuff in your program, you're merely extending this huge environment your class implementation can already see of the OS with a bit of data that is domain specific to your app.
Passing pointers/references everywhere is often taught in OO courses and books, academically it sounds nice. Pragmatically, it is often the thing to do, but it is misguided to follow this rule blindly and absolutely. For a decent sized program, you can end up with a pile of references being passed all over the place and it can result in completely unnecessary drudgery work.
Globally accessible services/data providers (abstracted away behind a nice interface obviously) are pretty much a must in a decent sized app.
I must really really discourage you from using option 3 - making the data static. I've worked on several projects where the early developers made some core data static, only to later realise they did need to run two copies of the program - and incurred a huge amount of work making the data non-static and carefully putting in references into everything.
So in my experience, if you do 3), you will eventually end up doing 1) at twice the cost.
Go for 1, and be fine-grained about what data structures you reference from each object. Don't use "context objects", just pass in precisely the data needed. Yes, it makes the code more complicated, but on the plus side, it makes it clearer - the fact that a FwurzleDigestionListener is holding a reference to both a Fwurzle and a DigestionTract immediately gives the reader an idea about its purpose.
And by definition, if the data format changes, so will the classes that operate on it, so you have to change them anyway.
You might want to think about altering the requirement that lots of objects need to know about the same data structures. One reason there does not seem to be a clean OO way of sharing data is that sharing data is not very object-oriented.
You will need to look at the specifics of your application but the general idea is to have one object responsible for the shared data which provides services to the other objects based on the data encapsulated in it. However these services should not involve giving other objects the data structures - merely giving other objects the pieces of information they need to meet their responsibilites and performing mutations on the data structures internally.
I tend to use 3) and be very careful about the synchronisation and locking across threads. I agree it is less OO, but then you confess to having global data, which is very un-OO in the first place.
Don't get too hung up on whether you are sticking purely to one programming methodology or another, find a solution which fits your problem. I think there are perfectly valid contexts for singletons (Logging for instance).
I use a combination of having one global object and passing interfaces in via constructors.
From the one main global object (usually named after what your program is called or does) you can start up other globals (maybe that have their own threads). This lets you control the setting up of program objects in the main objects constructor and tearing them down again in the right order when the application stops in this main objects destructor. Using static classes directly makes it tricky to initialize/uninitialize any resources these classes use in a controlled manner. This main global object also has properties for getting at the interfaces of different sub-systems of your application that various objects may want to get hold of to do their work.
I also pass references to relevant data-structures into constructors of some objects where I feel it is useful to isolate those objects from the rest of the world within the program when they only need to be concerned with a small part of it.
Whether an object grabs the global object and navigates its properties to get the interfaces it wants or gets passed the interfaces it uses via its constructor is a matter of taste and intuition. Any object you're implementing that you think might be reused in some other project should definately be passed data structures it should use via its constructor. Objects that grab the global object should be more to do with the infrastructure of your application.
Objects that receive interfaces they use via the constructor are probably easier to unit-test because you can feed them a mock interface, and tickle their methods to make sure they return the right arguments or interact with mock interfaces correctly. To test objects that access the main global object, you have to mock up the main global object so that when they request interfaces (I often call these services) from it they get appropriate mock objects and can be tested against them.
I prefer using the singleton pattern as described in the GoF book for these situations. A singleton is not the same as either of the three options described in the question. The constructor is private (or protected) so that it cannot be used just anywhere. You use a get() function (or whatever you prefer to call it) to obtain an instance. However, the architecture of the singleton class guarantees that each call to get() returns the same instance.
We should take care not to confuse Object Oriented Design with Object Oriented Implementation. Al too often, the term OO Design is used to judge an implementation, just as, imho, it is here.
Design
If in your design you see a lot of objects having a reference to exactly the same object, that means a lot of arrows. The designer should feel an itch here. He should verify whether this object is just commonly used, or if it is really a utility (e.g. a COM factory, a registry of some kind, ...).
From the project's requirements, he can see if it really needs to be a singleton (e.g. 'The Internet'), or if the object is shared because it's too general or too expensive or whatsoever.
Implementation
When you are asked to implement an OO Design in an OO language, you face a lot of decisions, like the one you mentioned: how should I implement all the arrows to the oft used object in the design?
That's the point where questions are addressed about 'static member', 'global variable' , 'god class' and 'a-lot-of-function-arguments'.
The Design phase should have clarified if the object needs to be a singleton or not. The implementation phase will decide on how this singleness will be represented in the program.
Option 3) while not purist OO, tends to be the most reasonable solution. But I would not make your class a singleton; and use some other object as a static 'dictionary' to manage those shared resources.
I don't like any of your proposed solutions:
You are passing around a bunch of "context" objects - the things that use them don't specify what fields or pieces of data they are really interested in
See here for a description of the God Object pattern. This is the worst of all worlds
Simply do not ever use Singleton objects for anything. You seem to have identified a few of the potential problems yourself