greatest common divisor Objective-C - objective-c

I am new to ios programing. I have question about the GCD program.
01 // This program finds the greatest common divisor of two nonnegative integer values
02
03 #import <Foundation/Foundation.h>
04
05 int main (int argc, const char * argv[]) {
06 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
07 unsigned int u, v, temp;
08
09 NSLog(#"Please type in two nonnegative integers.");
10 scanf("%u%u", &u, &v);
11
12 while (v != 0) {
13 temp = u % v;
14 u = v;
15 v = temp;
16 }
17
18 NSLog(#"Their greatest common divisor is %u", u);
19
20 [pool drain];
21 return 0;
22 }
I don't understand this part:
while(v!=0)
temp = u%v
u =v;
v = temp;
What does that mean, in English?

That part actually calculates the greatest common divisor using the Euclidean algorithm.

% is the mod operator. Those three lines divide u by v and store the remainder in temp. Then u gets the value of v, and v gets the remainder. The process is repeated while v is not 0.

I see you are using euclideans algorithm
as you can see, temp = u%v % is a modulo operator where it divides the u and v and the remainder of it is stored at temp. then the value of is stored at the variable v and lastly the value of temp is stored at the variable v. and this whole process will repeat until the value of v is not equal to 0 or not 0.

Related

Largest set of different byte values unique when clearing bits

I am creating a data format, which will be stored in a DS2431 1-wire EEPROM. One page will be using EPROM emulation mode (where data once written can only be modified by clearing bits). In this page I want to store a byte with an ID, which cannot be changed to another valid value (due to only allowing clearing bits).
I am considering using the set of values that have a popcount of 4 (there are 70 different values). Clearing any bits means popcount is no longer 4, so this satisfies the desired property.
But could a set of byte values be found with more than 70 different values, that satisfy the property?
No. For an 8-bit value, using four bits is optimal.
If you have your 70 4-bit values and decide to add a 5-bit value as valid, you have to give up five 4-bit values that can be created by clearing a bit. Similarly, if you want a valid 3-bit value, you also have to give up five 4-bit values.
If you could increase the number of bits, then you can increase the ratio of possible values to bits used.
Since there are only 256 possible values and 8 possible populations it is a trivial task to test all possible population counts:
#include <stdio.h>
#include <stdint.h>
int popcount( uint8_t byte )
{
int count = 0 ;
for( uint8_t b = 0x01; b != 0; b <<= 1 )
{
count = count + (((byte & b) != 0) ? 1 : 0) ;
}
return count ;
}
int main()
{
int valuecount[8] = {0} ;
for( int i = 0; i < 256; i++ )
{
valuecount[popcount(i)]++ ;
}
printf( "popcount\tvalues\n") ;
for( int p = 0; p < 9; p++ )
{
printf( " %d\t\t %d\n", p, valuecount[p] ) ;
}
return 0;
}
Result:
popcount values
0 1
1 8
2 28
3 56
4 70
5 56
6 28
7 8
8 1
The optimum population count for any word length n is always n / 2. For 16-bits the number of values with 8 1-bits is 12870.

Find nth int with 10 set bits

Find the nth int with 10 set bits
n is an int in the range 0<= n <= 30 045 014
The 0th int = 1023, the 1st = 1535 and so on
snob() same number of bits,
returns the lowest integer bigger than n with the same number of set bits as n
int snob(int n) {
int a=n&-n, b=a+n;
return b|(n^b)/a>>2;
}
calling snob n times will work
int nth(int n){
int o =1023;
for(int i=0;i<n;i++)o=snob(o);
return o;
}
example
https://ideone.com/ikGNo7
Is there some way to find it faster?
I found one pattern but not sure if it's useful.
using factorial you can find the "indexes" where all 10 set bits are consecutive
1023 << x = the (x+10)! / (x! * 10!) - 1 th integer
1023<<1 is the 10th
1023<<2 is the 65th
1023<<3 the 285th
...
Btw I'm not a student and this is not homework.
EDIT:
Found an alternative to snob()
https://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
int lnbp(int v){
int t = (v | (v - 1)) + 1;
return t | ((((t & -t) / (v & -v)) >> 1) - 1);
}
I have built an implementation that should satisfy your needs.
/** A lookup table to see how many combinations preceeded this one */
private static int[][] LOOKUP_TABLE_COMBINATION_POS;
/** The number of possible combinations with i bits */
private static int[] NBR_COMBINATIONS;
static {
LOOKUP_TABLE_COMBINATION_POS = new int[Integer.SIZE][Integer.SIZE];
for (int bit = 0; bit < Integer.SIZE; bit++) {
// Ignore less significant bits, compute how many combinations have to be
// visited to set this bit, i.e.
// (bit = 4, pos = 5), before came 0b1XXX and 0b1XXXX, that's C(3, 3) + C(4, 3)
int nbrBefore = 0;
// The nth-bit can be only encountered after pos n
for (int pos = bit; pos < Integer.SIZE; pos++) {
LOOKUP_TABLE_COMBINATION_POS[bit][pos] = nbrBefore;
nbrBefore += nChooseK(pos, bit);
}
}
NBR_COMBINATIONS = new int[Integer.SIZE + 1];
for (int bits = 0; bits < NBR_COMBINATIONS.length; bits++) {
NBR_COMBINATIONS[bits] = nChooseK(Integer.SIZE, bits);
assert NBR_COMBINATIONS[bits] > 0; // Important for modulo check. Otherwise we must use unsigned arithmetic
}
}
private static int nChooseK(int n, int k) {
assert k >= 0 && k <= n;
if (k > n / 2) {
k = n - k;
}
long nCk = 1; // (N choose 0)
for (int i = 0; i < k; i++) {
// (N choose K+1) = (N choose K) * (n-k) / (k+1);
nCk *= (n - i);
nCk /= (i + 1);
}
return (int) nCk;
}
public static int nextCombination(int w, int n) {
// TODO: maybe for small n just advance naively
// Get the position of the current pattern w
int nbrBits = 0;
int position = 0;
while (w != 0) {
final int currentBit = Integer.lowestOneBit(w); // w & -w;
final int bitPos = Integer.numberOfTrailingZeros(currentBit);
position += LOOKUP_TABLE_COMBINATION_POS[nbrBits][bitPos];
// toggle off bit
w ^= currentBit;
nbrBits++;
}
position += n;
// Wrapping, optional
position %= NBR_COMBINATIONS[nbrBits];
// And reverse lookup
int v = 0;
int m = Integer.SIZE - 1;
while (nbrBits-- > 0) {
final int[] bitPositions = LOOKUP_TABLE_COMBINATION_POS[nbrBits];
// Search for largest bitPos such that position >= bitPositions[bitPos]
while (Integer.compareUnsigned(position, bitPositions[m]) < 0)
m--;
position -= bitPositions[m];
v ^= (0b1 << m--);
}
return v;
}
Now for some explanation. LOOKUP_TABLE_COMBINATION_POS[bit][pos] is the core of the algorithm that makes it as fast as it is. The table is designed so that a bit pattern with k bits at positions p_0 < p_1 < ... < p_{k - 1} has a position of `\sum_{i = 0}^{k - 1}{ LOOKUP_TABLE_COMBINATION_POS[i][p_i] }.
The intuition is that we try to move back the bits one by one until we reach the pattern where are all bits are at the lowest possible positions. Moving the i-th bit from position to k + 1 to k moves back by C(k-1, i-1) positions, provided that all lower bits are at the right-most position (no moving bits into or through each other) since we skip over all possible combinations with the i-1 bits in k-1 slots.
We can thus "decode" a bit pattern to a position, keeping track of the bits encountered. We then advance by n positions (rolling over in case we enumerated all possible positions for k bits) and encode this position again.
To encode a pattern, we reverse the process. For this, we move bits from their starting position forward, as long as the position is smaller than what we're aiming for. We could, instead of a linear search through LOOKUP_TABLE_COMBINATION_POS, employ a binary search for our target index m but it's hardly needed, the size of an int is not big. Nevertheless, we reuse our variant that a smaller bit must also come at a less significant position so that our algorithm is effectively O(n) where n = Integer.SIZE.
I remain with the following assertions to show the resulting algorithm:
nextCombination(0b1111111111, 1) == 0b10111111111;
nextCombination(0b1111111111, 10) == 0b11111111110;
nextCombination(0x00FF , 4) == 0x01EF;
nextCombination(0x7FFFFFFF , 4) == 0xF7FFFFFF;
nextCombination(0x03FF , 10) == 0x07FE;
// Correct wrapping
nextCombination(0b1 , 32) == 0b1;
nextCombination(0x7FFFFFFF , 32) == 0x7FFFFFFF;
nextCombination(0xFFFFFFEF , 5) == 0x7FFFFFFF;
Let us consider the numbers with k=10 bits set.
The trick is to determine the rank of the most significant one, for a given n.
There is a single number of length k: C(k, k)=1. There are k+1 = C(k+1, k) numbers of length k + 1. ... There are C(m, k) numbers of length m.
For k=10, the limit n are 1 + 10 + 55 + 220 + 715 + 2002 + 5005 + 11440 + ...
For a given n, you easily find the corresponding m. Then the problem is reduced to finding the n - C(m, k)-th number with k - 1 bits set. And so on recursively.
With precomputed tables, this can be very fast. 30045015 takes 30 lookups, so that I guess that the worst case is 29 x 30 / 2 = 435 lookups.
(This is based on linear lookups, to favor small values. By means of dichotomic search, you reduce this to less than 29 x lg(30) = 145 lookups at worse.)
Update:
My previous estimates were pessimistic. Indeed, as we are looking for k bits, there are only 10 determinations of m. In the linear case, at worse 245 lookups, in the dichotomic case, less than 50.
(I don't exclude off-by-one errors in the estimates, but clearly this method is very efficient and requires no snob.)

TWIN PRIMES BETWEEN 2 VALUES wrong results

I've been working on this program to count how many twin primes between two values and it's been specified that twin primes come in the (6n-1, 6n+1) format, with the exception of (3, 5). My code seems to work fine, but it keeps giving me the wrong result....1 less couple of twin primes than i should get. Between 1 and 40, we should have 5 twin primes, but I'm always getting 4. é
What am I doing wrong? Am I not taking into account (3, 5)?
Here's my code:
#include <stdio.h>
int prime (int num) {
int div;
if (num == 2) return 1;
if (num % 2 == 0) return 0;
div = 3;
while (div*div <= num && num%div != 0)
div = div + 2;
if (num%div == 0)
return 0;
else
return 1;
}
int main(void) {
int low, high, i, count, n, m;
printf("Please enter the values for the lower and upper limits of the interval\n");
scanf("%d%d", &low, &high);
printf("THIS IS THE LOW %d\n AND THIS IS THE HIGH %d\n", low, high);
i = low;
count = 0;
while (6*i-1>=low && 6*i+1<=high) {
n = 6*i-1;
m = 6*i+1;
if (prime(n) && prime(m)) ++count;
i = i + 1;
}
printf("Number of twin primes is %d\n", count);
return 0;
}
Your program misses (3 5) because 3 is not trapped as a prime number, and because 4 is not a multiple of 6. Rather than the main loop stepping by (effectively) 6, this answer steps by 1.
#include <stdio.h>
int prime (int num) {
int div;
if (num == 1) return 0; // excluded 1
if (num == 2 || num == 3) return 1; // included 3 too
if (num % 2 == 0) return 0;
div = 3;
while (div*div <= num) {
if (num % div == 0) // moved to within loop
return 0;
div += 2;
}
return 1;
}
int main(void) {
int low, high, i, count, n, m;
printf("Please enter the values for the lower and upper limits of the interval\n");
scanf("%d%d", &low, &high);
printf("THIS IS THE LOW %d\n AND THIS IS THE HIGH %d\n", low, high);
count = 0;
for (i=low; i<=high; i++) {
n = i-1;
m = i+1;
if (prime(n) && prime(m)) {
printf ("%2d %2d\n", n, m);
++count;
}
}
printf("Number of twin primes is %d\n", count);
return 0;
}
Program output
1
40
THIS IS THE LOW 1
AND THIS IS THE HIGH 40
3 5
5 7
11 13
17 19
29 31
Number of twin primes is 5
Next run:
3
10
THIS IS THE LOW 3
AND THIS IS THE HIGH 10
3 5
5 7
Number of twin primes is 2
https://primes.utm.edu/lists/small/100ktwins.txt
The five twin primes under forty are (3,5), (5,7), (11,13), (17,19), (29,31) so if you know that your code isn't counting (3,5) then it is working correctly, counting (5,7), (11,13), (17,19), and (29,31).
A possible fix would be to add an if-statement which adds 1 to "count" if the starting number is less than 4. I'm not really that used to reading C syntax so I had trouble getting my head around your formulas, sorry.
edit: since comments don't format code snippets:
i = low;
count = 0;
if (low <= 3 && high >= 3){
count ++; // accounts for (3,5) twin primes if the range includes 3
}
You have a problem in your prime function, this is the output of your prime function for the first ten prime evaluations
for(i=1;i<=10;i++) printf("%d\t%d",i,prime(i));
1 1
2 1
3 0
4 0
5 1
6 0
7 1
8 0
Note the prime() function from Weather Vane, you should include 3 as prime (and exclude 1).
From [1], twin primes are the ones that have a prime gap of two, differing by two from another prime.
Examples are (3,5) , (5,7), (11,13). The format (6n-1,6n+1) is true but for (3,5) as you stated. Your program runs almost ok since it shows the number of twin primes that are in the interval AND follows the rule mentioned above. This doesn't include (3,5). You can make a kind of exception (like if low<=3 add 1 to total count), or use another algorithm to count twin primes (like verify if i is prime, then count distance from i to next prime, if distance=2 then they are twin primes)
[1] http://en.wikipedia.org/wiki/Twin_prime

Unable to calculate the sum of prime numbers below 2 million

I'm doing the Euler's Method project to find the sum of prime numbers below 2 million and I'm struggling. Here is the code I'm using. When I calculate the sum below 10 and the sum below 50 I'm getting the right value, but where I'm calculating the sum below 2 million project Euler is saying my solution is incorrect. Any ideas?
#import <Foundation/Foundation.h>
int main(int argc, const char * argv[])
{
#autoreleasepool {
int p = 2, d, total;
BOOL isPrime;
total = 0;
NSLog(#"%i ", p);
for ( p = 3; p < 2e6; p += 2){
isPrime = YES;
for ( d = 3; isPrime == YES && d < p; d += 2)
if ( p % d == 0)
isPrime = NO;
if (isPrime == YES){
NSLog(#"%i ", p);
total += p ;}
}
NSLog(#"total = %i", total + 2);
}
return 0;
}
This function sums the primes less than n using the Sieve of Eratosthenes:
function sumPrimes(n)
sum := 0
sieve := makeArray(2..n, True)
for p from 2 to n step 1
if sieve[p]
sum := sum + p
for i from p * p to n step p
sieve[i] := False
return sum
I'll leave it to you to translate to Objective-C with a suitable data type. For n = 2000000, this should run in one or two seconds.
There are a couple of mistakes. The first being that you're overflowing. Use a long instead of an int. The second thing is just a performance boost. Change your for loop from p < 2e6, to p*p <= 2e6. This way you rule out all numbers above the square root of 2e6. Fix those problems and you'll be good to go. Good luck!

Check if a number is divisible by 3

I need to find whether a number is divisible by 3 without using %, / or *. The hint given was to use atoi() function. Any idea how to do it?
The current answers all focus on decimal digits, when applying the "add all digits and see if that divides by 3". That trick actually works in hex as well; e.g. 0x12 can be divided by 3 because 0x1 + 0x2 = 0x3. And "converting" to hex is a lot easier than converting to decimal.
Pseudo-code:
int reduce(int i) {
if (i > 0x10)
return reduce((i >> 4) + (i & 0x0F)); // Reduces 0x102 to 0x12 to 0x3.
else
return i; // Done.
}
bool isDiv3(int i) {
i = reduce(i);
return i==0 || i==3 || i==6 || i==9 || i==0xC || i == 0xF;
}
[edit]
Inspired by R, a faster version (O log log N):
int reduce(unsigned i) {
if (i >= 6)
return reduce((i >> 2) + (i & 0x03));
else
return i; // Done.
}
bool isDiv3(unsigned i) {
// Do a few big shifts first before recursing.
i = (i >> 16) + (i & 0xFFFF);
i = (i >> 8) + (i & 0xFF);
i = (i >> 4) + (i & 0xF);
// Because of additive overflow, it's possible that i > 0x10 here. No big deal.
i = reduce(i);
return i==0 || i==3;
}
Subtract 3 until you either
a) hit 0 - number was divisible by 3
b) get a number less than 0 - number wasn't divisible
-- edited version to fix noted problems
while n > 0:
n -= 3
while n < 0:
n += 3
return n == 0
Split the number into digits. Add the digits together. Repeat until you have only one digit left. If that digit is 3, 6, or 9, the number is divisible by 3. (And don't forget to handle 0 as a special case).
While the technique of converting to a string and then adding the decimal digits together is elegant, it either requires division or is inefficient in the conversion-to-a-string step. Is there a way to apply the idea directly to a binary number, without first converting to a string of decimal digits?
It turns out, there is:
Given a binary number, the sum of its odd bits minus the sum of its even bits is divisible by 3 iff the original number was divisible by 3.
As an example: take the number 3726, which is divisible by 3. In binary, this is 111010001110. So we take the odd digits, starting from the right and moving left, which are [1, 1, 0, 1, 1, 1]; the sum of these is 5. The even bits are [0, 1, 0, 0, 0, 1]; the sum of these is 2. 5 - 2 = 3, from which we can conclude that the original number is divisible by 3.
A number divisible by 3, iirc has a characteristic that the sum of its digit is divisible by 3. For example,
12 -> 1 + 2 = 3
144 -> 1 + 4 + 4 = 9
The interview question essentially asks you to come up with (or have already known) the divisibility rule shorthand with 3 as the divisor.
One of the divisibility rule for 3 is as follows:
Take any number and add together each digit in the number. Then take that sum and determine if it is divisible by 3 (repeating the same procedure as necessary). If the final number is divisible by 3, then the original number is divisible by 3.
Example:
16,499,205,854,376
=> 1+6+4+9+9+2+0+5+8+5+4+3+7+6 sums to 69
=> 6 + 9 = 15 => 1 + 5 = 6, which is clearly divisible by 3.
See also
Wikipedia/Divisibility rule - has many rules for many divisors
Given a number x.
Convert x to a string. Parse the string character by character. Convert each parsed character to a number (using atoi()) and add up all these numbers into a new number y.
Repeat the process until your final resultant number is one digit long. If that one digit is either 3,6 or 9, the origional number x is divisible by 3.
My solution in Java only works for 32-bit unsigned ints.
static boolean isDivisibleBy3(int n) {
int x = n;
x = (x >>> 16) + (x & 0xffff); // max 0x0001fffe
x = (x >>> 8) + (x & 0x00ff); // max 0x02fd
x = (x >>> 4) + (x & 0x000f); // max 0x003d (for 0x02ef)
x = (x >>> 4) + (x & 0x000f); // max 0x0011 (for 0x002f)
return ((011111111111 >> x) & 1) != 0;
}
It first reduces the number down to a number less than 32. The last step checks for divisibility by shifting the mask the appropriate number of times to the right.
You didn't tag this C, but since you mentioned atoi, I'm going to give a C solution:
int isdiv3(int x)
{
div_t d = div(x, 3);
return !d.rem;
}
bool isDiv3(unsigned int n)
{
unsigned int n_div_3 =
n * (unsigned int) 0xaaaaaaab;
return (n_div_3 < 0x55555556);//<=>n_div_3 <= 0x55555555
/*
because 3 * 0xaaaaaaab == 0x200000001 and
(uint32_t) 0x200000001 == 1
*/
}
bool isDiv5(unsigned int n)
{
unsigned int n_div_5 =
i * (unsigned int) 0xcccccccd;
return (n_div_5 < 0x33333334);//<=>n_div_5 <= 0x33333333
/*
because 5 * 0xcccccccd == 0x4 0000 0001 and
(uint32_t) 0x400000001 == 1
*/
}
Following the same rule, to obtain the result of divisibility test by 'n', we can :
multiply the number by 0x1 0000 0000 - (1/n)*0xFFFFFFFF
compare to (1/n) * 0xFFFFFFFF
The counterpart is that for some values, the test won't be able to return a correct result for all the 32bit numbers you want to test, for example, with divisibility by 7 :
we got 0x100000000- (1/n)*0xFFFFFFFF = 0xDB6DB6DC
and 7 * 0xDB6DB6DC = 0x6 0000 0004,
We will only test one quarter of the values, but we can certainly avoid that with substractions.
Other examples :
11 * 0xE8BA2E8C = A0000 0004, one quarter of the values
17 * 0xF0F0F0F1 = 10 0000 0000 1
comparing to 0xF0F0F0F
Every values !
Etc., we can even test every numbers by combining natural numbers between them.
A number is divisible by 3 if all the digits in the number when added gives a result 3, 6 or 9. For example 3693 is divisible by 3 as 3+6+9+3 = 21 and 2+1=3 and 3 is divisible by 3.
inline bool divisible3(uint32_t x) //inline is not a must, because latest compilers always optimize it as inline.
{
//1431655765 = (2^32 - 1) / 3
//2863311531 = (2^32) - 1431655765
return x * 2863311531u <= 1431655765u;
}
On some compilers this is even faster then regular way: x % 3. Read more here.
well a number is divisible by 3 if all the sum of digits of the number are divisible by 3. so you could get each digit as a substring of the input number and then add them up. you then would repeat this process until there is only a single digit result.
if this is 3, 6 or 9 the number is divisable by 3.
Here is a pseudo-algol i came up with .
Let us follow binary progress of multiples of 3
000 011
000 110
001 001
001 100
001 111
010 010
010 101
011 000
011 011
011 110
100 001
100 100
100 111
101 010
101 101
just have a remark that, for a binary multiple of 3 x=abcdef in following couples abc=(000,011),(001,100),(010,101) cde doest change , hence, my proposed algorithm:
divisible(x):
y = x&7
z = x>>3
if number_of_bits(z)<4
if z=000 or 011 or 110 , return (y==000 or 011 or 110) end
if z=001 or 100 or 111 , return (y==001 or 100 or 111) end
if z=010 or 101 , return (y==010 or 101) end
end
if divisible(z) , return (y==000 or 011 or 110) end
if divisible(z-1) , return (y==001 or 100 or 111) end
if divisible(z-2) , return (y==010 or 101) end
end
C# Solution for checking if a number is divisible by 3
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
int num = 33;
bool flag = false;
while (true)
{
num = num - 7;
if (num == 0)
{
flag = true;
break;
}
else if (num < 0)
{
break;
}
else
{
flag = false;
}
}
if (flag)
Console.WriteLine("Divisible by 3");
else
Console.WriteLine("Not Divisible by 3");
Console.ReadLine();
}
}
}
Here is your optimized solution that every one should know.................
Source: http://www.geeksforgeeks.org/archives/511
#include<stdio.h>
int isMultiple(int n)
{
int o_count = 0;
int e_count = 0;
if(n < 0)
n = -n;
if(n == 0)
return 1;
if(n == 1)
return 0;
while(n)
{
if(n & 1)
o_count++;
n = n>>1;
if(n & 1)
e_count++;
n = n>>1;
}
return isMultiple(abs(o_count - e_count));
}
int main()
{
int num = 23;
if (isMultiple(num))
printf("multiple of 3");
else
printf(" not multiple of 3");
return 0;
}