Why is not USB interrupt-driven? - usb

What's the rationale behind making USB a polling mechanism rather than interrupt-driven? The answers I can come up with some reasoning are:
Leave control of processing efficiency and granularity to OS, rather than the device itself.
Prevent "interrupt storms" by faulty devices.
Some explanations on the net that I found say that it's mostly because of the nature of USB devices. They are mostly microcontroller-based systems which cannot queue larger transfers therefore require short interrupt intervals and such short interrupt intervals may not be the most efficient. Is that true?
Could there be other reasons?

The overarching premise of the development of USB was, "cheap chips". This was done, through the use of polling, which reduces the need for a higher arbitration protocol.
Firewire, which did allow for interrupts from the devices and even DMA, was much more expensive. So USB won in the low-cost field, and firewire in low-latency/low-overhead/... field. Due to history USB more or less won.

What's the rationale behind making USB a polling mechanism rather than interrupt-driven?
This seems to be anti-USB FUD (as in Fear-Uncertainy-Doubt).
The reason is that this simplifies things on the harware level quite a bit - no more collisions for example. USB is half-duplex to reducex the amount of wires in the cable, so only one can talk anyway.
While USB uses polling on the wire, once you use it in software you will notice that you have interrupts in USB. The only issue is a slight increase in latency - neglible in most use cases. Since the polling is usually realized in hardware IIRC, software only gets notified if there is new data.
On the software level, there are so-called "interrupt endpoints" - and guess what, every HID device uses them: Mice, Keyboard and Josticks are HID.

There are three ways to avoid data transfer collisions on a bus:
Have a somewhat complex bus management protocol. Such a protocol has to be rather sophisticated, as when too simple, it will make the bus rather slow (see Token Ring, which is rather simple, yet inefficient). However, having a sophisticated protocol makes all components expensive as all of them require management logic and need to understand of how the bus actually works (see Firewire).
Don't avoid them at all, allow them but detect and handle them. This is also somewhat complex and the bus cannot guarantee any speed or latency as if there are constantly collisions, throughput will fall and latency will raise (see Ethernet without switches, see WiFi).
Have one bus master that controls who can use the bus at which time and for how long. This is inexpensive, as only the master must be sophisticated and the master can give any possible guarantee regarding speed or latency.
And (3) is how USB works and not even the master USB chips need to be sophisticated as the master is usually a computer with a fast CPU and can perform all bus management in software.
USB device chips are dump as toast. They don't need to understand the nifty details of the bus. They just have to look for packets addressed to them which are either control packets, e.g. requesting meta data or selecting a configuration, data packets sent by the master, or poll requests from the master saying "if you have something to send, the bus is now yours".
To make sure the master polls them on time, they hand out a simple description table on request, that explains which endpoints they offer, how often those need to be polled, and how much data they will at most transfer when being polled. The master can use that information to build up a poll schedule that ensures that all devices are polled on time and get the bus for long enough to allow their maximum transfer size. Of course, this is not possible under all circumstances. If you connect too many devices that require very frequent polling and always want to send a lot of data, your system may refuse to add a new device with the error, that its poll requirements cannot be satisfied anymore. Yet that situation is rare in practice and USB is limited to 127 devices (hubs count as devices, so does the master itself).
Power management works in a similar way. Every device tells the master how much power it needs and the master ensures that the bus can still deliver that much, taking active hubs into account. If you connect another device and the bus cannot power it anymore, adding the device will fail with an error.
This allows a fairly complex, powerful, and fast bus system, yet with components that don't even need a real CPU. The simplest USB chips out there are just bridges to a serial data line (like an internal RS-232 bus or an I2C bus) and there is nothing really configurable and they cannot run software or have a firmware one could update. They just place incoming data packets into a buffer and then sent the buffer content bit for bit over the serial bus and they receive serial data in another buffer and return the buffer content when being polled. As for telling the master the configuration (including device and vendor IDs, as well as human readable strings), they simply send the content of a small external EPROM. Things cannot get much simpler than that yet such a chip is enough to build plenty of USB hardware already.

Related

Hacking computer hardware to do experiment control

I am a physicist, and I had a revelation a few weeks ago about how I might be able to use my personal computer to get much finer control over laboratory experiments than is typically the case. Before I ran off to try this out though, I wanted to check the feasibility with people who have more expertise than myself in such matters.
The idea is to use the i/o ports---VGA, ethernet, speaker jacks, etc.---on the computer to talk directly to the sensors and actuators in the experimental setup. E.g. cut open one side of an ethernet cable (with the other end attached to the computer) and send each line to a different device. I knew a postdoc who did something very similar using a BeagleBone. He wrote some assembly code that let him sync everything with the internal clock and used the GPIO pins to effectively give him a hybrid signal generator/scope that was completely programmable. It seems like the same thing should be possible with a laptop, and this would have the additional benefit that you can do data analysis from the same device.
The main potential difficulty that I foresee is that the hardware on a BeagleBone is designed with this sort of i/o in mind, whereas I expect the hardware on a laptop will probably be harder to control directly. I know for example (from some preliminary investigation, http://ask.metafilter.com/125812/Simple-USB-control-how-to-blink-an-LED-via-code) that USB ports will be difficult to access this way, and VGA is (according to VGA 15 pin port data read and write using Matlab) impossible. I haven't found anything about using other ports like ethernet or speaker jacks, though.
So the main question is: will this idea be feasible (without investing many months for each new variation of the hardware), and if so what type of i/o (ethernet, speaker jacks, etc.) is likely to be the best bet?
Auxiliary questions are:
Where can I find material to learn how I might go about executing this plan? I'm not even sure what keywords to plug in on Google.
Will the ease with which I can do this depend strongly on operating system or hardware brand?
The only cable I can think of for a pc that can get close to this would be a parallel printer cable which is pretty much gone away. It's a 25 wire cable that data is spread across so that it can send more data at the same time. I'm just not sure if you can target a specific line or if it's more of a left to right fill as data is sent.
To use one on a laptop today would definitely be difficult. You won't find any laptops with parallel ports. There are usb to parallel cables and serial to parallel cables but I would guess that the only control you would have it to the usb or serial interface and not the parallel.
As for Ethernet, you have 4 twisted pair with only 2 pair in use and 2 pair that are extra.
There's some hardware that available called Zwave that you might want to look into. Zwave will allow you to build a network of devices that communicate in a mesh. I'm not sure what kind of response time you need.
I actually just thought of something that might be a good solution. Check out security equipment. There's a lot of equipment available for pc's that monitor doors, windows, sensors, etc. That industry might what your looking for.
I think the easiest way would be to use the USB port as a Human Interface Device (HID) and using a custom built PIC program and a PIC that includes the USB functionality to encode the data to be sent to the computer and in that way be able to program it independently from the OS due to the fact that all mayor OS have the HID USB functionality.
Anyways if you used your MIC/VGA/HDMI whatever other port you still need a device to encode the data or transmit it, and another program inside the computer to decode that data being sent.
And remember that different hardware has different software (drivers) that might decode the raw data in other odd ways rendering your IO hardware dependent.
Hope this helps, but thats why the USB was invented in the first place to make it hardware and os independent.

Is it possible to have CAN on Arduino without extra hardware?

I would like to have Arduino operating in a CAN network. Does the software that provides OSI model network layer exist for Arduino? I would imagine detecting the HI/LOW levels with GPIO/ADC and sending the signal to the network with DAC. It would be nice to have that without any extra hardware attached. I don't mind to have a terminating resistor required by the CAN network though.
By Arduino I mean any of them. My intention is to keep the development environmen.
If such a software does not exist, is there any technical obstacle for that, like limited flash size (again, I don't mean particular board with certain Atmega chip).
You can write a bit banging CAN driver, but it has many limitations.
First it's the timeing, it's hard to achieve the bit timing and also the arbitration.
You will be able to get 10kb or perhaps even 50kb but that consumes a huge amount of your cpu time.
And the code itself is a pain.
You have to calculate the CRC on the fly (easy) but to implement the collision detection and all the timing parameters is not easy.
Once, I done this for a company, but it was a realy bad idea.
Better buy a chip for 1 Euro and be happy.
There are several CAN Bus Shield boards available (e.g: this, and this), and that would be a far better solution. It is not just a matter of the controller chip, the bus interface, line drivers, and power all need to be considered. If you have the resources and skills you can of course create your own board or bread-board for less.
Even if you bit-bang it via GPIO you would need some hardware mods I believe to handle bus contention detection, and it would be very slow and may not interoperate well with "real" CAN controllers on the bus.
If your aim is to communicate between devices of your own design rather than off-the shelf CAN devices, then you don't need CAN for that, and something proprietary will suffice, and a UART will perform faster that a bit-banged CAN implementation.
I don't think, that such software exists. CAN bus is more complex, than for example I2C. Basically you would have to implement functionality of both CAN controller and CAN transceiver. See this thread for more details (in German).
Alternatively you could use one of the CAN shields. Another option were to use BeagleBone with suitable CAN cape.
Also take a look at AVR-CAN.

UART vs I2C vs SPI for inter-processor communication between microcontrollers

I am examining a way to connect two microcontrollers. On the level of serialization I am thinking of using Nano protobuffers (http://code.google.com/p/nanopb/). This way I can encode/decode messages and send them between two processors.
Basically, one small processor would be the RPC server, capable of doing several functions. Bigger processor will call there RPCs via messages sent, and then when data is ready, it will read it from smaller processor.
What would be the pros/cons of using UART, I2C or SPI?
Messages will be put in the mailbox que prior to sending.
It depends on your total requirements and how expensive are pins.
I2C only needs two pins, but it's slow and to handle it with or without interrupts is a pain, even with the build in peripheral modules.
It's a master/slave system, it's good for controlling many slow devices like temp sensors.
Only two lines for all bus devices, the selection is done via an I2C-Address in the protocol.
Uart needs two pins, it's normally faster, easier to handle, but requires (nearly) the same clocks at both sides.
One to one asynchronous system, can be good if both systems needs to be send sometimes data without waiting for a master poll request.
Can also be used as a bus system, but then you need a master/slave structure or more complex protocols.
SPI needs 3 (or 4 with CS) pins, it's the fastest, simple to implement even with DMA, low cpu time overhead, often buffered.
When you have enough free pins I would prefer it.
All of these interfaces have pros/cons.
UART connection in it's basic functionality requires 2 pins: RX and TX. The SW implementation of how to message over that UART is quite a bit more complicated...you'll have to develop your own messenging protocol between the devices and decide what is a good message and what is a bad message. It could get quite complicated because you pretty much have to define how to "communicate" over the physical link, what is an error, retries, etc. Unless you are implementing a serial port connection to a PC or some other external device, I think a UART is highly overkill for a IC to IC communication path. Master and slave are not specifically defined.
SPI is a master-slave relationship and can be a faster interface (I've seen up to 60MHz clock rates, not common) but it also requires more pins, 3 at a minimum for a point-to-point communication scheme but the number of pins increases to 3+n as the number of "slaves" increases above 1. There are no error indications via SPI. SPI is a "de-facto" standard...meaning it can vary in implementation...your mileage may vary depending on how a IC supplier defined "their" SPI implementation. I generally consider the lack of a true standard for SPI to be a "con".
I2C is also a two pin interface and is an actual "standard" developed by Phillips (now NXP.) As a standard, it is well-defined in how it operates, how errors are raised, and is simple to implement. It has an addressing scheme, can send commands, and can support 0 or more data frames in a transaction. CRC (optional) and higher data rates can be supported (up to 5Mbits.) It does have cons, namely bus capacitance can limit actual data rates (rise/fall time) but generally you can design around this "problem".
In their most basic forms, all of these busses are "ground referenced"...and can suffer from system induced noise. Obviously, lower rail voltages can make this even more of issue. Again careful design practice can mitigate many of the problems some people report to be the bain of their existence.
For the point-to-point system initially asked by the poster, if a master-slave arrangement is required, a SPI or I2C interface may be appropriate (data rate dependent.) If a master-master relationship is required, I2C or UART may be required.
For ease of implementation from a software point of view, I'd rank these communication methods in the following order:
I2C, if you need faster data rates than I2C can handle, then SPI
SPI, if you need multi-master, then I2C or UART
UART as a last resort...has a lot more software overhead to manage the communications channel
I would use UART or CAN or ETH or any protocol that is asynchronous.
If you use a synchronous protocol, the master must always "ask" the slave if it has data and generate unwanted traffic.

Chip to chip communication protocol over SPI

I'm trying to design an efficient communication protocol between a micro-controller on one side and an ARM processor on a multi-core TI chip on the other side through SPI.
The requirements for the needed protocol:
1 - Multi-session with queuing support, as I have multiple sending/receiving threads, so it will be more than one application using this communication protocol and I need the protocol to handle queuing these requests (I will keep holding the buffer if the transmission is queue but I just need the protocol to manage scheduling the queues).
2 - Works over SPI as an underlying protocol.
3 - Simple error checking.
In this thread: "Simple serial point-to-point communication protocol", PPP was a recommended option, however I see PPP does only part of the job.
I also found Light weight IP (LwIP) project featuring PPP over serial (which I assume that I can use it over SPI), so I thought about the possibility of utilizing any of the upper layers protocols like TCP/UDP to do the rest of the required jobs. Fortunately, I found TI including LwIP as part of their ethernet SW in the starterware package, which I assume to ease porting at least on the TI chip side.
So, my questions are:
1 - Is it valid to use LwIP for this communication scheme? Won't this introduce much overhead due to IP headers which are not necessary for a point to point (on the chip level) communication and kill the throughput?
2 - Will the TCP or any similar protocol residing in LwIP handle the queuing of transmission requests, for example if I request transmission through a socket while the communication channel is busy transmitting/receiving request for another socket (session) of another thread, will this be managed by the protocol stack? If so, which protocol layer manages it?
3 - Is their a more efficient protocol stack than LwIP, that meets the above requirements?
Update 1: More points to consider
1 - SPI is the only available option, I use it with available GPIOs to indicate to the master when the slave has data to send.
2 - The current implemented (non-standard) protocol uses DMA with SPI, and a message format of《STX_MsgID_length_payload_ETX》with a fixed message fragments length, however the main drawback of the current scheme is that the master waits for a response on the message (not fragment) before sending another one, which kills the throughput and does not utilise the full duplex nature of SPI.
3- An improvement to this point was to use a kind of mailbox for receiving fragments, so a long message can be interrupted by a higher priority one so that fragments of a single message can arrive non sequentially, but the problem is that this design lead to complicating things especially that I don't have much available resources for many buffers to use the mailbox approach on the controller (master) side. So I thought that it's like I'm re-inventing the wheel by designing a protocol stack for a simple point to point link which may not be efficient.
4- What kind of higher level protocols can be normally used above SPI to establish multiple sessions and solve the queuing/scheduling of messages?
Update 2: Another useful thread "A good serial communications protocol/stack for embedded devices?"
Update 3: I had a look at Modbus protocol, it seems to specify the application layer then directly the data link layer for serial line communication, which sounds to skip the unnecessary overhead of network oriented protocols layers.
Do you think this will be a better option than LwIP for the intended purpose? Also, is there a widely used open source implementation like LwIP but for Modbus?
I think that perhaps you are expecting too much of the humble SPI.
An SPI link is little more a pair of shift registers one in each node. The master selects a single node to connect to its SPI shift register. As it shifts in its data, the slave simultaneously shifts data out. Data is not exchanged unless the master explicitly clocks the data out. Efficient protocols on SPI involve the slave having something useful to output while the master inputs. This may be difficult to arrange, so you usually need a means of indicating null data.
PPP is useful when establishing a connection between two arbitrary endpoints, when the endpoints are fixed and known a priori, PPP would serve no purpose other than to complicate things unnecessarily.
SPI is not a very sophisticated nor flexible interface and probably unsuited to heavyweight general purpose protocols such as TCP/IP. Since "addressing" on SPI is performed by physical chip-select, the addressing inherent in such protocols is meaningless.
Flow control is also a problem with SPI. The master has no way of determining that the slave has copied the data from SPI the shift register before pushing more data. If your slave SPI supports DMA you would be wise to use it.
Either way I suggest that you develop something specific to your purpose. Since SPI is not a network as such, you only need a means to address threads on the selected node. This could be as simple as STX<thread ID><length><payload>ETX.
Added 27 September 2013 in response to comments
Generally SPI as its names suggests is used to connect to peripheral devices, and in that context the protocol is defined by the peripheral. EEPROMS for example typically use a common or at least compatible command interface across vendors, and SD/MMC card SPI interface uses a standardised command test and protocol.
Between two microcontrollers, I would imagine that most implementations are proprietary and application specific. Open protocols are designed for generic interoperability and to achieve that might impose significant unnecessary overhead for a closed system, unless perhaps the nodes were running a system that already had a network stack built in.
I would suggest that if you do want to use a generic network stack that you should abstract the SPI with device drivers at each end that give the SPI a standard I/O stream interface (open(), close(), read(), write() etc.), then you can use the higher-level PPP and TCP/IP protocols (although PPP can probably be avoided since the connection is permanent). However that would only be attractive if both nodes already supported these protocols (running Linux for example), otherwise it will be significant effort and code for little benefit, and would certainly not be "efficient".
I assume you dont really want or have room for a full ip (lwip) stack on the microcontroller? This just sounds like a lot of overkill. Why not just roll your own simple packet structure to move the data items you need to move. Depending on how spi is supported on both sides you may or may not be able to use it to define the frame for your data, if not a simple start pattern, length and a trailing checksum and maybe tail pattern would suffice for finding packet boundaries in the stream (no different than a serial/uart solution). You can even use the PPP solution for that with a start pattern and I think end pattern with the payload using a two byte pattern whenever the start pattern happens to show up in the data. I dont remember all the details now.
Whatever your frame is then add a packet type and your handshakes, or if the data is going to just be microcontroller to arm then you dont even need to do that.
To get back to your direct question. Yes, I think that an ip stack (lwip or other) will introduce a lot of overhead. both bandwidth and more important the amount of code needed to support that stack will chew up rom/ram on both sides. If you ultimately need to present this data in an ip fashion (a website hosted by the embedded system) then somewhere in the path you need an ip stack, etc.
I cant imagine that lwip manages your queues for you. I assume you would need to do that yourself. the various queues might want to talk to a single driver that deals with the single spi bus (assuming there is a single spi bus with multiple chip selects). It also depends on how you are using the spi interface, if you are allowing the arm to talk to multiple microcontrollers and the packets of data are broken up into a little bit from this controller a little from that controller so that nobody has to wait to long before they get a few more bytes of data. Or will a complete frame have to move from one microcontroller before moving onto the next gpio interrupt to pull that guys data? The long and short of it is I would assume you have to manage the shared resource just like you would in any other situation where you have multiple users of a shared resource (rtos, full blown operating system, etc). I dont remember lwip that well at all but with a full blown berkeley sockets application interface the user could write separate applications where each application only cared about one TCP or UDP port and the libraries and drivers managed separating those packets out to each application as well as all of the rules for the IP stack.
If you are not already doing experiments with moving data over the spi interface(s) I would start with simple experiments first just to get the feel for how well it is or isnt going to work, the sizes of transfers you can do reliably per spi transction, etc. Your solution may naturally just fall out of those experiments.

Is hardware impossible to debug without software?

Disclaimer: I am (mostly) hardware ignorant. This is probably my problem. However I find it hard to accept that it is not possible to debug hardware so therefore I just wanted to get some second opinions.
We have an issue. Where certain actions (swapping Usb devices in and out at run-time) can blow either the Usb hub or chip on our Usb board (it's custom hardware). It's a fuzzy problem (it appears that the degree of "blownness" can vary a bit) and the problem manifests itself in intermittent fashions with various symptoms that are very difficult to reliably reproduce (typically random corruption of packets).
This results in difficulty in ascertaining if a newly reported problem is due to this hardware fault or is actually a bug in the software. We have since implemented protection on these devices but if an unprotected device is used with a protected device it has a possibility of then tainting the (now protected) device. One of the ports is also not protected meaning that someone could still "kill off" a unit that should be safe by accidentally using the wrong port.
The upshot of this is that it is impossible to tell which of our devices suffer this issue without completely replacing ALL the hardware (we've bitten the bullet for most of our production hardware but there is still a lot of dev and QA hardware out there with this issue).
I would imagine that it could be possible, given a piece of hardware that one could use some kind of hardware diagnostics tools to determine whether the kit is faulty or not. Am I living in a dream world? My hardware department tell me that the only tests that can prove the fault would be software tests... but as I have stated the symptoms are very difficult to reproduce. As I'm not that experienced with hardware I don't know if this is the only answer or not. I therefore ask the world.
Built In Test Equipment is used for performing a Built In Test
BITE for BIT
(No bytes involved.)
It is completely, utterly normal for military/aerospace equipment to have extra hardware to test itself with.
The original IBM PC hard a surprising quantity of test hardware built in.
In the case of your equipment, a test device and some statistical analysis would do the trick.
This could be done in hardware in a dongle, but frankly would be easier to with some software.
Use two back-to-back USB to RS232 serial converters to make a USB loopback device.
Send lots of data , checksum packets and measure error rates.
I'm assuming your errors occur on the in->out as well as the out-<in side.
Really, your hardware guys need to look at some application notes; USB IS hotplug-safe IF done according to the book.
There is a cool example out on the net of opto-coupling a USB chip's connection to the board it's onto prevent this sort of thing. The USB chip is connected to the host, powered from the host, and the interface to the USB chip is SPI, which is opto-coupled back to the rest of the board.
As for you, the chips are failing partially. Injured devices may work fine for months then die. An electro-static discharge ("a static zap") can do the same thing that you describe. A device can be injured by shocks too small for you to feel.
The wires and features in semiconductors are microscopic, and easily damaged by stray electricity.
If the hardware design is mostly right probably the liekly cause of the problems you've been experiancing is ESD when the devices are handled to plug/unplug. Your devie has it's own power supply and it's ground voltage floats relative to the other end of the USB cable, until it is connected.
Hope this helps.
No it's not.
A lot of hardware manufacturers begin with hardware testing. Inputs and outputs (IO) is just a matter of evaluating where circuit flow is going. Consider the abstraction that both software and hardware deal in boolean operations.
Hardware is just a little less human readable!
When it comes down to it, hardware's line of communication is (at its most basic) HIGH and LOW through various pins.
I have a brother (in the automobile tech industry) who has used and electrometer to measure voltage on pins to isolate where the problem is (I'm not really smart enough in that field to go into more detail on how he does it).
Your problem is that the only known symptom is so hard to detect (packet corruption in USB stream), that you're going to need software (at some level) to detect it.
If you can work out why packets are getting corrupted (bad voltages?) then maybe you could detect that with hardware?
Otherwise you need some kind of robust testing kit, and software to send/receive lots of packets to look for corruption?
No. That's what oscilloscopes and logic analyzers are for. Also there is more specialized equipment such as USB testers.
The simpler the hardware is, and the more access you have to the signals, the more likely you are to be able to diagnose it in a 'purely hardware' kind of way. For example if you had a simple parallel port card plugged into a PCI slot, it would be relatively straightforward to put a bus analyzer on the PCI bus, and the adapter's output, and see if the outputs did the right thing when the card was addressed. But note you'd still need to attempt to access that card from the PCI bus, which would mean either (A) some kind of PCI bus simulation, which would be one heck of a big pile of test hardware, or (B) a cheap off-the-shelf PC with a few lines of test code.
But then at the other end of the spectrum, suppose you're dealing with a large FPGA. You can get one heck of a lot of logic into an FPGA, and you won't necessarily have access to all the test points you'd like. I've personally encountered a bug with a serial port embedded in an FPGA, where a race condition with the shift register preload register would occasionally corrupt a byte. Hypothetically the VHDL could have been reworked to bring out test points, and a pile of scopes and analyzers gathered, but from a management standpoint it was much more cost effective to try to tease the problem out with software. Under normal usage, the bug in question would have turned up once every blue moon. We iterated through speculation about the conditions that would elicit the bug, and refining the test code, until we had test software that could reproduce the bug 2-3 times a minute. At that point we could actually provide clues to the VHDL guys that helped them fix the problem quickly.
Long story short, inside of a week a hardware bug was smoked out via software, whereas starting with the same information and going 'hardware only' would likely have not been any faster, and would have required a lot of expensive test equipment. So, yeah, you probably can do it without software, but as usual it's a trade-off, and you have to find the right balance point between the amount of software vs hardware for the job.