Constraint To Prevent Adding Value Which Exists In Another Table - sql

I would like to add a constraint which prevents adding a value to a column if the value exists in the primary key column of another table. Is this possible?
EDIT:
Table: MasterParts
MasterPartNumber (Primary Key)
Description
....
Table: AlternateParts
MasterPartNumber (Composite Primary Key, Foreign Key to MasterParts.MasterPartNumber)
AlternatePartNumber (Composite Primary Key)
Problem - Alternate part numbers for each master part number must not themselves exist in the master parts table.
EDIT 2:
Here is an example:
MasterParts
MasterPartNumber Decription MinLevel MaxLevel ReOderLevel
010-00820-50 Garmin GTN™ 750 1 5 2
AlternateParts
MasterPartNumber AlternatePartNumber
010-00820-50 0100082050
010-00820-50 GTN750

only way I could think of solving this would be writing a checking function(not sure what language you are working with), or trying to play around with table relationships to ensure that it's unique

Why not have a single "part" table with an "is master part" flag and then have an "alternate parts" table that maps a "master" part to one or more "alternate" parts?

Here's one way to do it without procedural code. I've deliberately left out ON UPDATE CASCADE and ON DELETE CASCADE, but in production I'd might use both. (But I'd severely limit who's allowed to update and delete part numbers.)
-- New tables
create table part_numbers (
pn varchar(50) primary key,
pn_type char(1) not null check (pn_type in ('m', 'a')),
unique (pn, pn_type)
);
create table part_numbers_master (
pn varchar(50) primary key,
pn_type char(1) not null default 'm' check (pn_type = 'm'),
description varchar(100) not null,
foreign key (pn, pn_type) references part_numbers (pn, pn_type)
);
create table part_numbers_alternate (
pn varchar(50) primary key,
pn_type char(1) not null default 'a' check (pn_type = 'a'),
foreign key (pn, pn_type) references part_numbers (pn, pn_type)
);
-- Now, your tables.
create table masterparts (
master_part_number varchar(50) primary key references part_numbers_master,
min_level integer not null default 0 check (min_level >= 0),
max_level integer not null default 0 check (max_level >= min_level),
reorder_level integer not null default 0
check ((reorder_level < max_level) and (reorder_level >= min_level))
);
create table alternateparts (
master_part_number varchar(50) not null references part_numbers_master (pn),
alternate_part_number varchar(50) not null references part_numbers_alternate (pn),
primary key (master_part_number, alternate_part_number)
);
-- Some test data
insert into part_numbers values
('010-00820-50', 'm'),
('0100082050', 'a'),
('GTN750', 'a');
insert into part_numbers_master values
('010-00820-50', 'm', 'Garmin GTN™ 750');
insert into part_numbers_alternate (pn) values
('0100082050'),
('GTN750');
insert into masterparts values
('010-00820-50', 1, 5, 2);
insert into alternateparts values
('010-00820-50', '0100082050'),
('010-00820-50', 'GTN750');
In practice, I'd build updatable views for master parts and for alternate parts, and I'd limit client access to the views. The updatable views would be responsible for managing inserts, updates, and deletes. (Depending on your company's policies, you might use stored procedures instead of updatable views.)

Your design is perfect.
But SQL isn't very helpful when you try to implement such a design. There is no declarative way in SQL to enforce your business rule. You'll have to write two triggers, one for inserts into masterparts, checking the new masterpart identifier doesn't yet exist as an alias, and the other one for inserts of aliases checking that the new alias identifier doesn't yet identiy a masterpart.
Or you can do this in the application, which is worse than triggers, from the data integrity point of view.
(If you want to read up on how to enforce constraints of arbitrary complexity within an SQL engine, best coverage I have seen of the topic is in the book "Applied Mathematics for Database Professionals")

Apart that it sounds like a possibly poor design,
You in essence want values spanning two columns in different tables, to be unique.
In order to utilize DBs native capability to check for uniqueness, you can create a 3rd, helper column, which will contain a copy of all the values inside the wanted two columns. And that column will have uniqueness constraint. So for each new value added to one of your target columns, you need to add the same value to the helper column. In order for this to be an inner DB constraint, you can add this by a trigger.
And again, needing to do the above, sounds like an evidence for a poor design.
--
Edit:
Regarding your edit:
You say " Alternate part numbers for each master part number must not themselves exist in the master parts table."
This itself is a design decision, which you don't explain.
I don't know enough about the domain of your problem, but:
If you think of master and alternate parts, as totally different things, there is no reason why you may want "Alternate part numbers for each master part number must not themselves exist in the master parts table". Otherwise, you have a common notion of "parts" be it master or alternate. This means they need to be in the same table, and column.
If the second is true, you need something like this:
table "parts"
columns:
id - pk
is_master - boolean (assuming a part can not be master and alternate at the same time)
description - text
This tables role is to list and describe the parts.
Then you have several ways to denote which part is alternate to which. It depends on whether a part can be alternate to more than one part. And it sounds that anyway one master part can have several alternates.
You can do it in the same table, or create another one.
If same: add column: alternate_to, which will be null for master parts, and will have a foreign key into the id column of the same table.
Otherwise create a table, say "alternatives" with: master_id, alternate_id both referencing with a foreign key to the parts table.
(The first above assumes that a part cannot be alternate to more than one other part. If this is not true, the second will work anyway)

Related

Include one table's values in multiple other tables and allow FK references

I'm still a relative novice when it comes to designing SQL databases, so apologies if this is something obvious that I'm missing.
I have a few tables of controlled vocabularies for certain values that I'm representing as FKs referencing the controlled vocab tables (there are few distinct vocabularies I'm trying to represent). My schema specification allows each of these vocabularies to also allow a controlled set of values for "unknown" information (coming from DataCite). Here is an example using a table dates that must specify a date_type, which should be either a value from date_types or unknown_values. I have a few more tables with this model as well, each with their own specific controlled vocabularies, but should also allow values from unknown_values. So the values in unknown_values should be shared among many tables of controlled vocabularies with similar structure to date_types.
CREATE TABLE dates (
date_id integer NOT NULL PRIMARY KEY autoincrement ,
date_value date NOT NULL DEFAULT CURRENT_DATE ,
date_type text NOT NULL ,
FOREIGN KEY ( date_type ) REFERENCES date_types( date_type )
);
CREATE TABLE date_types (
date_type text NOT NULL PRIMARY KEY ,
definition text
);
CREATE TABLE unknown_values (
code text NOT NULL PRIMARY KEY ,
definition text
);
INSERT INTO date_types (date_type, definition)
VALUES
('type_a', 'The first date type'),
('type_b', 'The second date type');
INSERT INTO unknown_values (code, definition)
VALUES
(':unac', 'Temporarily inaccessible'),
(':unal', 'Unallowed, suppressed intentionally'),
(':unap', 'Not applicable, makes no sense'),
(':unas', 'Value unassigned (e.g., Untitled)'),
(':unav', 'Value unavailable, possibly unknown'),
(':unkn', 'Known to be unknown (e.g., Anonymous, Inconnue)'),
(':none', 'Never had a value, never will'),
(':null', 'Explicitly and meaningfully empty'),
(':tba', 'To be assigned or announced later'),
(':etal', 'Too numerous to list (et alia)');
My first thought was a view that creates a union of date_types and unknown_values, but you cannot make FK references onto a view, so that's not suitable.
The "easiest" solution would be to duplicate the values from unknown_values in each controlled vocabulary table (date_types etc.), but this feels incorrect to have duplicated values.
I also thought about a single table for all the controlled vocabularies with a third field (something like vocabulary_category with values like 'date'), so all my tables could reference that one table, but then I would likely need a function and a CHECK constraint to ensure that the value has the right "category". This feels inelegant and messy.
I'm stumped about the best way to proceed, or what to search for to find help. I can't imagine this is too rare of a requirement, but I can't seem to find any solutions online. My target DB is SQLite, but I'd be interested in solutions that would be possible in PostgreSQL as well.
What you are requesting is the ability for a FK to have optional referenced table. Also as discovered Postgres nor SQLite(?) provides this option (afaik neither does any other RDBMS). Postgres at lease offers a work around, I do not know it its doable in SQLite. You need to:
drop the not null constraint on the currently defined FK
add a FK column referencing the unknown_values table
add check constraint that requires exactly 1 on the columns
date_type and the new FK column to be null. See the num_nulls function.
Changes you need: ( see demo )
alter table dates
alter column date_type
drop not null;
alter table dates
add unknown_value text
references unknown_values(code);
alter table dates
add constraint one_null
check (num_nulls(date_type, unknown_value ) = 1);
Note: Postgres does not support the autoincrement key word. The same is accomplished using a generated column generated always as identity (for older varsions use serial).

Should I use a unique constraint in a table even though it isn't necessarily required?

In Microsoft SQL Server, when creating tables, are there any downsides to using a unique constraint on a column even though you don't really need it to be unique?
An example would be descriptions for say a role in a user management system:
CREATE TABLE Role
(
ID TINYINT PRIMARY KEY NOT NULL IDENTITY(0, 1),
Title CHARACTER VARYING(32) NOT NULL UNIQUE,
Description CHARACTER VARYING(MAX) NOT NULL UNIQUE
)
My fear is that validating this constraint when doing frequent insertions in other tables will be a very time consuming process. I am unsure as to how this constraint is validated, but I feel like it could be done in a very efficient way or as a linear comparison.
Your fear becomes true: UNIQUE constraint are implemented as indices, and this is time and space consuming.
So, whenever you insert a new row, the database have to update the table, and also one index for each unique constraint.
So, according to you:
using a unique constraint on a column even though you don't really need it to be unique
the answer is no, don't use it. there are time and space downsides.
Your sample table would need a clustered index for the Id, and 2 extra indices, one for each unique constraint. This takes up space, and time to update the 3 indices on the inserts.
This would only be justified if you made queries filtering by those fields.
BY THE WAY:
The original post sample table have several flaws:
that syntax is not SQL Server syntax (and you tagged this as SQL Server)
you cannot create an index in a varchar(max) column
If you correct the syntax and create this table:
CREATE TABLE Role
(
ID tinyint PRIMARY KEY NOT NULL IDENTITY(0, 1),
Title varchar(32) NOT NULL UNIQUE,
Description varchar(32) NOT NULL UNIQUE
)
You can then execute sp_help Role and you'll find the 3 indices.
The database creates an index which backs up the UNIQUE constraint, so it should be very low-cost to do the uniqueness check.
http://msdn.microsoft.com/en-us/library/ms177420.aspx
The Database Engine automatically creates a UNIQUE index to enforce the uniqueness requirement of the UNIQUE constraint. Therefore, if an attempt to insert a duplicate row is made, the Database Engine returns an error message that states the UNIQUE constraint has been violated and does not add the row to the table. Unless a clustered index is explicitly specified, a unique, nonclustered index is created by default to enforce the UNIQUE constraint.
Is it typically a good practice to constrain it if you know the data
will always be unique but it doesn't necessarily need to be unique for
the application to function correctly?
My question to you: would it make sense for two roles to have different titles but the same description? e.g.
INSERT INTO Role ( Title , Description )
VALUES ( 'CEO' , 'Senior manager' ),
( 'CTO' , 'Senior manager' );
To me it would seem to devalue the use of the description; if there were many duplications then it might make more sense to do something more like this:
INSERT INTO Role ( Title )
VALUES ( 'CEO' ),
( 'CTO' );
INSERT INTO SeniorManagers ( Title )
VALUES ( 'CEO' ),
( 'CTO' );
But then again you are not expecting duplicates.
I assume this is a low activity table. You say you fear validating this constraint when doing frequent insertions in other tables. Well, that will not happen (unless there is a trigger we cannot see that might update this table when another table is updated).
Personally, I would ask the designer (business analyst, whatever) to justify not applying a unique constraint. If they cannot then I would impose the unqiue constraint based on common sense. As is usual for such a text column, I would also apply CHECK constraints e.g. to disallow leading/trailing/double spaces, zero-length string, etc.
On SQL Server, the data type tinyint only gives you 256 distinct values. No matter what you do outside of the id column, you're not going to end up with a very big table. It will surely perform quickly even with a dozen indexed columns.
You usually need at least one unique constraint besides the surrogate key, though. If you don't have one, you're liable to end up with data like this.
1 First title First description
2 First title First description
3 First title First description
...
17 Third title Third description
18 First title First description
Tables that permit data like that are usually wrong. Any table that uses foreign key references to this table won't be able to report correctly, say, the number of "First title" used.
I'd argue that allowing multiple, identical titles for roles in a user management system is a design error. I'd probably argue that "title" is a really bad name for that column, too.

Can a foreign key be NULL and/or duplicate?

Please clarify two things for me:
Can a Foreign key be NULL?
Can a Foreign key be duplicate?
As fair as I know, NULL shouldn't be used in foreign keys, but in some application of mine I'm able to input NULL in both Oracle and SQL Server, and I don't know why.
Short answer: Yes, it can be NULL or duplicate.
I want to explain why a foreign key might need to be null or might need to be unique or not unique. First remember a Foreign key simply requires that the value in that field must exist first in a different table (the parent table). That is all an FK is by definition. Null by definition is not a value. Null means that we do not yet know what the value is.
Let me give you a real life example. Suppose you have a database that stores sales proposals. Suppose further that each proposal only has one sales person assigned and one client. So your proposal table would have two foreign keys, one with the client ID and one with the sales rep ID. However, at the time the record is created, a sales rep is not always assigned (because no one is free to work on it yet), so the client ID is filled in but the sales rep ID might be null. In other words, usually you need the ability to have a null FK when you may not know its value at the time the data is entered, but you do know other values in the table that need to be entered. To allow nulls in an FK generally all you have to do is allow nulls on the field that has the FK. The null value is separate from the idea of it being an FK.
Whether it is unique or not unique relates to whether the table has a one-one or a one-many relationship to the parent table. Now if you have a one-one relationship, it is possible that you could have the data all in one table, but if the table is getting too wide or if the data is on a different topic (the employee - insurance example #tbone gave for instance), then you want separate tables with a FK. You would then want to make this FK either also the PK (which guarantees uniqueness) or put a unique constraint on it.
Most FKs are for a one to many relationship and that is what you get from a FK without adding a further constraint on the field. So you have an order table and the order details table for instance. If the customer orders ten items at one time, he has one order and ten order detail records that contain the same orderID as the FK.
1 - Yes, since at least SQL Server 2000.
2 - Yes, as long as it's not a UNIQUE constraint or linked to a unique index.
Yes foreign key can be null as told above by senior programmers... I would add another scenario where Foreign key will required to be null....
suppose we have tables comments, Pictures and Videos in an application which allows comments on pictures and videos. In comments table we can have two Foreign Keys PicturesId, and VideosId along with the primary Key CommentId. So when you comment on a video only VideosId would be required and pictureId would be null... and if you comment on a picture only PictureId would be required and VideosId would be null...
it depends on what role this foreign key plays in your relation.
if this foreign key is also a key attribute in your relation, then it can't be NULL
if this foreign key is a normal attribute in your relation, then it can be NULL.
Here's an example using Oracle syntax:
First let's create a table COUNTRY
CREATE TABLE TBL_COUNTRY ( COUNTRY_ID VARCHAR2 (50) NOT NULL ) ;
ALTER TABLE TBL_COUNTRY ADD CONSTRAINT COUNTRY_PK PRIMARY KEY ( COUNTRY_ID ) ;
Create the table PROVINCE
CREATE TABLE TBL_PROVINCE(
PROVINCE_ID VARCHAR2 (50) NOT NULL ,
COUNTRY_ID VARCHAR2 (50)
);
ALTER TABLE TBL_PROVINCE ADD CONSTRAINT PROVINCE_PK PRIMARY KEY ( PROVINCE_ID ) ;
ALTER TABLE TBL_PROVINCE ADD CONSTRAINT PROVINCE_COUNTRY_FK FOREIGN KEY ( COUNTRY_ID ) REFERENCES TBL_COUNTRY ( COUNTRY_ID ) ;
This runs perfectly fine in Oracle. Notice the COUNTRY_ID foreign key in the second table doesn't have "NOT NULL".
Now to insert a row into the PROVINCE table, it's sufficient to only specify the PROVINCE_ID. However, if you chose to specify a COUNTRY_ID as well, it must exist already in the COUNTRY table.
By default there are no constraints on the foreign key, foreign key can be null and duplicate.
while creating a table / altering the table, if you add any constrain of uniqueness or not null then only it will not allow the null/ duplicate values.
Simply put, "Non-identifying" relationships between Entities is part of ER-Model and is available in Microsoft Visio when designing ER-Diagram. This is required to enforce cardinality between Entities of type " zero or more than zero", or "zero or one". Note this "zero" in cardinality instead of "one" in "one to many".
Now, example of non-identifying relationship where cardinality may be "zero" (non-identifying) is when we say a record / object in one entity-A "may" or "may not" have a value as a reference to the record/s in another Entity-B.
As, there is a possibility for one record of entity-A to identify itself to the records of other Entity-B, therefore there should be a column in Entity-B to have the identity-value of the record of Entity-B. This column may be "Null" if no record in Entity-A identifies the record/s (or, object/s) in Entity-B.
In Object Oriented (real-world) Paradigm, there are situations when an object of Class-B does not necessarily depends (strongly coupled) on object of class-A for its existence, which means Class-B is loosely-coupled with Class-A such that Class-A may "Contain" (Containment) an object of Class-A, as opposed to the concept of object of Class-B must have (Composition) an object of Class-A, for its (object of class-B) creation.
From SQL Query point of view, you can query all records in entity-B which are "not null" for foreign-key reserved for Entity-B. This will bring all records having certain corresponding value for rows in Entity-A alternatively all records with Null value will be the records which do not have any record in Entity-A in Entity-B.
Can a Foreign key be NULL?
Existing answers focused on single column scenario. If we consider multi column foreign key we have more options using MATCH [SIMPLE | PARTIAL | FULL] clause defined in SQL Standard:
PostgreSQL-CREATE TABLE
A value inserted into the referencing column(s) is matched against the values of the referenced table and referenced columns using the given match type. There are three match types: MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE (which is the default). MATCH FULL will not allow one column of a multicolumn foreign key to be null unless all foreign key columns are null; if they are all null, the row is not required to have a match in the referenced table. MATCH SIMPLE allows any of the foreign key columns to be null; if any of them are null, the row is not required to have a match in the referenced table. MATCH PARTIAL is not yet implemented.
(Of course, NOT NULL constraints can be applied to the referencing column(s) to prevent these cases from arising.)
Example:
CREATE TABLE A(a VARCHAR(10), b VARCHAR(10), d DATE , UNIQUE(a,b));
INSERT INTO A(a, b, d)
VALUES (NULL, NULL, NOW()),('a', NULL, NOW()),(NULL, 'b', NOW()),('c', 'b', NOW());
CREATE TABLE B(id INT PRIMARY KEY, ref_a VARCHAR(10), ref_b VARCHAR(10));
-- MATCH SIMPLE - default behaviour nulls are allowed
ALTER TABLE B ADD CONSTRAINT B_Fk FOREIGN KEY (ref_a, ref_b)
REFERENCES A(a,b) MATCH SIMPLE;
INSERT INTO B(id, ref_a, ref_b) VALUES (1, NULL, 'b');
-- (NULL/'x') 'x' value does not exists in A table, but insert is valid
INSERT INTO B(id, ref_a, ref_b) VALUES (2, NULL, 'x');
ALTER TABLE B DROP CONSTRAINT IF EXISTS B_Fk; -- cleanup
-- MATCH PARTIAL - not implemented
ALTER TABLE B ADD CONSTRAINT B_Fk FOREIGN KEY (ref_a, ref_b)
REFERENCES A(a,b) MATCH PARTIAL;
-- ERROR: MATCH PARTIAL not yet implemented
DELETE FROM B; ALTER TABLE B DROP CONSTRAINT IF EXISTS B_Fk; -- cleanup
-- MATCH FULL nulls are not allowed
ALTER TABLE B ADD CONSTRAINT B_Fk FOREIGN KEY (ref_a, ref_b)
REFERENCES A(a,b) MATCH FULL;
-- FK is defined, inserting NULL as part of FK
INSERT INTO B(id, ref_a, ref_b) VALUES (1, NULL, 'b');
-- ERROR: MATCH FULL does not allow mixing of null and nonnull key values.
-- FK is defined, inserting all NULLs - valid
INSERT INTO B(id, ref_a, ref_b) VALUES (1, NULL, NULL);
db<>fiddle demo
I think it is better to consider the possible cardinality we have in the tables.
We can have possible minimum cardinality zero. When it is optional, the minimum participation of tuples from the related table could be zero, Now you face the necessity of foreign key values to be allowed null.
But the answer is it all depends on the Business.
The idea of a foreign key is based on the concept of referencing a value that already exists in the main table. That is why it is called a foreign key in the other table. This concept is called referential integrity. If a foreign key is declared as a null field it will violate the the very logic of referential integrity. What will it refer to? It can only refer to something that is present in the main table. Hence, I think it would be wrong to declare a foreign key field as null.
I think foreign key of one table also primary key to some other table.So it won't allows nulls.So there is no question of having null value in foreign key.

How can I share the same primary key across two tables?

I'm reading a book on EF4 and I came across this problem situation:
So I was wondering how to create this database so I can follow along with the example in the book.
How would I create these tables, using simple TSQL commands? Forget about creating the database, imagine it already exists.
You've been given the code. I want to share some information on why you might want to have two tables in a relationship like that.
First when two tables have the same Primary Key and have a foreign key relationship, that means they have a one-to-one relationship. So why not just put them in the same table? There are several reasons why you might split some information out to a separate table.
First the information is conceptually separate. If the information contained in the second table relates to a separate specific concern, it makes it easier to work with it the data is in a separate table. For instance in your example they have separated out images even though they only intend to have one record per SKU. This gives you the flexibility to easily change the table later to a one-many relationship if you decide you need multiple images. It also means that when you query just for images you don't have to actually hit the other (perhaps significantly larger) table.
Which bring us to reason two to do this. You currently have a one-one relationship but you know that a future release is already scheduled to turn that to a one-many relationship. In this case it's easier to design into a separate table, so that you won't break all your code when you move to that structure. If I were planning to do this I would go ahead and create a surrogate key as the PK and create a unique index on the FK. This way when you go to the one-many relationship, all you have to do is drop the unique index and replace it with a regular index.
Another reason to separate out a one-one relationship is if the table is getting too wide. Sometimes you just have too much information about an entity to easily fit it in the maximum size a record can have. In this case, you tend to take the least used fields (or those that conceptually fit together) and move them to a separate table.
Another reason to separate them out is that although you have a one-one relationship, you may not need a record of what is in the child table for most records in the parent table. So rather than having a lot of null values in the parent table, you split it out.
The code shown by the others assumes a character-based PK. If you want a relationship of this sort when you have an auto-generating Int or GUID, you need to do the autogeneration only on the parent table. Then you store that value in the child table rather than generating a new one on that table.
When it says the tables share the same primary key, it just means that there is a field with the same name in each table, both set as Primary Keys.
Create Tables
CREATE TABLE [Product (Chapter 2)](
SKU varchar(50) NOT NULL,
Description varchar(50) NULL,
Price numeric(18, 2) NULL,
CONSTRAINT [PK_Product (Chapter 2)] PRIMARY KEY CLUSTERED
(
SKU ASC
)
)
CREATE TABLE [ProductWebInfo (Chapter 2)](
SKU varchar(50) NOT NULL,
ImageURL varchar(50) NULL,
CONSTRAINT [PK_ProductWebInfo (Chapter 2)] PRIMARY KEY CLUSTERED
(
SKU ASC
)
)
Create Relationships
ALTER TABLE [ProductWebInfo (Chapter 2)]
ADD CONSTRAINT fk_SKU
FOREIGN KEY(SKU)
REFERENCES [Product (Chapter 2)] (SKU)
It may look a bit simpler if the table names are just single words (and not key words, either), for example, if the table names were just Product and ProductWebInfo, without the (Chapter 2) appended:
ALTER TABLE ProductWebInfo
ADD CONSTRAINT fk_SKU
FOREIGN KEY(SKU)
REFERENCES Product(SKU)
This simply an example that I threw together using the table designer in SSMS, but should give you an idea (note the foreign key constraint at the end):
CREATE TABLE dbo.Product
(
SKU int NOT NULL IDENTITY (1, 1),
Description varchar(50) NOT NULL,
Price numeric(18, 2) NOT NULL
) ON [PRIMARY]
ALTER TABLE dbo.Product ADD CONSTRAINT
PK_Product PRIMARY KEY CLUSTERED
(
SKU
)
CREATE TABLE dbo.ProductWebInfo
(
SKU int NOT NULL,
ImageUrl varchar(50) NULL
) ON [PRIMARY]
ALTER TABLE dbo.ProductWebInfo ADD CONSTRAINT
FK_ProductWebInfo_Product FOREIGN KEY
(
SKU
) REFERENCES dbo.Product
(
SKU
) ON UPDATE NO ACTION
ON DELETE NO ACTION
See how to create a foreign key constraint. http://msdn.microsoft.com/en-us/library/ms175464.aspx This also has links to creating tables. You'll need to create the database as well.
To answer your question:
ALTER TABLE ProductWebInfo
ADD CONSTRAINT fk_SKU
FOREIGN KEY (SKU)
REFERENCES Product(SKU)

Can I put constraint on column without referring to another table?

I have a text column that should only have 1 of 3 possible strings. To put a constraint on it, I would have to reference another table. Can I instead put the values of the constraint directly on the column without referring to another table?
If this is SQL Server, Oracle, or PostgreSQL, yes, you can use a check constraint.
If it's MySQL, check constraints are recognized but not enforced. You can use an enum, though. If you need a comma-separated list, you can use a set.
However, this is generally frowned upon, since it's definitely not easy to maintain. Just best to create a lookup table and ensure referential integrity through that.
In addition to the CHECK constraint and ENUM data type that other mention, you could also write a trigger to enforce your desired restriction.
I don't necessarily recommend a trigger as a good solution, I'm just pointing out another option that meets your criteria of not referencing a lookup table.
My habit is to define lookup tables instead of using constraints or triggers, when the rule is simply to restrict a column to a finite set of values. The performance impact of checking against a lookup table is no worse than using CHECK constraints or triggers, and it's a lot easier to manage when the set of values might change from time to time.
Also a common task is to query the set of permitted value, for instance to populate a form field in the user interface. When the permitted values are in a lookup table, this is a lot easier than when they're defined in a list of literal values in a CHECK constraint or ENUM definition.
Re comment "how exactly to do lookup without id"
CREATE TABLE LookupStrings (
string VARCHAR(20) PRIMARY KEY
);
CREATE TABLE MainTable (
main_id INT PRIMARY KEY,
string VARCHAR(20) NOT NULL,
FOREIGN KEY (string) REFERENCES LookupStrings (string)
);
Now you can be assured that no value in MainTable.string is invalid, since the referential integrity prevents that. But you don't have to join to the LookupStrings table to get the string, when you query MainTable:
SELECT main_id, string FROM MainTable;
See? No join! But you get the string value.
Re comment about multiple foreign key columns:
You can have two individual foreign keys, each potentially pointing to different rows in the lookup table. The foreign key column doesn't have to be named the same as the column in the referenced table.
My common example is a bug-tracking database, where a bug was reported by one user, but assigned to be fixed by a different user. Both reported_by and assigned_to are foreign keys referencing the Accounts table.
CREATE TABLE Bugs (
bug_id INT PRIMARY KEY,
reported_by INT NOT NULL,
assigned_to INT,
FOREIGN KEY (reported_by) REFERENCES Accounts (account_id),
FOREIGN KEY (assigned_to) REFERENCES Accounts (account_id)
);
In Oracle, SQL Server and PostgreSQL, use CHECK constraint.
CREATE TABLE mytable (myfield INT VARCHAR(50) CHECK (myfield IN ('first', 'second', 'third'))
In MySQL, use ENUM datatype:
CREATE TABLE mytable (myfield ENUM ('first', 'second', 'third'))