I need some examples of sending parameters in smalltalk - smalltalk

How do I send parameters in smalltalk:
Pass-by-Value
Pass-by-Result
Pass-by-Value-result
Pass-by-References
Pass-by-Name

You can safely assume that all parameters in smalltalk are passed by reference.
There's only one exception for immediate object (smallintegers) which are passed by value,
but its an implementation detail (different implementations could have different kinds of immediate object classes).

AFAK, Smallscript Smalltalk uses pass-by-value as default unless you use the & sign for pass by reference just like C++, there is more information on this here.
But traditionally Smalltalk uses pass by reference as mentioned here and here.

Related

Can I invoke MethodHandle.invokeExact from ByteBuddy?

MethodHandle#invokeExact(Object...) is a strange method in Java.
Suppose I wanted to invoke this from ByteBuddy (using MethodCall.invoke() and the like). Is there a way to do this without incurring a runtime exception? (Please bear in mind in any answers to this question that although it looks like it takes an ordinary Object array, MethodHandle#invokeExact(Object...) treats that argument very unusually.)
Those methods have a polymorphic signature and expect the arguments to be of the expected types, against the actual class file signature. Unfortunately, this corner case of method invocation is not supported in Byte Buddy at this day.

Finding the Pharo documentation for the compile & evaluate methods, etc. in the compiler class

I've got an embarrassingly simple question here. I'm a smalltalk newbie (I attempt to dabble with it every 5 years or so), and I've got Pharo 6.1 running. How do I go about finding the official standard library documentation? Especially for the compiler class? Things like the compile and evaluate methods? I don't see how to perform a search with the Help Browser, and the method comments in the compiler class are fairly terse and cryptic. I also don't see an obvious link to the standard library API documentation at: http://pharo.org/documentation. The books "Pharo by Example" and "Deep into Pharo" don't appear to cover that class either. I imagine the class is probably similar for Squeak and other smalltalks, so a link to their documentation for the compiler class could be helpful as well.
Thanks!
There are several classes that collaborate in the compilation of a method (or expression) and, given your interest in the subject, I'm tempted to stimulate you even further in their study and understanding.
Generally speaking, the main classes are the Scanner, the Parser, the Compiler and the Encoder. Depending on the dialect these may have slightly different names and implementations but the central idea remains the same.
The Scanner parses the stream of characters of the source code and produces a stream of tokens. These tokens are then parsed by the Parser, which transforms them into the nodes of the AST (Abstract Syntax Tree). Then the Compiler visits the nodes of the AST to analyze them semantically. Here all variable nodes are classified: method arguments, method temporaries, shared, block arguments, block temporaries, etc. It is during this analysis where all variables get bound in their corresponding scope. At this point the AST is no longer "abstract" as it has been annotated with binding information. Finally, the nodes are revisited to generate the literal frame and bytecodes of the compiled method.
Of course, there are lots of things I'm omitting from this summary (pragmas, block closures, etc.) but with these basic ideas in mind you should now be ready to debug a very simple example. For instance, start with
Object compile: 'm ^3'
to internalize the process.
After some stepping into and over, you will reach the first interesting piece of code which is the method OpalCompiler >> #compile. If we remove the error handling blocks this methods speaks for itself:
compile
| cm |
ast := self parse.
self doSemanticAnalysis.
self callPlugins.
cm := ast generate: self compilationContext compiledMethodTrailer
^cm
First we have the #parse message where the parse nodes are created. Then we have the semantic analysis I mentioned above and finally #generate: produces the encoding. You should debug each of these methods to understand the compilation process in depth. Given that you are dealing with a tree be prepared to navigate thru a lot of visitors.
Once you become familiar with the main ideas you may want to try more elaborated -yet simple- examples to see other objects entering the scene.
Here are some simple facts:
Evaluation in Smalltalk is available everywhere: in workspaces, in
the Transcript, in Browsers, inspectors, the debugger, etc.
Basically, if you are allowed to edit text, most likely you will
also be allowed to evaluate it.
There are 4 evaluation commands
Do it (evaluates without showing the answer)
Print it (evaluates and prints the answer next to the expression)
Inspect it (evaluates and opens an inspector on the result)
Debug it (opens a debugger so you can evaluate your expression step by step).
Your expression can contain any literal (numbers, arrays, strings, characters, etc.)
17 "valid expression"
Your expression can contain any message.
3 + 4.
'Hello world' size.
1 bitShift: 28
Your expression can use any Global variable
Object new.
Smalltalk compiler
Your expression can reference self, super, true, nil, false.
SharedRandom globalGenerator next < 0.2 ifTrue: [nil] ifFalse: [self]
Your expression can use any variables declared in the context of the pane where you are writing. For example:
If you are writing in a class browser, self will be bound to the current class
If you are writing in an inspector, self is bound to the object under inspection. You can also use its instances variables in the expression.
If you are in the debugger, your expression can reference self, the instance variables, message arguments, temporaries, etc.
Finally, if you are in a workspace (a.k.a. Playground), you can use any temporaries there, which will be automatically created and remembered, without you having to declare them.
As near as I can tell, there is no API documentation for the Pharo standard library, like you find with other programming languages. This seems to be confirmed on the Pharo User's mailing list: http://forum.world.st/Essential-Documentation-td4916861.html
...there is a draft version of the ANSI standard available: http://wiki.squeak.org/squeak/uploads/172/standard_v1_9-indexed.pdf
...but that doesn't seem to cover the compiler class.

Dynamic argument pasing in corba

I'm new in building corba application. Presently I'm developping a corba application in java. The problem I have is that I should write a method that receive the name of the class, the method and the arguments to pass to the corba server as a string.
Before invoking the remote method, I have to parse the string and obtain all the necessary information (class, method, arguments)
There is no problem here. But now concerning the arguments i do not now in advance the type of the arguments, so I should be able to convert an argument by getting its type and insert it into a Any bject to be sent, is it possible?
If Know in advance the type such as seq.insert_string("bum") it works but I want to do it dynamically.
Use the DynAny interfaces, if your ORB supports them. They can do exactly what you want. From CORBA Explained Simply:
If an application wants to manipulate data embedded inside an any
without being compiled with the relevant stub code then the
application must convert the any into a DynAny. There are sub-types
of DynAny for each IDL construct. For example, there are types called
DynStruct, DynUnion, DynSequence and so on.
The operations on the DynAny interfaces allow a programmer to
recursively drill down into a compound data-structure that is
contained within the DynAny and, in so doing, decompose the compound
type into its individual components that are built-in types.
Operations on the DynAny interface can also be used to recursively
build up a compound data-structure from built-in types.

For a lanuage to work with com object does it need to have an api and compiler developed specific for com?

In the documentation for com it says that it works literally with every language. Do you need to have a specific API for that language so it can interface with com, or can any language literally just use it out of box? Also do you need a special compiler? Sorry if this is a stupid question but I have never used it before, and I have been trying to find this answer. When I look at demos of com examples it all seems to access the objects in a c style syntax, are their bindings and apis for other languages (literally all)?
The key thing about COM is that it is a "binary standard": which is to say that it doesn't care what the language used is, so long as the bits and bytes in memory end up in the right place.
COM basically specifies that all COM objects must have a specific layout in memory: the interface pointer points to a pointer that in turn points to a table of function pointers, which has at least three members, the first three of which are pointers to the IUnknown functions (AddRef, Release, QueryInterface), and the remainder are pointers to the other functions in the interface. COM also specifies how arguments are passed to these functions - so that the caller and callee agree on how the stack is used, and who pops off the values.
This requirement happily matches how C++ just happens to work on Windows; so most C++ classes that implement IUnknown will just happen to ends up as being valid COM classes: this is because Microsoft's implementation of C++ happens to use an object layout that matches what COM requires: the C++ object vtable pointer is the same as the COM pointer-to-table-of-function-pointers, the C++ table of function pointers is exactly what COM requires for its table-of-function-pointers, and so on. (This isn't entirely just a happy coincidence: COM was likely designed to take advantage of the most common way that C++ objects are implemented in memory which is the technique that MS's compiler uses. Note that C++ the language specification doesn't actually specify any particular object layout - so you could have a 3rd party C++ compiler that implemented C++ in a way that gave you classes that are not usable by COM. But no compiler vendor in their right mind would do that, since they would appear to be broken compared to the others!)
In plain C, you can create a COM object by creating suitable structs-containing-pointers manually. This works because C essentially allows you to specify binary-level memory layout for structs manually; you can create structs that you know will have the appropriate layout that COM is expecting.
In other languages, especially those that don't allow the user to specify memory layout explicitly, you need support from the language to allow for COM support. All the .Net languages - C#, VB.Net, and so on - use support in the .Net runtime that understands what COM expects, and produces the appropriate wrappers as needed to allow the interop to work.
So, long story short, it's not the case that any language under the sun will automatically work with COM; it's really the case that a couple of languages - namely C and C++ - are already aligned with COM's requirements; and most other languages will need some compiler support to make it work.

What OCaml standard library types cannot be marshalled?

I have a failure Marshaling a data structure (error abstract type (Custom)). There is one known abstract type in use, namely Big_int. However that Marshals fine. There is no custom C code in the application. Apart from Nums, Unix library is also used (however I don't believe there are any active objects of that type). We're Marshal'ing with Closures.
Two (only) third party libraries are in use: OCS Scheme (Scheme interpreter, pure Ocaml) and Dypgen (extensible GLR parser, also pure Ocaml). The problem is with a new feature of Dypgen, saving a dynamically extended parser.
The Ocaml error message is next to useless (it doesn't identify which abstract type with Custom tag is the culprit).
We suspected Lexbuf as the culprit because it contains a closure over an Ocaml channel, and can't be Marshal'ed, but it seems this isn't the problem. So my question is:
Which standard library components can't be Marshall'd?
Weak arrays cannot be marshaled. I am not familiar with OCS Scheme, but I would expect an interpreter for a garbage-collected language written in OCaml to use weak pointers (they let you piggy-back on OCaml's memory management).
In OCaml's defense, I do not think that the Custom method block contains the name of the type (retrospectively, that seems like a good thing to have).
EDIT: Yep:
$ grep Weak ~/Downloads/ocs-1.0.3/src/*.ml
/Users/pascal/Downloads/ocs-1.0.3/src/ocs_sym.ml:module SymTable = Weak.Make (HashSymbol)
EDIT2:
As pointed out by ygrek, there is room for a name in the custom method block. I should also clarify that weak arrays are not custom values, since my answer seemed to imply that. Weak arrays have the Abstract tag and are chained using the first word of data so that the garbage collector can traverse them in special weak-pointer-related phases of the collection cycle.