Changing embedded serial number - embedded

I have a Serial number string "1080910" embedded in a programmable device which has been downloaded to a binary file using the ALL-100 programmer. This is my Master file as it were. I need to change this serial number to that of the unit that I need to re-flash using the Master file - the ALL-100 programmer uses XACCESS User Interface which has Edit feature showing Address location, Hex data field and Ascii field. Somewhere in this file is the serial number string - can anybody assist me in how to locate and edit the serial number string as I have been unable to locate it using the search function and have not been able to visually pick up the sequence of numbers. Help !!!

If the data has a symbolic address in the source code, and is not a local variable, its address will appear in the map file generated by the linker. If it is a local variable initialised with a literal constant, then the data will exist in the static initialisation data the location of which should also be identified in the map file.
Another possibility is that your application image is compressed and the start-up code expands it into RAM at run-time. This will be obvious in the map file if the data and code addresses are in RAM rather than ROM. If this is the case then what you are attempting will be very difficult. You would have to know the compression algorithm used, and which part of the image is the commpressed part (part of it will be the decompression code that runs from ROM). You would then have to decompress the image, modify the string, and then recompress it. Further, if the decompression performs any kind of checksum on the compressed or decompressed data, you will have to recalculate and modify that too.
If this was a requirement from the outset, you would have done better to reserve the space in the linker script or use compiler specific extensions to absolutely locate the data at a specific location.

Maybe it is stored in Unicode, so alternate chars are 00.

Related

Elf representation in HEX

I am working on understanding some ground concepts in embedded Systems. My question is similar to understand hexedit of an elf .
In order to burn compiler output to ROM, the .out file is converted to HEX (say intel-hex). I wonder how the following informations are preserved in HEX format:
Section header
Symbol tables, debug symbols, linker symbols etc.
Elf header.
If these are preserved in HEX file, how they can be read from hex file?
A bit out question but how the microcontroller on boot knows where .data .bss etc. exists in HEX and to be coppied to RAM?
None of that is preserved. A HEX file only contains the raw program and data. https://en.wikipedia.org/wiki/Intel_HEX
The microcontroller does not know where .data and .bss are located - it doesn't even know that they exist. The start-up code which is executed before main() is called contains the start addresses of those sections - the addresses are hard-coded into the program. This start-up code will be in the HEX file like everything else.
The elements in points 1 to 3 are not included in the raw binary since they serve no purpose in the application; rather they are used by the linker and the debugger on the development host, and are unnecessary for program execution where all you need is the byte values and the address to write them to, which is more or less all the hex file contains (may also contain a start address record).
Systems that have dynamic linking or self-hosted debug capabilities (such as VxWorks for example) use the object file file.
With respect to point 5, the microcontroller does not need to know; the linker uses that information when resolving absolute and relative addresses in the object code. Once filly resolved (linked), the addresses are embedded in the code directly. Again where dynamic loading/linking is used the object file meta-data is required and such systems do not normally load a raw hex file or binary.

embed identification in file and resistance to detection

Say I'm distributing a file that I want to be secret, and I assign each person that I give the file a unique id.
How can I embed this id in the file so that I can determine who leaks my file?
Some file formats have a section in which I can put information that won't render the file corrupt. But this is easily detectable by looking at the specific section, or by changing the information.
I would guess that any solution is identifiable by byte comparison, but I was wondering if there exists solutions that embed the id in a part that if changed, renders the file corrupt. (I would guess this would be file format specific, but this question is to learn about techniques, so I'd gladly read about specific cases.)
Thanks!
For image files and Unicode text you may use Steganography.
For audio files there are special watermarking algorithms that add noise not heard by humans.
You may use metadata to add watermarks, but they can be easily removed by end user.
See at what is currently possible in this SO question: Good library for Digital watermarking

ELF files - What is a section and why do we need it?

I've been reading ELF standard here. From what I understand, each ELF contains ELF header, program headers (why more than one?) and section headers. Can anyone please explain:
How are ELF files generated? is it the compiler responsibility?
What are sections and why do we need them?
What are program headers and why do we need them?
Inside program headers, what's the meaning of the fields p_vaddr and p_paddr?
Does each section have it's own section header?
Alternatively, does any one have a link to a more friendly documenation of ELF?
How are ELF files generated? is it the compiler responsibility?
They can be generated by a compiler, an assembler, or any other tool that can generate them. Even your own program you wrote for generating ELF files ;) They're just streams of bytes after all, so they can be generated by just writing bytes into a file in binary mode. You can do that too.
What are sections and why do we need them?
ELF files are subdivided into sections. Sections are the smallest continuous regions in the file. You can think of them as pages in an organizer, each with its own name and type that describes what does it contain inside. Linkers use this information to combine different parts of the program coming from different modules into one executable file or a library, by merging sections of the same type (gluing pages together, if you will).
In executable files, sections are optional, but they're usually there to describe what's in the file and where does it begin, and how much bytes does it take.
What are program headers and why do we need them?
They're mostly for making executable files. In order to run a program, sections aren't enough, because you have to specify not only what's there in the file, but also where should it be loaded into memory in the running process. Program headers are just for that purpose: they describe segments, which are regions of memory in the running process, with different access privileges & stuff.
Each program header describes one segment. It tells the loader where should it load a certain region in the file into memory and what permissions should it set for that region (e.g. should it be allowed to execute code from it? should it be writable or just for reading?)
Segments can be further subdivided into sections. For example, if you have to specify that your code segment is further subdivided into code and static read-only strings for the messages the program displays. Or that your data segment is subdivided into funky data and hardcore data :J It's for you to decide.
In executable files, sections are optional, but it's nice to have them, because they describe what's in the file and allow for dumping selected parts of it (e.g. with the objdump tool). Sometimes they are needed, though, for storing dynamic linking information, symbol tables, debugging information, stuff like that.
Inside program headers, what's the meaning of the fields p_vaddr and p_paddr?
Those are the addresses at which the data in the file will be loaded. They map the contents of the file into their corresponding memory locations. The first one is a virtual address, the second one is physical address.
Physical addresses are the "raw" memory addresses. On modern operating systems, those are no longer used in the userland. Instead, userland programs use virtual addresses. The operating system deceives the userland program that it is alone in memory, and that the entire address space is available for it. Under the hood, the operating system maps those virtual addresses to physical ones in the actual memory, and it does it transparently to the program.
Of course, not every address in the virtual address space is available at the same time. There are limitations imposed by the actual physical memory available. So the operating system just maps the memory for the segments the program actually uses (here's where the "segments" part from the ELF file's program headers comes into play). If the process tries to access some unmapped memory, the operating system steps in and says, "sorry, chap, this memory doesn't belong to you". (The program can address it, but it cannot access it.)
Does each section have it's own section header?
Yes. If it doesn't have an entry in the Section Headers Table, it's not a section :q Because they only way to tell if some part of the file is a section, is by looking in to the Section Headers Table which tells you what sections are defined in the file and where you can find them.
You can think of the Section Headers Table as a table of contents in a book. Without the table of contents, there aren't any chapters after all, because they're not listed anywhere. The book may have headings, but the content is not subdivided into logical chapters that can be found through the table of contents. Same goes with sections in ELF files: there can be some regions of data, but you can't tell without the "table of contents" which is the SHT.
This link includes a better explaination.
How are ELF files generated? is it the compiler responsibility?*
It is architecture dependent.
What are sections and why do we need them?
Different section have different information such as code, initialized data, uninitialized data etc. These information will be used by the compiler and linker.
What are program headers and why do we need them?
Program headers are used by the operating system when it loads the executable. These headers contains information about the segments (contiguous memory block with some permissions) such as which parts needs to be loaded, interpreter infor etc.
Inside program headers, what's the meaning of the fields p_vaddr and p_paddr?
In general virtual address and the physical address are same. But could be different depends on the system.
Does each section have it's own section header?
yes. Each section have a section header entry at section header table.
This is the best documentation I've found: http://www.skyfree.org/linux/references/ELF_Format.pdf
Each section has only one section header, but there can be section headers without sections
2 - There are many different sections, ex: relocation section recoeds many infomation for relocation symbol. I use the infomation to load a elf object and run/relocate the object.
Antoher example: debug section records debug information, gdb use the data for showing debug message.
Symbol section records symbol information.
3 - programming header used by loader, loader loads a elf execute file by looking up programming header.

How to compare and find the differences between two XML files in cocoa?

This is a bit of a two part question, for working with 40mb xml files.
• What’s a reasonable size to store in memory for a program running continually in the background?
• How to find what has changed in an XML file.
So on the first read the XML is loaded into NSData, then uploaded to the server.
Now instead of uploading a 40mb XML every time it changes, I would prefer to upload a “delta” file containing only what has changed. The program would monitor the file for change, and activate when it’s been modified. From what I can see, I would need to parse an old version of the xml file and parse the modified xml file, then compare them? Is it unreasonable to store 80mb in memory like this every time the file is modified?. Now I’m assuming that this has to be done with a DOM parser because I can’t see how you could compare two files like that with a SAX parser since it only has part of the file stored?
I'm a newbie at this so any help would be appreciated!
To compare two files:
There are many ways to do, (As file is to be considered, I may not be correct):
sdiff file1.xml file2.xml A unix command
You can use this command with apple script.
-[NSFileManager contentsEqualAtPath:andPath:]
This method checks to see if two files at given path are the same file, then compares their size, and finally compares their contents.
For other part:
What size is considered for background process, I dont think so, for an application it matters. You can save these into temporary files. Even safari uses 130+ MB as you can easily check through Activity monitor.
NSXMLParser ended up being the most useful for this

How can I modify the strings of a binary(Mach-O) file?

Is there any way to (easily) modify a string in a Mach-O binary? I want to extend the length of a pre-existing string.
https://sourceforge.net/projects/machoview
Extending the string will not be an easy task with manual editing, but at least you can get a picture about the Mach-O file structure.
This will not be an easy procedure, you cannot just go and change a string in textedit and hope it works because mach-o binaries work with encoded bytes and if 1 byte is out of order, the binary will not be executed properly. If you really wish to modify a string inside a fully assembled mach-o binary file without disrupting its delicate code you will need lots of knowledge and understanding of how mach binaries work. You will need to be able to modify it in single bytes and replacing its encoded numbers and offsets. Hopper for Mac might be able to help you understand the architecture of a mach-o binary. but if you need to replace a string with a different string with the exact same length, you might be able to simply replace its bytes so that the binary still reads it at the same length. but you will need a hexadecimal modifying application to do that.