interface of dll - dll

I heard people talking about changing the interface of a dll.
What is a change in the interface of the dll, and how would you do that?

Changing a dll's interface would mean to change how the dll and the calling code interacts. This could mean changing the signatures of the dll's exporting functions, or changing to a different set of functions entirely, or it could mean passing different data from the calling code. A dll's interface is generally all it's exported and imported items (both functions and data), or in other words, the parts of the dll that you have access to when you use it.
Often you will want to change the behaviour of your dll without changing its interface. This is because changing the interface often will break code that uses it.
Imagine my dll exporting function foo:
void foo(int i)
{
// Does thing with integer
}
Changing the interface could mean changing foo's signature into
void foo(int, float);
Now, all the code that used foo previously has to be rewritten to use the new signature, which could be a bad thing.

Related

Implements vs Binary Compatibility

I have one VB6 ActiveX DLL that exposes a class INewReport. I added some new methods to this class and I was able to rebuild it and keep binary compatibility.
I have a second DLL that exposes a class clsNewReport, which implements the first class using:
Implements RSInterfaces.INewReport
Since I added new methods to INewReport, I had to also add those new methods to clsNewReport.
However, when I try to compile the second DLL, I get the binary-compatibility error "...class implemented an interface in the version-compatible component, but not in the current project".
I'm not sure what is happening here. Since I'm only adding to the class, why can't I maintain binary compatibility with the second DLL? Is there any way around this?
I think this is a correct explanation of what is happening, and some potential workarounds.
I made up a test case which reproduced the problem in the description and then dumped the IDL using OLEView from the old & new DLL which contained the interface.
Here is a diff of the old (left) and new IDL from INewReport:
Important differences:
The UUID of interface _INewReport has changed
A typedef called INewReport___v0 has been added which refers to the original UUID of the interface
(I assume that this is also what is happening to the code referred to in the question.)
So now in the client project the bincomp DLL refers to the original interface UUID; but that UUID only matches against a different name (INewReport___v0 instead of INewReport) than it did originally. I think this is the reason VB6 thinks there is a bincomp mismatch.
How to fix this problem? I've not been able to do anything in VB6 that would allow you to use the updated interface DLL with the client code without having to break bincomp of the client code.
A (bad) option could be to just change the client DLL to use project compatibility... but that may or may not be acceptable in your circumstances. It could cause whatever uses the client DLL to break unless all the consumers were also recompiled. (And this could potentially cause a cascade of broken bincomp).
A better but more complex option would be to define the interface in IDL itself, use the MIDL compiler to generate a typelib (TLB file), and reference that directly. Then you would have full control over the interface naming, etc. You could use the IDL generated from OLEView as a starting point for doing this.
This second option assumes that the interface class is really truly an interface only and has no functional code in it.
Here's how I setup a case to reproduce this:
Step 1. Original interface definition - class called INewReport set to binary compatible:
Sub ProcA()
End Sub
Sub ProcB()
End Sub
Step 2. Create a test client DLL which implements INewReport, also set to binary compatible:
Implements INewReport
Sub INewReport_ProcA()
End Sub
Sub INewReport_ProcB()
End Sub
Step 3: Add ProcC to INewReport and recompile (which also registers the newly built DLL):
(above code, plus:)
Sub ProcC()
End Sub
Step 4: Try to run or compile the test client DLL - instantly get the OP's error. No need to change any references or anything at all.
I was able to recreate your problem, using something similar to DaveInCaz's code. I tried a number of things to fix it, probably repeating things you've already tried. I came up with a possible hypothesis as to why this is happening. It doesn't fix the problem, but it may throw some additional light on it.
Quoting from This doc page:
To ensure compatibility, Visual Basic places certain restrictions on changes you make to default interfaces. Visual Basic allows you to add new classes, and to enhance the default interface of any existing class by adding properties and methods. Removing classes, properties, or methods, or changing the arguments of existing properties or methods, will cause Visual Basic to issue incompatibility warnings.
Another quote:
The ActiveX rule you must follow to ensure compatibility with multiple interfaces is simple: once an interface is in use, it can never be changed. The interface ID of a standard interface is fixed by the type library that defines the interface.
So, here's a hypothesis. The first quote mentions the default interface, which suggests that it may not be possible to alter custom interfaces in any way. That's suggested by the second quote as well. You're able to alter the interface class, because you are essentially altering its default interface. However, when you attempt to alter the implementing class in kind, to reflect the changes in your interface, your implementation reference is pointing to the older version of the interface, which no longer exists. Of course, the error message doesn't hint at this at all, because it appears to be based on the idea that you didn't attempt to implement the interface.
I haven't been able to prove this, but looking at DaveInCaz's answer, the fact that the UUID has changed seems to bear this idea out.

Is there a conventional URI scheme for referencing code in a library?

Is there a standard or conventional URI scheme, like file: or http: for referencing objects in a dynamic library?
For example, if I were to represent a function in a library in the form of a unique string that can be used to look up that function (by whatever reflective means), how might I do that?
Specifically I'm developing this in Objective-C, and I assume different languages/platforms will have different representations (I know .NET has its own), but I'm curious about this in a more general sense.
No, the name of the symbol is derived from its name in your code. In windows you will assuming C or C++
HMODULE module=LoadLibrary( [path to your dll] );
//If the exported name is foo.
Function foo=(Function)GetProcAddress(module,"foo");
//Call function
foo();
FreeLibrary(module);
The exported name is compiler-dependent.
Acually such a naming scheme is quite useless. In C++ you can use something like (Note that you will have one FunctionCaller per function prototype)
FunctionCaller("your-dll.dll/foo")();
Where the constructor of FunctionCaller loads the library, calls foo and frees the library. However it is not good because:
it may happen that the return value points to a resource inside the library and then will become useless
loading libraries and perform function look-up is slow relative to calling the function found
What you do is
Load the library
Load functions that you will need
Use your functions
Free the library
Here you would need to refer to more than one symbol at a time which would require a more complex scheme than uri.
EDIT: If you want to the convenience of calling functions like that you could have a surviving FunctionCaller object that keeps all loaded modules and contains a map from function name to address for each loaded library.

Is there anything in the C++0x standard to support separate compilation of templates?

In current g++, I typically include all my templated functions that take the template parameter as an argument because they have to be compiled for each instance.
template<typename T>
class A {
public:
void f() { ... }
};
So in a different source, I would write:
#include <A.hh>
A<int> a1;
a1.f();
A<double> a2;
a2.f();
Sometimes, when I've been desperate to not inline big methods, I've manually specified which classes will be used in the source file, but it's really obnoxious:
template<typename T>
A::A() { ... }
template<typename T>
void A::f() { ... }
A<int>; // manually trigger code generation for int and double
A<double>;
Obviously different IDEs and compilers have mechanisms to support this. Is there anything standard that has been mandated, and/or does g++ support anything like this?
There's nothing in the proposed C++0x standard. In fact, export template has been removed (few compilers implemented it anyway).
As far as inlining is concerned, it's a total non-issue. The compiler is smart enough not to inline functions which are too big, even if they're marked inline and put into a header file.
If you're looking at increased compile times from header files grown bloated from templates, use precompiled headers. These aren't standard, but almost all current compilers provide such a mechanism.
C++0x does have extern template, which allows you to prevent the instantiation of certain templates in a compilation unit. So if you have a template class SomeClass, you can put this in the header:
extern template SomeClass<int>;
extern template SomeClass<double>;
This will prevent users from instantiating the template. In the .cpp file for the template, you can force instantiation with this syntax:
template SomeClass<int>;
template SomeClass<double>;
I've manually specified which classes will be used in the source file, but it's really obnoxious:
A<int>; // manually trigger code generation for int and double
A<double>;
This is not legal (I assume you meant to declare dummy variables here, and missed their name). We will see below why
Is there anything standard that has been mandated, and/or does g++ support anything like this?
C++03 had something called export, but which turned out to be a misfeature. The EDG implemented that feature, and their experience with it indicated that it's not worth the trouble implementing it. And it doesn't provide a useful feature separate compilation usually gives you: Hiding of the code of templates which you once compiled. export still requires the code of templates, be it in raw form or encoded into a mid-level compiler-specific language. See Why we can't afford export. A short example is given by EDG worker David Vandevoorde here.
For C++0x and for C++0x sans export, we have
A function template, member function of a class template, or static data member of a class template shall be deļ¬ned in every translation unit in which it is implicitly instantiated (14.7.1) unless the corresponding specialization is explicitly instantiated (14.7.2) in some translation unit; no diagnostic is required
As this indicates, the only way you can achieve separate compilation is to explicitly instantiate the template you want to have separately compiled. By defining dummy variables, you merely implicitly instantiate the class template. And you do not instantiate the member functions of the class templates that way - you would need to do dummy calls or take their address. And to all this, you are not guaranteed that an implicitly instantiated function won't be discarded if it's not used in the translation unit it was instantiated by, after optimization, based on the above quote.
So you explicitly instantiate the class template, which will explicitly also instantiate its member functions the following way:
template class A<int>;
template class A<double>;
This feature, called export is present even in the current standard of C++. Unfortunately, most compilers, including gcc, do not support it. See here http://gcc.gnu.org/bugs/

How to update a C++ dll without needing to relink the exe with the lib file?

First off , I'm referring to a Windows environment and VC++ compiler.
What I want to be able to do is rebuild a Vc++ dll and maintain compatability with an exe that has already been linked to the lib without having to rebuild the exe or load the dll dynamically using LoadLibrary. In other words, is there a way to add classes and methods to a dll(but not remove any) and ensure the existing entrypoints remain the same?
If you export the functions from using a DEF file and manually specify the ordinals, you should be able to accomplish this.
Reference
http://msdn.microsoft.com/en-us/library/d91k01sh(VS.80).aspx
It depends on how your EXE used the classes from the DLL. Adding new classes should not affect existing entrypoints. Aside from that, however, any the following will affect object size and/or layout, and as such will be a client-breaking change (note that this is technically VC-specific, but most of these apply to any sane implementation):
Removing fields (even private) from classes
Adding new fields (even private) to classes
Adding new base classes to existing classes
Removing base classes from existing classes
Adding new virtual method before an existing virtual method (adding new virtual methods after existing ones is okay, except for the case described in next point)
Adding a new virtual method in a class that is used as base class by another class in the same DLL which also has virtual methods
Changing type of existing fields
Changing signature of existing methods
Making a virtual method non-virtual, and vice versa
As long as you don't add any exported symbols, the ordinals won't change. If you add exported symbols through the standard dllexport mechanism, then that's going to be difficult to control. If you use the old style .xpf symbol file you might be able to control the ordering of the symbols in the lib (although I don't know this for sure - it might still reorder them however it likes), but it's tricky to do C++ symbols this way.
I think that ordinals are rarely used to resolve DLL imports anymore - I think that you have to use .def files to get the linker to use them. So as long as you don't change names or signatures of the exported functions, the .exe should work just fine.

What's wrong with Copy Constructors? Why use Cloneable interface?

When programming C++ we used to create copy constructors when needed (or so we were taught). When switching to Java a few years ago, I noticed that the Cloneable interface is now being used instead. C# followed the same route defining the ICloneable interface. It seems to me that cloning is part of the definition of OOP. But I wonder, why were these interfaces created, and the copy constructor seems to have been dropped?
When I thought about it, I came to the thought that a copy constructor would not be useful if one needs to make a copy of an object whose type is not known (as in having a reference to a base type). This seems logical. But I wonder whether there are other reasons that I do not know of, for which the Cloneable interfaces have been favored over copy constructors?
I think it's because there is no such inherent need for a copy constructor in Java and in C# for reference types. In C++ objects are named. You can (and you will most often) copy (and in C++1x move) them around e.g when returning from functions, since returning pointers require you to allocate dynamic memory which would be slow and painful to manage. The syntax is T(x) so it makes sense to make a constructor taking a T reference. C++ couldn't make a clone function, since that would require returning an object by value again (and thus another copy).
But in Java, objects are unnamed. There are only references to them, which can be copied, but the object itself isn't copied. For the cases when you actually need to copy them, you can use the clone call (but i read in other anwers clone is flawed. i'm no java programmer so i cannot comment that). Since not the object itself is returned, but rather a reference to it, a clone function will suffice. Also a clone function can be overriden. That's not going to work with copy constructors. And incidentally, in C++ when you need to copy a polymorphic object, a clone function is required too. It's got a name, the so-called virtual copy constructor.
Because C++ and Java (and C#) aren't the same thing. C++ has no built-in interfaces because interfaces aren't part of the language. You can fake them with abstract classes but they aren't how you think about C++. Also, in C++ assignment is normally deep.
In Java and C# assignment just involves copying the handle to the internal object. Basically when you see:
SomeClass x = new SomeClass();
in Java or C#, there's a level of indirection builtin that doesn't exist in C++. In C++, you write:
SomeClass* x = new SomeClass();
Assignment in C++ involves the dereferenced value:
*x = *another_x;
In Java you can get access to the "real" object as there is no dereference operator like *x. So to do a deep copy, you need a function: clone(). And both Java and C# wrapped that function into an interface.
It's the issues of final type and of cascading the clone operation through the super classes which is not addressed by copy constructors - they are not extensible. But the Java clone mechanism is widely considered badly broken too; especially problems where a subclass does not implement clone(), but inherits from a superclass that implements cloneable.
I strongly recommend you research cloning carefully, whatever path you choose - you will likely choose the clone() option, but make sure you know exactly how to do it properly. It's rather like equals() and hashCode() - looks simple on the surface, but it has to be done exactly right.
I think you haven't get the right point. I give you my two cents.
Fundamentally there's a problem: creating a clone of a class without knowing the exact class type. If you use copy constructor, you cannot.
Here is an example:
class A {
public A(A c) { aMember = c.aMember }
int aMember;
}
class B : A {
public B(B c) : base(c) { bMember = c.bMember }
int bMember;
}
class GenericContainer {
public GenericContainer(GenericContainer c) {
// XXX Wrong code: if aBaseClass is an instance of B, the cloned member won't
// be a B instance!
aBaseClass = new A(c.aBaseClass);
}
A aBaseClass;
}
The Clone method, if declare virtual, could create the right class instance of the generic member.
An this problem is common to every language, C# C++ or Java...
Maybe this is what you was meaning, but I cannot understand this from any answer.
Just wanted to add that in Java the copy constructor is not completely useless.
There are cases where your class has a private instance variable of a mutable non-final type, e.g. Date, and has a setter and getter for the variable. In the setter, you should make a copy of the given date, because the caller could modify it later and thereby manipulate your object's internal state (usually by accident, but maybe intentional). In the getter, the same precaution is required.
The defensive copy could be implemented by calling clone() (the class Date is cloneable), but a malicious caller could call the setter with a subclass of Date which overrides the clone() method with {return this;}, and so the caller might still be able to manipulate your object. This is where the copy constructor comes into play: By calling new Date(theDate), you are sure to get a fresh Date instance with the same timestamp as the given date, without any connection between the two date instances. In the getter, you could use the clone method, because you know the private variable will be of class Date, but for consistency, usually the copy constructor is used there, too.
Also note that the copy constructor would note be required if the Date class was final (calling clone() were safe) or immutable (no copy required).
I think its only because once u have defined a copy constructor, you could never pass the reference itself again. (Unless it would have a function that does that...but thats not any easier than using the clone() method.)
In C++ its not a problem: you can pass the whole object or its reference.