If I got
Dim myRect As Rectangle = New Rectangle(0,0,100,100)
Is it necessary or just fine to later do this:
myRect = Nothing
Or it isn't necessary? Thank you.
IF it is necessary, are there other cases it isn't for my variables?
In general, as Joel said, it's unnecessary.
In your specific example, though, it is actually pointless. Rectangle is a value type, so setting it to Nothing is not even affecting an object's reference count; it's assigning a new value (the default value for Rectangle) to your myRect variable. This is analogous to having an Integer variable and setting it to 0 at the end of a method. Doesn't buy you anything.
I should point out that the claim "Setting any variable to Nothing [or null in C#] never accomplishes anything"* is a myth. It is entirely possible that you may have a field in a class which you might as well set to null if the object referenced is no longer needed but you still have a reference to the class instance itself.
As a simplistic example, suppose you had some container class which wraps a T[] array, and you give this container an Empty method. It might make sense to set the container's internal array to null in this method, which would result in zero references to the array object, qualifying it for garbage collection. (You would then create a new array when external code next tried to add a T to the collection.) If you did not set the field to null on Empty, then there would still be a reference to the array (i.e., the field), and so that would be a small amount of memory being used that you really don't need.
Like I said, that's a simplistic example. And honestly, it's rare that you ever need to consider scenarios like that. I just thought I would mention it so that you don't get the wrong impression that setting a field to Nothing literally never accomplishes anything.
*I'm not actually quoting anyone specific here; this is just an over-generalization I've heard stated more than once.
Don't do it. This was important to do in the vb6 days, but for .Net it's possible (though very unlikely) for it to actually throw the garbage collector off and have other unexpected side effects.
Related
After reading this piece by Yegor about not using getters and setters, it sounds like something that makes sense to me.
Please note this question is not about whether doing it is better/worst, only if I am implementing it correctly
I was wondering in the following two examples in VBA, if I understand the concept correctly, and if I am applying it correctly.
The standard way would be:
Private userName As String
Public Property Get Name() As String
Name = userName
End Property
Public Property Let Name(rData As String)
userName = rData
End Property
It looks to me his way would be something like this:
Private userName As String
Public Function returnName() As String
returnName = userName
End Function
Public Function giveNewName(newName As String) As String
userName = newName
End Function
From what I understand from the two examples above is that if I wanted to change the format of userName (lets say return it in all-caps), then I can do this with the second method without changing the name of the method that gives the name through - I can just let returnName point to a userNameCaps property. The rest of my code in my program can still stay the same and point to the method userName.
But if I want to do this with the first example, I can make a new property, but then have to change my code everywhere in the program as well to point to the new property... is that correct?
In other words, in the first example the API gets info from a property, and in the second example the API gets info from a method.
Your 2nd snippet is neither idiomatic nor equivalent. That article you link to, is about Java, a language which has no concept whatsoever of object properties - getFoo/setFoo is a mere convention in Java.
In VBA this:
Private userName As String
Public Property Get Name() As String
Name = userName
End Property
Public Property Let Name(rData As String)
userName = rData
End Property
Is ultimately equivalent to this:
Public UserName As String
Not convinced? Add such a public field to a class module, say, Class1. Then add a new class module and add this:
Implements Class1
The compiler will force you to implement a Property Get and a Property Let member, so that the Class1 interface contract can be fulfilled.
So why bother with properties then? Properties are a tool, to help with encapsulation.
Option Explicit
Private Type TSomething
Foo As Long
End Type
Private this As TSomething
Public Property Get Foo() As Long
Foo = this.Foo
End Property
Public Property Let Foo(ByVal value As Long)
If value <= 0 Then Err.Raise 5
this.Foo = value
End Property
Now if you try to assign Foo with a negative value, you'll get a runtime error: the property is encapsulating an internal state that only the class knows and is able to mutate: calling code doesn't see or know about the encapsulated value - all it knows is that Foo is a read/write property. The validation logic in the "setter" ensures the object is in a consistent state at all times.
If you want to break down a property into methods, then you need a Function for the getter, and assignment would be a Sub not a Function. In fact, Rubberduck would tell you that there's a problem with the return value of giveNewName being never assigned: that's a much worse code smell than "OMG you're using properties!".
Functions return a value. Subs/methods do something - in the case of an object/class, that something might imply mutating internal state.
But by avoiding Property Let just because some Java guy said getters & setters are evil, you're just making your VBA API more cluttered than it needs to be - because VBA understands properties, and Java does not. C# and VB.NET do however, so if anything the principles of these languages would be much more readily applicable to VBA than Java's, at least with regards to properties. See Property vs Method.
FWIW public member names in VB would be PascalCase by convention. camelCase public member names are a Java thing. Notice how everything in the standard libraries starts with a Capital first letter?
It seems to me that you've just given the property accessors new names. They are functionally identical.
I think the idea of not using getters/setters implies that you don't try to externally modify an object's state - because if you do, the object is not much more than a user-defined type, a simple collection of data. Objects/Classes should be defined by their behavior. The data they contain should only be there to enable/support that behavior.
That means you don't tell the object how it has to be or what data you want it to hold. You tell it what you want it to do or what is happening to it. The object itself then decides how to modify its state.
To me it seems your example class is a little too simple to work as an example. It's not clear what the intended purpose is: Currently you'd probably better off just using a variable UserName instead.
Have a look at this answer to a related question - I think it provides a good example.
Regarding your edit:
From what I understand from the two examples above is that if I wanted
to change the format of userName (lets say return it in all-caps),
then I can do this with the second method without changing the name of
the method that gives the name through - I can just let returnName
point to a userNameCaps property. The rest of my code in my program
can still stay the same and point to the method iserName.
But if I want to do this with the first example, I can make a new
property, but then have to change my code everywhere in the program as
well to point to the new property... is that correct?
Actually, what you're describing here, is possible in both approaches. You can have a property
Public Property Get Name() As String
' possibly more code here...
Name = UCase(UserName)
End Property
or an equivalent function
Public Function Name() As String
' possibly more code here...
Name = UCase(UserName)
End Function
As long as you only change the property/function body, no external code needs to be adapted. Keep the property's/function's signature (the first line, including the Public statement, its name, its type and the order and type of its parameters) unchanged and you should not need to change anything outside the class to accommodate.
The Java article is making some sort of philosophic design stance that is not limited to Java: The general advise is to severely limit any details on how a class is implemented to avoid making one's code harder to maintain. Putting such advice into VBA terms isn't irrelevant.
Microsoft popularized the idea of a Property that is in fact a method (or two) which masquerade as a field (i.e. any garden-variety variable). It is a neat-and-tidy way to package up a getter and setter together. Beyond that, really, behind the scenes it's still just a set of functions or subroutines that perform as accessors for your class.
Understand that VBA does not do classes, but it does do interfaces. That's what a "Class Module" is: An interface to an (anonymous) class. When you say Dim o As New MyClassModule, VBA calls some factory function which returns an instance of the class that goes with MyClassModule. From that point, o references the interface (which in turn is wired into the instance). As #Mathieu Guindon has demonstrated, Public UserName As String inside a class module really becomes a Property behind the scenes anyway. Why? Because a Class Module is an interface, and an interface is a set of (pointers to) functions and subroutines.
As for the philosophic design stance, the really big idea here is not to make too many promises. If UserName is a String, it must always remain a String. Furthermore, it must always be available - you cannot remove it from future versions of your class! UserName might not be the best example here (afterall, why wouldn't a String cover all needs? for what reason might UserName become superfluous?). But it does happen that what seemed like a good idea at the time the class was being made turns into a big goof. Imagine a Public TwiddlePuff As Integer (or instead getTwiddlePuff() As Integer and setTwiddlePuff(value As Integer)) only to find out (much later on!) that Integer isn't sufficient anymore, maybe it should have been Long. Or maybe a Double. If you try to change TwiddlePuff now, anything compiled back when it was Integer will likely break. So maybe people making new code will be fine, and maybe it's mostly the folks who still need to use some of the old code who are now stuck with a problem.
And what if TwiddlePuff turned out to be a really big design mistake, that it should not have been there in the first place? Well, removing it brings its own set of headaches. If TwiddlePuff was used at all elsewhere, that means some folks may have a big refactoring job on their hands. And that might not be the worst of it - if your code compiles to native binaries especially, that makes for a really big mess, since an interface is about a set of function pointers layed out and ordered in a very specific way.
Too reiterate, do not make too many promises. Think through on what you will share with others. Properties-getters-setters-accessors are okay, but must be used thoughtfully and sparingly. All of that above is important if what you are making is code that you are going to share with others, and others will take it and use it as part of a larger system of code, and it may be that these others intend to share their larger systems of code with yet even more people who will use that in their even larger systems of code.
That right there is probably why hiding implementation details to the greatest extent possible is regarded as fundamental to object oriented programming.
I need to expose the "is mapped?" state of an instance of a class. The outcome is determined by a basic check. It is not simply exposing the value of a field. I am unsure as to whether I should use a read-only property or a method.
Read-only property:
public bool IsMapped
{
get
{
return MappedField != null;
}
}
Method:
public bool IsMapped()
{
return MappedField != null;
}
I have read MSDN's Choosing Between Properties and Methods but I am still unsure.
The C# standard says
§ 8.7.4
A property is a member that provides access to a characteristic of an object or a class. Examples of properties include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on. Properties are a natural extension of fields. Both are named members with associated types, and the syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations. Instead, properties have accessors that specify the statements to be executed when their values are read or written.
while as methods are defined as
§ 8.7.3
A method is a member that implements a computation or action that can be performed by an object or class. Methods have a (possibly empty) list of formal parameters, a return value (unless the method’s return-type is void ), and are either static or non-static.
Properties and methods are used to realize encapsulation. Properties encapsulate data, methods encapsulate logic. And this is why you should prefer a read-only property if you are exposing data. In your case there is no logic that modifies the internal state of your object. You want to provide access to a characteristic of an object.
Whether an instance of your object IsMapped or not is a characteristic of your object. It contains a check, but that's why you have properties to access it. Properties can be defined using logic, but they should not expose logic. Just like the example mentioned in the first quote: Imagine the String.Length property. Depending on the implementation, it may be that this property loops through the string and counts the characters. It also does perform an operation, but "from the outside" it just give's an statement over the internal state/characteristics of the object.
I would use the property, because there is no real "doing" (action), no side effects and it's not too complex.
I personally believe that a method should do something or perform some action. You are not performing anything inside IsMapped so it should be a property
I'd go for a property. Mostly because the first senctence on the referenced MSDN-article:
In general, methods represent actions and properties represent data.
In this case it seems pretty clear to me that it should be a property. It's a simple check, no logic, no side effects, no performance impact. It doesn't get much simpler than that check.
Edit:
Please note that if there was any of the above mentioned and you would put it into a method, that method should include a strong verb, not an auxiliary verb like is or has. A method does something. You could name it VerifyMapping or DetermineMappingExistance or something else as long as it starts with a verb.
I think this line in your link is the answer
methods represent actions and properties represent data.
There is no action here, just a piece of data. So it's a Property.
In situations/languages where you have access to both of these constructs, the general divide is as follows:
If the request is for something the object has, use a property (or a field).
If the request is for the result of something the object does, use a method.
A little more specifically, a property is to be used to access, in read and/or write fashion, a data member that is (for consuming purposes) owned by the object exposing the property. Properties are better than fields because the data doesn't have to exist in persistent form all the time (they allow you to be "lazy" about calculation or retrieval of this data value), and they're better than methods for this purpose because you can still use them in code as if they were public fields.
Properties should not, however, result in side effects (with the possible, understandable exception of setting a variable meant to persist the value being returned, avoiding expensive recalculation of a value needed many times); they should, all other things being equal, return a deterministic result (so NextRandomNumber is a bad conceptual choice for a property) and the calculation should not result in the alteration of any state data that would affect other calculations (for instance, getting PropertyA and PropertyB in that order should not return any different result than getting PropertyB and then PropertyA).
A method, OTOH, is conceptually understood as performing some operation and returning the result; in short, it does something, which may extend beyond the scope of computing a return value. Methods, therefore, are to be used when an operation that returns a value has additional side effects. The return value may still be the result of some calculation, but the method may have computed it non-deterministically (GetNextRandomNumber()), or the returned data is in the form of a unique instance of an object, and calling the method again produces a different instance even if it may have the same data (GetCurrentStatus()), or the method may alter state data such that doing exactly the same thing twice in a row produces different results (EncryptDataBlock(); many encryption ciphers work this way by design to ensure encrypting the same data twice in a row produces different ciphertexts).
If at any point you'll need to add parameters in order to get the value, then you need a method. Otherwise you need a property
IMHO , the first read-only property is correct because IsMapped as a Attribute of your object, and you're not performing an action (only an evaluation), but at the end of the day consistancy with your existing codebase probably counts for more than semantics.... unless this is a uni assignment
I'll agree with people here in saying that because it is obtaining data, and has no side-effects, it should be a property.
To expand on that, I'd also accept some side-effects with a setter (but not a getter) if the side-effects made sense to someone "looking at it from the outside".
One way to think about it is that methods are verbs, and properties are adjectives (meanwhile, the objects themselves are nouns, and static objects are abstract nouns).
The only exception to the verb/adjective guideline is that it can make sense to use a method rather than a property when obtaining (or setting) the information in question can be very expensive: Logically, such a feature should probably still be a property, but people are used to thinking of properties as low-impact performance-wise and while there's no real reason why that should always be the case, it could be useful to highlight that GetIsMapped() is relatively heavy perform-wise if it in fact was.
At the level of the running code, there's absolutely no difference between calling a property and calling an equivalent method to get or set; it's all about making life easier for the person writing code that uses it.
I would expect property as it only is returning the detail of a field. On the other hand I would expect
MappedFields[] mf;
public bool IsMapped()
{
mf.All(x => x != null);
}
you should use the property because c# has properties for this reason
In programming, the standard practice is to give each object it's own unique name by assigning it's address to only one reference variable.
If we assign one reference variable to another reference variable, it creates two different names for the same thing. I was asked when doing this would be useful.
When would using ambiguous names be useful? The only reason I could see for doing this is if you need to make a copy of an object's value to prevent overwriting.
What you describe is not ambiguity, it's aliasing (specifically pointer aliasing).
You don't usually do it explicitly, but it can be very useful if you pass a reference/pointer to another method. Then at least two variables (the original one and the parameter) will reference the same object, but for different reasons.
If you do it explicitly, then it's usually because two variables take two different roles.
For example if you're writing code that traverses a tree, you usually start at the root. So the beginning of your code might look like this:
TreeNode rootNode = getTreeRootFromSomewhere();
TreeNode currentNode = rootNode;
while (currentNode != null) {
...
In this case currentNode is obviously an alias for rootNode at this point. Later on we will certainly change what currentNode points to, but the first time you enter the loop they point to the same object.
I find this class definition a bit odd:
http://www.extremeoptimization.com/Documentation/Reference/Extreme.Mathematics.LinearAlgebra.SingleLeastSquaresSolver_Members.aspx
The Solve method does have a return value but would not need to because the result is also available in the Solution property.
This is what I see as traditional code:
var sqrt2 = Math.Sqrt(2)
This would be an alternative in the same spirit as the solver in the link:
var sqrtCalculator = new SqrtCalculator();
sqrtCalculator.Parameter = 2;
sqrtCalculator.Run();
var sqrt2 = sqrtCalculator.Result;
What are the pros and cons besides the second version being a bit "untraditional"?
Yes, the compiler won't help the user who forgot to assign some property (parameter) BUT this is the case with all components that contain writeable properties and don't have mandatory values in the constructor.
Yes, threading will not work, BUT each thread can create its own solver.
Yes, the garbage collector won't be able to dispose the solver's result, BUT if the entire solver is disposed it will.
Yes, compilers and processors have special treatment of parameters and return values which makes them fast, BUT the time for parameter handling is mostly neglectable.
And so on. Other ideas?
Well, after a year I found a clear flaw with this "introvert" approach. I am using an existing filter object which should operate on a measurement object but rather operates on itself in a "it's all me and nothing else"-fashion described above. Now the customer wants a recalculation of a measurement object a few minutes after the first calculation, and meanwhile the filter has processed other measurement objects. If it had been stateless and stored its data in the measurement object, it would have been an easy matter to implement a Recalculate method. The only way to solve the problem with an introvert filter is to let a filter instance be a part of the measurement object. Then filters need to be instantiated for every new measurement object. And since filters are a part of a chain the entire chain needs to be recreated. Well, there is some merit to being stateless.
Is it normal to modify setter arguments? Let's imagine that we have setString method. And we really want to keep a trimmed form of the string. So a string with trailing spaces is invalid, but we don't want to throw an exception.
What's the best solution? To trim the value in the setter e.g.
public void setString(String string) {
this.string = string.trim();
}
Or trim it in the caller (more than once) e.g.
object.setString(string.trim());
Or maybe something else?
Yes. After all, setters are designed for these kind of things! To control and sanitize the values written to fields ;)
Totally. Here's an example: suppose you have an engineering programs with different types of measurement units. You keep the internal values in one measurement system, but you convert from all others in the setter, and convert back in the getter, e.g.:
public double UserTemperature
{
get
{
return Units.Instance.ConvertFromSystem(UnitType.Temperature, temperature);
}
set
{
double v = Units.Instance.ConvertToSystem(UnitType.Temperature, value);
if (temperature != v)
{
temperature = v;
Changed("SystemTemperature");
Changed("UserTemperature");
}
}
}
Yes, sure. Just be careful to check for NULL before applying any method (such as trim()).
There are two schools: one says its ok to check param in setter(school style) and second one says beans should not contain any logic and just data(enterprise style).
I believe more in the second one. How often do you look at implementation of your beans? should getUser throw any exception or just return null?
When you put logic in your setter and getters you make it harder to understand whats going on since many people will never look at its implementation. If you disagree I urge you to look at every setter and getter implementation before you use it just to check if its not just a bean.
At first glance it seems like it violates the principle of least astonishment. If I'm a user of your class, I'd expect a setter to do exactly what I tell it to. I'd throw an exception in the setter to force users to trim the input.
The other (better?) alternative is to change the name of the method to trimAndSetString. That way, it's not surprising behavior to trim the input.
Correct me if I'm wrong, but it looks logical to me that the setter should hold this kind of logic.
If the setter is just assigning some value to an internal var without checking it, then why not expose the var itself?
This is exactly why you use setters rather than exposing the objects fields to the whole wide world.
Consider a class that holds an integer angle that's expected to be between 0 and 359 inclusive.
If you expose the field, calling functions can set it to whatever they want and this would break the contract specified by your API. It's also likely to break your functionality somewhere down the track because your code is written to assume a certain range for that variable.
With a setter, there's a number of things you can do. One is to raise an exception to indicate an invalid value was passed but that would be incorrect in my view (for this case). It's likely to be more useful if you modify the input value to something between 0 and 359 such as with:
actualVal = passedValue % 360;
As long as this is specified in your interface (API), it's perfectly valid. In fact, even if you don't specify it, you're still free to do whatever you want since the caller has violated the contract (by passing a value outside of range). I tend to follow the rule of "sanitize your input as soon as possible".
In your specific case, as long as you specify that the string is stored in trimmed format, there's no reason for callers to complain (you've already stated that such a string is invalid). It's better in terms of code size (not speed) to do it in the setter rather than at every piece of code that calls the setter. It also guarantees that the string is stored as you expect it to be - there's no guarantee a caller won't accidentally (or purposefully) store a non-trimmed string.
Yes. It is a feature of object oriented design is that the caller can treat your class as a black box. What you do inside is your own business, as long as the behavior of the interface is documented and logical.
While different people have different philosophies, I would suggest that property setters are only appropriate in cases where they will set an aspect of the object's state to match the indicated value and perhaps possibly notify anyone that cares about the change, but will not otherwise affect the object's state (it is entirely proper for a property setter to change the value of a read-only property if that property is defined in terms of the state associated with the property setter; for example, a control's read-only Right property may be defined in terms of its Bounds). Property setters should throw an exception if they cannot perform the indicated operation.
If one wishes allow a client to modify an object's state in some fashion not meeting the above description, one should use a method rather than a property. If one calls Foo.SetAngle(500) it would be reasonably expected that the method will use the indicated parameter in setting the angle, but the Angle property might not return the angle in the same form as it was set (e.g. it might return 140). On the other hand, if Angle is a read-write property, one would expect that writing a value of 500 would either be forbidden or else would cause the value to read back 500. If one wanted to have the object store an angle in the range 0 to 359, the object could also have a read-only property called BaseAngle which will always return an angle in that form.