NHibernate and making an abstract entity base class - nhibernate

I saw in some NHibernate examples that an abstract base entity class is used, which has overridden Equals , GetHashCode , to handle transient entities , proxy object (in lazy loading scenario .. I guess) .
Is it really necessary to implement such an abstract base entity class to derive all my entities ?

Not necessary at all. It just makes things easier because you can put things like the Id on it. As well common functionality like you previously mentioned like Equals/GetHashCode.

Yeah, the base class itself is not required,but overriding Equals and GetHashcode is something you'll want to do on all your entities, so the base class makes thAt a lot less repetetive

In my experience, having a base class that exposes an Id property is really useful to be able to create generic repository methods that take advantage of that, or for automatic mapping conventions.
Overriding Equals, however, is another story.
Doing so forces loading of uninitialized proxies when you compare them (for example, by calling Distinct on a sequence). For that reason, it's better done only for class hierarchies of seldom-changing entities that are likely to be cached.

Overridding Equals is definetely required if you want to do lazy loading.
This is because NHibernate relies on the Equals method to determine equality. The default is reference equality.
When NHibernate implements lazy loading, it uses proxy objects, which are subclasses of the real entity class, with every member overridden to enable lazy loading.
Hence for your application to recognise that a proxy object is the same as the object it is meant to be the real instance - it shouldn't be aware of the proxy object at all.
So you must override the Equals operator to intelligently recognise equality (after checking reference equality ... etc) that objects are equal if their IDs are equal.

Related

Registering all classes that inherit from a particular abstract class in Kotlin

I have a singleton object called registry.
I also have an abstract base class, say Operation with an abstract field called name. I expect other people to subclass this abstract class and create classes denoting specific operations. I want to be able to store name -> Subclass mapping in my registry object.
Ideally, people who subclass this will not even know about this registration. But if that is unavoidable, I prefer them to write as little code as possible just next to their class declaration.
What is the best way of doing this?
The issue here is name being abstract.
If name were a constructor parameter, then you could simply put the code in the your abstract class's constructor. Every subclass, sub-subclass,… instance will call that constructor (directly or indirectly), so it would always get called. (That doesn't apply to a few special cases such as deserialisation and cloning, so you might have to handle those explicitly.)
However, your abstract class's constructor will get called before the sub(sub…)class constructor(s), and so the instance won't be fully initialised and its name property might not be available yet.
The options I see are:
Refactor your class so that the name is a constructor parameter (and can't be changed thereafter), and add your code to the constructor. (If that restriction is feasible, then this is the simplest solution, both for you and for implementers of subclasses, who won't need to do anything extra.)
Provide a method that subclasses can call once the name has been set up. (You'll have to make it clear in the documentation that subclasses must call that method; unfortunately, I don't know of any way to enforce it.)
It may be possible to use annotations and compiler plug-ins and/or runtime libraries, similar to frameworks such as Spring. But I don't know the details, and that's likely to take much more work; it may also need your implementers to add plug-ins and/or libraries to their project, so probably isn't worth it unless you're doing a lot of other frameworky stuff too.
In each case, you can get the name value and the concrete subclass (using this::class or this::class.java), and store them in your registry. (It doesn't look like you're asking about the internals of the registry; I assume you have that side of things covered.)

Jackon JSON: Polymorphic deseralization when subclasses are unknown

I'm trying to do some polymorphic deseralization of JSON using Jackson, however the list of subclasses is unknown at compile time, so I can't use a #JsonSubtype annotation on the base class.
Instead I want to use a TypeIdResolver class to perform the conversion to and from a property value.
The list of possible subclasses I might encounter will be dynamic, but they are all registered at run time with a registry. So I would appear to need my TypeIdResolver object to have a reference to that registry class. It has to operate in what is essentially a dependency injection environment (i.e I can't have a singleton class that the TypeIdResolver consults), so I think I need to inject the registry class into the TypeIdResolver. The kind of code I think I want write is:
ObjectMapper mapper = new ObjectMapper();
mapper.something(new MyTypeIdResolver(subclassRegistry));
mapper.readValue(...)
However, I can't find a way of doing the bit in the middle. The only methods I can find use java annotations to specify what the TypeIdResolver is going to be.
This question Is there a way to specify #JsonTypeIdResolver on mapper config instead of annotation? is the same, though the motivation is different, and the answer is to use an annotation mixin, which won't work here.
SimpleModule has method registerSubtypes(), with which you can register subtypes. If only passing Classes, simple class name is used as type id, but you can also pass NamedType to define type id to use for sub-class.
So, if you do know full set, just build SimpleModule, register that to mapper.
Otherwise if this does not work you may need to resort to just sharing data via static singleton instance (if applicable), or even ThreadLocal.
Note that in the end what I did was abandon Jackson and write my own much simpler framework based on javax.json that just did the kinds of serialisation I wanted in a much more straightforward fashion. I was only dealing with simple DTO (data transfer object) classes, so it was just much simpler to write my own simple framework.

NHibernate - Single table per class hierarchy - inheriting classes are unknown

In my model all the derived classes have the same ** persistent** attributes and methods as the base abstract class. There are some class specific attributes which aren't persisted and methods have different implementation.
Right now I have about 4 inheriting classes, and I will add more in the future. The nature of the application is that such classes may be added for different uses, so its impossible to know them in advance. The only given is that they will all share the same methods and persistent attributes. The is one column which will be used as discriminator.
I am struggling with strategy. Obviously I don't want to write a ClassMap for each derived class. In fact I's like the persistence layer to be completely ignorant of these derived classes. I am thinking of having the derived classes be able to be created off the base class and to return a base class.
I don't suppose I have any better option?
Your approach is flawed in that the persistence layer can not be ignorant about the subclasses, because it needs to know what the class is when loading/storing.
What you can do is use a convention-based mapping instead of an explicit one (Fluent has Automapping, and ConfORM is convention/override based only), so you don't have to write every classmap.
In ConfORM, it's as easy as saying, for example, orm.TablePerClass<TheBaseClass>(), then mapper.CompileMappingFor(TheBaseClassAndAllItsSubclasses), and you'll get the mappings without any additional effort.

Reasons to use private instead of protected for fields and methods

This is a rather basic OO question, but one that's been bugging me for some time.
I tend to avoid using the 'private' visibility modifier for my fields and methods in favor of protected.
This is because, generally, I don't see any use in hiding the implementation between base class and child class, except when I want to set specific guidelines for the extension of my classes (i.e. in frameworks). For the majority of cases I think trying to limit how my class will be extended either by me or by other users is not beneficial.
But, for the majority of people, the private modifier is usually the default choice when defining a non-public field/method.
So, can you list use cases for private? Is there a major reason for always using private? Or do you also think it's overused?
There is some consensus that one should prefer composition over inheritance in OOP. There are several reasons for this (google if you're interested), but the main part is that:
inheritance is seldom the best tool and is not as flexible as other solutions
the protected members/fields form an interface towards your subclasses
interfaces (and assumptions about their future use) are tricky to get right and document properly
Therefore, if you choose to make your class inheritable, you should do so conciously and with all the pros and cons in mind.
Hence, it's better not to make the class inheritable and instead make sure it's as flexible as possible (and no more) by using other means.
This is mostly obvious in larger frameworks where your class's usage is beyond your control. For your own little app, you won't notice this as much, but it (inheritance-by-default) will bite you in the behind sooner or later if you're not careful.
Alternatives
Composition means that you'd expose customizability through explicit (fully abstract) interfaces (virtual or template-based).
So, instead of having an Vehicle base class with a virtual drive() function (along with everything else, such as an integer for price, etc.), you'd have a Vehicle class taking a Motor interface object, and that Motor interface only exposes the drive() function. Now you can add and re-use any sort of motor anywhere (more or less. :).
There are two situations where it matters whether a member is protected or private:
If a derived class could benefit from using a member, making the member `protected` would allow it to do so, while making it `private` would deny it that benefit.
If a future version of the base class could benefit by not having the member behave as it does in the present version, making the member `private` would allow that future version to change the behavior (or eliminate the member entirely), while making it `protected` would require all future versions of the class to keep the same behavior, thus denying them the benefit that could be reaped from changing it.
If one can imagine a realistic scenario where a derived class might benefit from being able to access the member, and cannot imagine a scenario where the base class might benefit from changing its behavior, then the member should be protected [assuming, of course, that it shouldn't be public]. If one cannot imagine a scenario where a derived class would get much benefit from accessing the member directly, but one can imagine scenarios where a future version of the base class might benefit by changing it, then it should be private. Those cases are pretty clear and straightforward.
If there isn't any plausible scenario where the base class would benefit from changing the member, I would suggest that one should lean toward making it protected. Some would say the "YAGNI" (You Ain't Gonna Need It) principle favors private, but I disagree. If you're is expecting others to inherit the class, making a member private doesn't assume "YAGNI", but rather "HAGNI" (He's Not Gonna Need It). Unless "you" are going to need to change the behavior of the item in a future version of the class, "you" ain't gonna need it to be private. By contrast, in many cases you'll have no way of predicting what consumers of your class might need. That doesn't mean one should make members protected without first trying to identify ways one might benefit from changing them, since YAGNI isn't really applicable to either decision. YAGNI applies in cases where it will be possible to deal with a future need if and when it is encountered, so there's no need to deal with it now. A decision to make a member of a class which is given to other programmers private or protected implies a decision as to which type of potential future need will be provided for, and will make it difficult to provide for the other.
Sometimes both scenarios will be plausible, in which case it may be helpful to offer two classes--one of which exposes the members in question and a class derived from that which does not (there's no standard idiomatic was for a derived class to hide members inherited from its parent, though declaring new members which have the same names but no compilable functionality and are marked with an Obsolete attribute would have that effect). As an example of the trade-offs involved, consider List<T>. If the type exposed the backing array as a protected member, it would be possible to define a derived type CompareExchangeableList<T> where T:Class which included a member T CompareExchangeItem(index, T T newValue, T oldvalue) which would return Interlocked.CompareExchange(_backingArray[index], newValue, oldValue); such a type could be used by any code which expected a List<T>, but code which knew the instance was a CompareExchangeableList<T> could use the CompareExchangeItem on it. Unfortunately, because List<T> does not expose the backing array to derived classes, it is impossible to define a type which allows CompareExchange on list items but which would still be useable by code expecting a List<T>.
Still, that's not to imply that exposing the backing array would have been completely without cost; even though all extant implementations of List<T> use a single backing array, Microsoft might implement future versions to use multiple arrays when a list would otherwise grow beyond 84K, so as to avoid the inefficiencies associated with the Large Object Heap. If the backing array was exposed as protected member, it would be impossible to implement such a change without breaking any code that relied upon that member.
Actually, the ideal thing might have been to balance those interests by providing a protected member which, given a list-item index, will return an array segment which contains the indicated item. If there's only one array, the method would always return a reference to that array, with an offset of zero, a starting subscript of zero, and a length equal to the list length. If a future version of List<T> split the array into multiple pieces, the method could allow derived classes to efficiently access segments of the array in ways that would not be possible without such access [e.g. using Array.Copy] but List<T> could change the way it manages its backing store without breaking properly-written derived classes. Improperly-written derived classes could get broken if the base implementation changes, but that's the fault of the derived class, not the base.
I just prefer private than protected in the default case because I'm following the principle to hide as much as possibility and that's why set the visibility as low as possible.
I am reaching here. However, I think that the use of Protected member variables should be made conciously, because you not only plan to inherit, but also because there is a solid reason derived classed shouldn't use the Property Setters/Getters defined on the base class.
In OOP, we "encapsulate" the member fields so that we can excercise control over how they properties the represent are accessed and changed. When we define a getter/setter on our base for a member variable, we are essentially saying that THIS is how I want this variable to be referenced/used.
While there are design-driven exceptions in which one might need to alter the behavior created in the base class getter/setter methods, it seems to me that this would be a decision made after careful consideration of alternatives.
For Example, when I find myself needing to access a member field from a derived class directly, instead of through the getter/setter, I start thinking maybe that particular Property should be defined as abstract, or even moved to the derived class. This depends upon how broad the hierarchy is, and any number of additional considerations. But to me, stepping around the public Property defined on the base class begins to smell.
Of course, in many cases, it "doesn't matter" because we are not implementing anything within the getter/setter beyond access to the variable. But again, if this is the case, the derived class can just as easily access through the getter/setter. This also protects against hard-to-find bugs later, if employed consistently. If the behgavior of the getter/setter for a member field on the base class is changed in some way, and a derived class references the Protected field directly, there is the potential for trouble.
You are on the right track. You make something private, because your implementation is dependant on it not being changed either by a user or descendant.
I default to private and then make a conscious decision about whether and how much of the inner workings I'm going to expose, you seem to work on the basis, that it will be exposed anyway, so get on with it. As long as we both remember to cross all the eyes and dot all the tees, we are good.
Another way to look at it is this.
If you make it private, some one might not be able to do what they want with your implementation.
If you don't make it private, someone may be able to do something you really don't want them to do with your implementation.
I've been programming OOP since C++ in 1993 and Java in 1995. Time and again I've seen a need to augment or revise a class, typically adding extra functionality tightly integrated with the class. The OOP way to do so is to subclass the base class and make the changes in the subclass. For example a base class field originally referred to only elsewhere in the base class is needed for some other action, or some other activity must change a value of the field (or one of the field's contained members). If that field is private in the base class then the subclass cannot access it, cannot extend the functionality. If the field is protected it can do so.
Subclasses have a special relationship to the base class that other classes elsewhere in the class hierarchy don't have: they inherit the base class members. The purpose of inheritance is to access base class members; private thwarts inheritance. How is the base class developer supposed to know that no subclasses will ever need to access a member? In some cases that can be clear, but private should be the exception rather than the rule. Developers subclassing the base class have the base class source code, so their alternative is to revise the base class directly (perhaps just changing private status to protected before subclassing). That's not clean, good practice, but that's what private makes you do.
I am a beginner at OOP but have been around since the first articles in ACM and IEEE. From what I remember, this style of development was more for modelling something. In the real world, things including processes and operations would have "private, protected, and public" elements. So to be true to the object .....
Out side of modelling something, programming is more about solving a problem. The issue of "private, protected, and public" elements is only a concern when it relates to making a reliable solution. As a problem solver, I would not make the mistake of getting cough up in how others are using MY solution to solve their own problems. Now keep in mind that a main reason for the issue of ...., was to allow a place for data checking (i.e., verifying the data is in a valid range and structure before using it in your object).
With that in mind, if your code solves the problem it was designed for, you have done your job. If others need your solution to solve the same or a simular problem - Well, do you really need to control how they do it. I would say, "only if you are getting some benefit for it or you know the weaknesses in your design, so you need to protect some things."
In my idea, if you are using DI (Dependency Injection) in your project and you are using it to inject some interfaces in your class (by constructor) to use them in your code, then they should be protected, cause usually these types of classes are more like services not data keepers.
But if you want to use attributes to save some data in your class, then privates would be better.

How to handle JPA annotations for a pointer to a generic interface

I have a generic class that is also a mapped super class that has a private field that holds a pointer to another object of the same type:
#MappedSuperclass
public abstract class MyClass<T extends MyIfc<T>>
implements MyIfc<T>
{
#OneToOne()
#JoinColumn(name = "previous", nullable = true)
private T previous;
...
}
My problem is that Eclipse is showing an error in the file at the OneToOne "Target Entity "T" for previous is not an Entity." All of the implementations of MyIfc are, in fact, Entities. I should also add that each concrete implementation that inherit from MyClass uses a different value for T (because T is itself) so I can't use the "targetEntity" attribute.
I guess if there is no answer then I'll have to move this JPA annotation to all the concrete subclasses of MyClass. It just seems like JPA/Hibernate should be smart enough to know it'll all work out at run-time. Makes me wonder if I should just ignore this error somehow.
My problem is that Eclipse is showing an error in the file at the OneToOne "Target Entity "T" for previous is not an Entity."
Yes, and even if T was extending an Entity, I am not aware of any JPA provider supporting this (that's just not part of the JPA spec anyway). For more feedback have a look at JPA Generic entities classes Mappedsuperclass are not possible! (very similar thread about EclipseLink):
No you will be unable to make the Entities generic. The provider will be unable to map the relationship to the specific type defined by the generic definition as this type is assigned when the Entity is created in code not where the Entity is defined. Remember when designating Generics the Collection (in this case) is limited only to those types. The Provider can not possibly be this restrictive on a per Entity instance basis. In some cases changing the type may result in entirely different tables being mapped for a single Entity instance and that is definitely not supported.
Since JDO supports persistence of interface fields (which is a similar concept to what you have here), and since DataNucleus JPA is built on top of the JDO capabilities, then it likely would allow you to persist such a field (I have an example using JDO that does something very similar, but without seeing the remains of your classes and persistence code its impossible to be definitive). Give it a try and see what happens.
Obviously that is beyond the JPA spec, hence if portability is a concern for you then have a think first
You can add a #OneToOne(targetEntity=SuperClassOfT.class) to your fields to make this work.
Check out How to implement polymorphic JPA entities with generic relations