What are #property and #synthesize used for in Objective-C? - objective-c

What is the use of #property and #synthesize? Can you explain with an example please?

Really short answer: They create accessors for the ivars.
There are some examples on wikipedia. Look at those.

From the apple developer library:
You can think of a property declaration as being equivalent to declaring two accessor methods. Thus
#property float value;
is equivalent to:
- (float)value;
- (void)setValue:(float)newValue;
And by using #synthesize, the compiler creates accessor methods for you (see more here)

// Sample for #property and #sythesize //
#interface ClassA
NSString *str;
#end
#implementation ClassA
#end
The Main Function main()
//make sure you #import ClassA
ClassA *obj=[[ClassA alloc]init];
obj.str=#"XYZ"; // That time it will give the error that we don't have the getter or setter method. To use string like this we use #property and #sythesize

Related

Hiding privately mutable properties behind immutable interfaces in Objective-C

So, what I basically want to ask is whether the following code is safe (not whether it works, because it does). I.e, will the public getter override the synthesized getter of the actionLog property [which is of a different type]?
.h file:
#interface SomeClass : NSObject
- (NSArray*) actionLog;
#end
.m file:
#interface SomeClass ()
#property (strong, nonatomic) NSMutableArray* actionLog;
#end
#implementation SomeClass
...
#end
This is not only OK, it is exactly why class extensions were created in the first place!
Yes, there will be a single automatically synthesized ivar and pair of getter/setter methods generated as expected.
Sorry -- missed the NSArray vs. NSMutableArray part. No, you can't do that; the types must be the same.
However, you don't want to return your mutable array anyway. First, the caller might modify it (a bug). But, more importantly, the caller will assume that the contents are immutable as implied by the API) and, thus, when that array's contents change out from under the caller, it may cause issue (example; caller can reasonably assume that the result of count will be stable and can be cached).
By backing the property with a mutable ivar, like this:
.h file:
#interface SomeClass : NSObject
#property (nonatomic, strong) NSArray *actionLog;
#end
.m file:
#implementation SomeClass{
NSMutableArray* _actionLog;
}
-(void)insertAction:(Action *)action{
if(!_actionLog){
_actionLog = [[NSMutableArray alloc] init];
}
[_actionLog addObject:action];
}
#end

What to use for Objective-C objects instead of structs when using ARC?

ARC forbids Objective-C objects in structs or unions.
Unless you add __unsafe_unretained which means its not managed.
I was wonder what people are using in place of structs now if anything?
Or are you retaining everything manually?
It's very simple - if you want to add an object inside a struct, you are doing it wrong. Whenever you need a struct to hold an obj-c object, convert the struct into an obj-c object.
I would manage different objects in one objc-object like this:
#class MyFirst, MySecond;
#interface MyContainer : NSObject
#property (nonatomic, strong, readonly) MyFirst *firstInst;
#property (nonatomic, strong, readonly) MySecond *secondInst;
// optional: convenience initializer
+ (instancetype)containerWithFirstInst:(MyFirst *)firstInst secondInst:(MySecond *)secondInst;
#end
// required by linker: stub definition for the class declared above
#implementation MyContainer
#end
#interface SomeController : NSObject
- (void)doSomething;
#end
#implementation SomeController
- (void)doSomething {
MyFirst *firstInstance = [[MyFirst alloc] initWithSomeParameters:...];
MySecond *secondInstance = [[MySecond alloc] initWithSomeParameters:...];
MyContainer *container = [MyContainer containerWithFirstInst:firstInstance secondInst:secondInstance];
// use container as a struct (but it's definitely an object that is managed by ARC)
}
#end
Wouldn't it be a lot easier to implement a static class and fake its properties, as shown here?
I answered to it here https://stackoverflow.com/a/28845377/1570826
maybe somebody with the right level could mark this or the other as a duplicate.

Confusing Objective-C class structure

Here's a (reduced) class declaration from an example on apple's developer:
#interface myController : UITableViewController {
NSArray *samples;
}
#property (nonatomic, retain) NSArray *samples
What is the purpose of declaring
{
NSArray *samples;
}
when you declare it again as a property? If you leave out:
{
NSArray *samples;
}
you can still use #synthesize in your .m and get a reference to it!
I'm a little confused as to the purpose of the first declaration.
Thanks
Properties are just a handy way to declare accessors to you data. It usually leads to some member variable but not necessarily. And that member var can have different name:
#interface myController : UITableViewController {
NSArray *mSamples;
}
#property (nonatomic, retain) NSArray *samples
#end
#implementation
#synthesize samples = mSamples;
#end
Or you can use properties without vars at all:
#interface myController : UITableViewController {
}
#property (nonatomic, retain) NSArray *samples
#end
#implementation
-(NSArray*) samples {
//you can for example read some array from file and return it
}
-(void) setSamples:(NSArray*) arr {
//write that array to file or whatever you want
}
#end
With new compiler you can use properties without ivars at all, compiler will generate them for you implicitly.
With a property declaration, there is no purpose or benefit in explicitly declaring the backing instance variable. It's just leftovers from habit.
Edit: For iOS or Mac 64-bit Intel, explicitly declaring ivars was never needed for properties. But they were needed for other Mac work — hence the examples.
Also, I did find a difference. When an ivar is explicitly declared, unless you state otherwise, it is a protected ivar, available to subclasses. But when an ivar is implicitly created for a property, subclasses don't have access to the ivar.

#property and #synthesize

I'm very new to Objective C. (Two days now). When read about #synthesize, it seemed to overlap with my understanding #property (which I thought I understood) ... So, some details need to be ironed out in my mind ... it's bugging me.
Please correct me if I'm wrong about differences of #property and #synthesize:
If you declare a #property in your #interface, then you're telling the world that users can expect to use standard getters and setters for that property. Futhermore, XCode will make generic getters and setters for you. ... BUT, To what degree does that happen with the #property declaration? ( I.E. does that mean "completely" ... like unseen declarations for it in your #interface, and also unseen code in your #interface?
-Or-
Does #property take care of the unseen code declarations in your #interface only - whereas #synthesize takes care of the unseen code implementation in your #implementation section? )
First, note that the latest version of Xcode does not require #synthesize at all anymore. You can (and should) just omit it. That said, here's what the pieces do.
#property is a declaration of accessors. It is just a declaration. There is very little difference between the following:
#property (nonatomic, readwrite, strong) NSString *something;
vs.
- (NSString *)something;
- (void)setSomething:(NSString)aSomething;
The main difference is that declaring these methods using #property lets the compiler automatically generate (synthesize) the implementations for you. There is no requirement that you let the compiler do it for you. You are absolutely free to implement something and setSomething: by hand, and it is common to do. But, if you don't implement them by hand, the compiler will automatically create an ivar for you called _something and create a reasonable implementation for the getter and setter.
In older versions of Xcode, you had to explicitly request the auto-generation using the #synthesize keyword. But that is no longer required. Today, the only reason to use #synthesize is if you want the ivar to have a non-standard name (never do that).
A key point here is that the methods something and setSomething: are just methods. There is nothing magical about them. They're not special "property methods." They're just methods that by convention access a piece of state. That piece of state is often stored in an ivar, but does not need to be.
To be even more clear: object.something does not mean "return the ivar named _something from object." It means "return the result of [object something], whatever that does." It is common for that to return the value of an ivar.
You should declare all of your state (internal and external) using #property declarations, and you should avoid directly declaring ivars. You should also always access your properties via their accessors (self.something), except in the init and dealloc methods. In init and dealloc, you should directly use the ivar (_something).
#property declares a property on your class with whatever atomicity and setter semantics you provide.
With Xcode 4.4, autosynthesis is available wherein you are provided with a backing ivar from your property without declaring it in #synthesize. This ivar has the form of _propertyName where your property name is propertyName.
Objective-C #property and #synthesize
#property
generates get/set method
today(from Xcode v4.4 with the LLVM v4.0) #property additionally uses #synthesize inside
#synthesize propertyName = _propertyName
#synthesize:
generates a new iVar or link with existing iVar
generates an implementation of the get/set method with an appropriate iVar
[Case when #synthesize can be used]
#property
#interface SomeClass : NSObject
#property NSString *foo;
#end
//generated code
#interface SomeClass : NSObject
- (NSString *)foo;
- (void)setFoo:(NSString)newFoo;
#end
#synthesize pattern
#synthesize <property_name> = <variable_name>;
//Using
//1. Specify a variable. New variable(variableName) will be generated/linked with existing
#synthesize propertyName = variableName
//if variableName is not exist it generates:
//NSString *variableName;
//read access
NSString *temp = variableName;
//2. Default. New variable(propertyName - the same name as a property) will be generated/linked with existing
#synthesize propertyName
//is the same as
//#synthesize propertyName = propertyName
//if propertyName is not exist it generates:
//NSString *propertyName;
//read access
NSString *temp = propertyName;
//if you specify not-existing <property_name> you get
//Property implementation must have its declaration in interface '<class_name>' or one of its extensions
previously you had to use next syntax:
#interface SomeClass : NSObject
{
//1. declare variable
NSString *_foo;
}
//2. create property
#property NSString *foo;
#end
#implementation SomeClass
//3. link property and iVar
#synthesize foo = _foo;
#end
But today you can use next syntax
#interface SomeClass : NSObject
//1. create property
#property NSString *foo;
#end
Next, the same code, will be generated for both cases
#interface SomeClass : NSObject
{
//variable
NSString *_foo;
}
//getter/setter
- (void)setFoo:(NSString *)newFoo;
- (NSString *)foo;
#end
#implementation SomeClass
- (void)setFoo:(NSString *)newFoo
{
_foo = newFoo;
}
- (NSString *)foo
{
return _foo;
}
#end

Should I always use accessors for instance variables in Objective-C?

If I have a class with some IBOutlets, it seems kind of silly to create accessors for these.
But then I feel like I'm breaking OO practices by not always going through the accessors for instance variables.
I also feel the same way about some instance variables that should not be public, I'd rather not expose the inner workings of some classes. I can make the actual ivars private but the #property shorthand doesn't seem to be able to specify visibility. This leads me to not create accessors and just access the ivars directly. I'm not sure if this is frowned upon though. Is it?
What's the community's thoughts on this admittedly newbie question? (Please ignore dot syntax)
I'm not sure about accessing instance variables directly, I think one shouldn't, but for some variables it just doesn't make sense to use accessors. Like for the IBOutlets you mentioned.
I can only help you out with private accessors. Starting with Objective-C 2.0 you can declare extensions.
Class extensions are like “anonymous”
categories, except that the methods
they declare must be implemented in
the main #implementation block for the
corresponding class.
Just put this extension into a separate header file and you'll have private accessors that aren't visible in the header.
Public/Private
You can declare your iVars as in the #interface file to be readonly, but then re-declare them in a category so that your class can change them. Here's a quick intro to Categories.
An example:
//MyClass.h
#interface MyClass : NSObject {
NSString *name;
}
#property (readonly) NSString *name;
#end
And in the implementation file you can redeclare this:
//MyClass.m
#interface MyClass () //declare the class extension
#property (readwrite, copy) NSString *name; //redeclare the property
#end
#implementation MyClass
#synthesize name;
#end
Now, the name property is readonly external to the class, but can be changed by the class through property syntax or setter/getter syntax.
Really private iVars
If you want to keep iVars really private and only access them directly without going through #property syntax you can declare them with the #private keyword. But then you say "Ah, but they can always get the value outside the class using KVC methods such as setValueForKey:" In which case take a look at the NSKeyValueCoding protocol class method + (BOOL)accessInstanceVariablesDirectly which stops this.
IBOutlets as properties
The recommended way is to use #property and #synthesize. For Mac OS X, you can just declare them as readonly properties. For example:
//MyClass.h
#interface MyClass : NSObject {
NSView *myView;
}
#property (readonly) IBOutlet NSView *myView;
#end
//MyClass.m
#implementation MyClass
#synthesize myView;
#end