Shall I specify setter or not? - oop

Here is an initial specification for a simple Address class. This is a simplification as it ignores complications such as apartments in the same building potentially having the same ‘number’,
e.g. 29a, 29b.
class Address
{
private:
int number;
string name;
string postcode;
public:
//getters implemented but ommited
};
If Address is suppose to served as an utility class (possible future use in other projects by other developers):
//QUESTION
1. For each attribute of Address given in the specification above, state whether it would be appropriate to equip the Address class with a setter method for the corresponding instance variable. Give a brief justification in each case.
Guys this is a question from my assignment so please do not question the way class Address is designed.

Depends on the source of Address. If, say, you read it from a database, then I wouldn't implement setters as you don't want people changing your database values without the correct permissions. If, however, you read this data in from the user, then you will have to account for the fact that users make typos and adjustments or realize they entered their old address or any of that, and you must provide for the changes.

To me that should be an immutable class, with all fields set at construction time, and getters for each.

I think an address should be immutable, as an address itself cannot change. So if a person changes his address, a new object should be attached.
Not sure what "name" means here, if it is a mis-named street or the name of the person.

Should be an immutable class in my pov, with all fields set at construction time, getter for each field.
If you really need to alter the address after construction, think about a setter for the complete set of fields to avoid modification of a single field making the objects data inconsistent.
Depends completely on the use of the object.

Related

Is public variable all that bad?

I've read a lot of articles about "public vs getter/setter", but I still wonder if there is any good part about public variable.
Or the question is:
If you're going to make a new awesome programming languange, are you still going to support public variable and why??
I agree with almost everything that's been said by everyone else, but wanted to add this:
Public isn't automatically bad. Public is bad if you're writing an Object Class. Data Classes are just fine. There's nothing wrong with this class:
public class CommentRecord
{
public int id;
public string comment;
}
... why? Because the class isn't using the variables for anything. It's just a data object - it's meant to be just a simple data repository.
But there's absolutely something wrong with this class:
public class CommentRecord
{
public int id;
public string comment;
public void UpdateInSQL()
{
// code to update the SQL table for the row with commentID = this.id
// and set its UserComment column to this.comment
}
}
... why is this bad? Because it's not a data class. It's a class that actually does stuff with its variables - and because of that, making them public forces the person using the class to know the internals of the class. The person using it needs to know "If I want to update the comment, I have to change the public variable, but not change the id, then call the UpdateInSQL() method." Worse, if they screw up, they use the class in a way it wasn't intended and in a way that'll cause unforseen consequences down the line!
If you want to get some more info on this, take a look at Clean Code by Robert Martin, Chapter 6, on "Data/Object Anti-Symmetry"
A public variable essentially means you have a global accessible/changeable variable within the scope of an object. Is there really a use case for this?
Take this example: you have a class DatabaseQueryHandler which has a variable databaseAccessor. Under what circumstances would you want this variable to be:
Publicly accessible (i.e. gettable)
Publicly settable
Option #1 I can think of a few - you may want to get the last insert ID after an insert operation, you may want to check any errors the last query generated, commit or rollback transactions, etc., and it might make more logical sense to have these methods written in the class DatabaseAccessor than DatabaseQueryHandler.
Option #2 is less desirable, especially if you are doing OOP and abiding by SOLID principles, in particular regards to the ISP and DIP principles. In that case, when would you want to set the variable databaseAccessor in DatabaseQueryHandler? Probably on construction only, and never at any time after that. You probably also want it type-hinted at the interface level as well, so that you can code to interfaces. Also, why would you need an arbitrary object to be able to alter the database accessor? What happens if Foo changes the variable DatabaseQueryHandler->databaseAccessor to be NULL and then Bar tries to call DatabaseQueryHandler->databaseAccessor->beginTransaction()?
I'm just giving one example here, and it is by no means bullet proof. I program in PHP (dodges the hurled rotten fruit) and take OOP and SOLID very seriously given the looseness of the language. I'm sure there will be arguments on both sides of the fence, but I would say that if you're considering using a public class variable, instead consider what actually needs to access it, and how that variable is to be used. In most cases the functionality can be exposed via public methods without allowing unexpected alteration of the variable type.
Simple answer is: yes, they are bad. There are many reasons to that like coupling and unmaintanable code. In practice you should not use them. In OOP the public variable alternative is Singleton, which is considered a bad pracitce. Check out here.
It has a lot to do with encapsulation. You don't want your variable to be accessed anyhow. Other languages like iOS (objective-c) use properties:
#property (nonatomic, strong) NSArray* array;
then the compiler will generate the instance variable with it's getter and setter implicitly. In this case there is no need to use a variable (though other developers still prefer to use variables). You can then make this property public by declaring it in the .h file or private by declaring it in the .m file.

Differences between Function that returns a string and read only string property [duplicate]

I need to expose the "is mapped?" state of an instance of a class. The outcome is determined by a basic check. It is not simply exposing the value of a field. I am unsure as to whether I should use a read-only property or a method.
Read-only property:
public bool IsMapped
{
get
{
return MappedField != null;
}
}
Method:
public bool IsMapped()
{
return MappedField != null;
}
I have read MSDN's Choosing Between Properties and Methods but I am still unsure.
The C# standard says
§ 8.7.4
A property is a member that provides access to a characteristic of an object or a class. Examples of properties include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on. Properties are a natural extension of fields. Both are named members with associated types, and the syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations. Instead, properties have accessors that specify the statements to be executed when their values are read or written.
while as methods are defined as
§ 8.7.3
A method is a member that implements a computation or action that can be performed by an object or class. Methods have a (possibly empty) list of formal parameters, a return value (unless the method’s return-type is void ), and are either static or non-static.
Properties and methods are used to realize encapsulation. Properties encapsulate data, methods encapsulate logic. And this is why you should prefer a read-only property if you are exposing data. In your case there is no logic that modifies the internal state of your object. You want to provide access to a characteristic of an object.
Whether an instance of your object IsMapped or not is a characteristic of your object. It contains a check, but that's why you have properties to access it. Properties can be defined using logic, but they should not expose logic. Just like the example mentioned in the first quote: Imagine the String.Length property. Depending on the implementation, it may be that this property loops through the string and counts the characters. It also does perform an operation, but "from the outside" it just give's an statement over the internal state/characteristics of the object.
I would use the property, because there is no real "doing" (action), no side effects and it's not too complex.
I personally believe that a method should do something or perform some action. You are not performing anything inside IsMapped so it should be a property
I'd go for a property. Mostly because the first senctence on the referenced MSDN-article:
In general, methods represent actions and properties represent data.
In this case it seems pretty clear to me that it should be a property. It's a simple check, no logic, no side effects, no performance impact. It doesn't get much simpler than that check.
Edit:
Please note that if there was any of the above mentioned and you would put it into a method, that method should include a strong verb, not an auxiliary verb like is or has. A method does something. You could name it VerifyMapping or DetermineMappingExistance or something else as long as it starts with a verb.
I think this line in your link is the answer
methods represent actions and properties represent data.
There is no action here, just a piece of data. So it's a Property.
In situations/languages where you have access to both of these constructs, the general divide is as follows:
If the request is for something the object has, use a property (or a field).
If the request is for the result of something the object does, use a method.
A little more specifically, a property is to be used to access, in read and/or write fashion, a data member that is (for consuming purposes) owned by the object exposing the property. Properties are better than fields because the data doesn't have to exist in persistent form all the time (they allow you to be "lazy" about calculation or retrieval of this data value), and they're better than methods for this purpose because you can still use them in code as if they were public fields.
Properties should not, however, result in side effects (with the possible, understandable exception of setting a variable meant to persist the value being returned, avoiding expensive recalculation of a value needed many times); they should, all other things being equal, return a deterministic result (so NextRandomNumber is a bad conceptual choice for a property) and the calculation should not result in the alteration of any state data that would affect other calculations (for instance, getting PropertyA and PropertyB in that order should not return any different result than getting PropertyB and then PropertyA).
A method, OTOH, is conceptually understood as performing some operation and returning the result; in short, it does something, which may extend beyond the scope of computing a return value. Methods, therefore, are to be used when an operation that returns a value has additional side effects. The return value may still be the result of some calculation, but the method may have computed it non-deterministically (GetNextRandomNumber()), or the returned data is in the form of a unique instance of an object, and calling the method again produces a different instance even if it may have the same data (GetCurrentStatus()), or the method may alter state data such that doing exactly the same thing twice in a row produces different results (EncryptDataBlock(); many encryption ciphers work this way by design to ensure encrypting the same data twice in a row produces different ciphertexts).
If at any point you'll need to add parameters in order to get the value, then you need a method. Otherwise you need a property
IMHO , the first read-only property is correct because IsMapped as a Attribute of your object, and you're not performing an action (only an evaluation), but at the end of the day consistancy with your existing codebase probably counts for more than semantics.... unless this is a uni assignment
I'll agree with people here in saying that because it is obtaining data, and has no side-effects, it should be a property.
To expand on that, I'd also accept some side-effects with a setter (but not a getter) if the side-effects made sense to someone "looking at it from the outside".
One way to think about it is that methods are verbs, and properties are adjectives (meanwhile, the objects themselves are nouns, and static objects are abstract nouns).
The only exception to the verb/adjective guideline is that it can make sense to use a method rather than a property when obtaining (or setting) the information in question can be very expensive: Logically, such a feature should probably still be a property, but people are used to thinking of properties as low-impact performance-wise and while there's no real reason why that should always be the case, it could be useful to highlight that GetIsMapped() is relatively heavy perform-wise if it in fact was.
At the level of the running code, there's absolutely no difference between calling a property and calling an equivalent method to get or set; it's all about making life easier for the person writing code that uses it.
I would expect property as it only is returning the detail of a field. On the other hand I would expect
MappedFields[] mf;
public bool IsMapped()
{
mf.All(x => x != null);
}
you should use the property because c# has properties for this reason

What is an instance of a field called?

This might be an odd question, but it has actually caused me some headache.
In Object oriented programming, there are accepted names for key concepts. In our model, we have classes with methods and fields. Now, going to the data world:
An instance of a class is called an object.
An instance of a field is called... what?
A value? Isn't the term value a little broad for this? I have been offered "property" as well, but isn't property also part of the model and not the data?
(This is not purely academic, I am actually coding these concepts.)
Updated: Let me take an example. I have a class "Person" with a field "age". If I create 20 Person instances, each such instance is called an object. So far so good. But let's say I take Person "Igor", and set his age to 20. What is the storage location that contains the number 20 now called? Is it a field, or a value, or something else?
Another update: A quote from Pavel Feldman in this related question describes in different words what I tried to describe above:
"I'd say that in class-based OOP field belongs to class and does not have a value. It is so when you look at reflection in c# or java - class has fields, field has type, name, etc. And you can get value of the field from object. You declare field once, in class. You have many objects with same fields but different values."
A field can't be instantiated. A field can only contain a value. The value can be either a primitive/native type or a reference/pointer to an object instance.
As per your update: if the object represents a real world entitiy, then it's often called property. With a "real world entity" I mean something personal/human, e.g. Person, Product, Order, Car, etc. If the object does not represent something personal/human, e.g. List, String, Map, then it's more often called field. That's just what I've observed as far.
Agree with BalusC. However I think what you are asking is what to call the field of an instantiated object. Remember that an object contains both state (data) and operations (methods) you could refer to an object field as state
A field is a field weather you talk about it in the context of a class, or in the context of an object.
class C {
int i; // i is a field
}
and
obj = new C();
obj.i = 7; // obj.i is a field
As opposed to parameter vs argument there is no distinction in terminology for "instantiated" an "uninstantiated" fields.
An instance of a class is an object, a class may contain fields that point to other instantiated objects (or a null pointer). It makes no sense to say an instance of a field, but rather you might talk about the object to which a particular field points to, which may be different for different instances. Or you may talk about the type of a field (which class it belongs to)
Isn't the answer basically that we have no name for values of fields of an instance of a class (or object)?
It's like giving a name to the value returned by a method of an instance of a class...
I guess "state" is the best answer anyway as suggested "BalusC".

datastructure inside object

I have a simple question about object oriented design but I have some difficulties figuring out what is the best solution. Say that I have an object with some methods and a fairly large amount of properties, perhaps an Employee object. Properties, like FirstName, Address and so on, which indicates a data structure. Then there could be methods on the Employee object, like IsDueForPromotion(), that is more of OO nature.
Mixing this does not feel right to me, I would like to separate the two but I do not know how to do it in a good way. I have been thinking about putting all property data in a struct and have an internal struct object inside the employee object, private EmployeeStruct employeData ...
I am not sure this is a really good idea however, maybe I should just have all methods and proerties in the same class and go with that. Am I making things to complicated if I separate data from methods?
I would very much appreciate if someone have any ideas about this.
J
Wasn't the idea of OO-design to encapsulate data and the corresponding methods together?
The question here is how the Employee object could possibly know about begin due for promotion. I guess that method belongs somewhere else to a class which has the informations to decicde that. really stupid example Manager m = new Manager(); manager.IsDueForPromotion(employeeobject);
But other methods to access the fields of Employee belong to this class.
The question I raised about IsDueForPromotion depends on you application and if your Employee is a POJO or DTO only or if it can have more "intelligent" methods associated too.
if your data evolves slower than behaviour you may want to give a try to Visitor pattern:
class Employee {
String name;
String surName;
int age;
// blah blah
// ...getters
// ...setters
// other boilerplate
void accept(EmployeeVisitor visitor) {
visitor.visitName(name);
visitor.visitAge(age);
// ...
}
}
interface EmployeeVisitor {
void visitName(String name);
void visitAge(int age);
}
with this design you can add new operations without changing the Employee class.
Check also use the specification pattern.
Object operations (methods) are supposed to use the properties. So I feel its better to leave them together.
If it does not require properties, its a kind of utility method and should be defined else ware, may in some helper class.
Well, OO is a way of grouping data and functionality that belong together in the same location. I don't really see why you would make an exception 'when there is a lot of data'. The only reason I can think of is legibility.
Personally I think you would be making things needlessly complex by coming up with a separate struct to hold your data. I'm also conflicted as to wether this would be good practice. On the one hand, how a class implements it's functionality, or stores it's data is supposed to be hidden from the outside world. On the other hand, if data belongs to a class, it feels unnatural to store it in something like a struct.
It may be interesting to look at the data you have and see if it can be modeled into smaller domain objects. For example, have an Address object that holds a street, housenumber, state, zip, country, etc value. That way, your Employee object will just hold an Address object. The Address object could then be reused for your Company objects etc.
The basic principle of Object Oriented programming is grouping data such as FirstName and Address with the functionality that goes with it, such as IsDueForPromotion(). It doesn't matter how much data the object is holding, it will still hold that data. The only time you want to remove data from an object is if it has nothing to do with that object, like storing the company name in the Employee object when it should be stored in a company object.

Modifying setter argument - is it hack or not?

Is it normal to modify setter arguments? Let's imagine that we have setString method. And we really want to keep a trimmed form of the string. So a string with trailing spaces is invalid, but we don't want to throw an exception.
What's the best solution? To trim the value in the setter e.g.
public void setString(String string) {
this.string = string.trim();
}
Or trim it in the caller (more than once) e.g.
object.setString(string.trim());
Or maybe something else?
Yes. After all, setters are designed for these kind of things! To control and sanitize the values written to fields ;)
Totally. Here's an example: suppose you have an engineering programs with different types of measurement units. You keep the internal values in one measurement system, but you convert from all others in the setter, and convert back in the getter, e.g.:
public double UserTemperature
{
get
{
return Units.Instance.ConvertFromSystem(UnitType.Temperature, temperature);
}
set
{
double v = Units.Instance.ConvertToSystem(UnitType.Temperature, value);
if (temperature != v)
{
temperature = v;
Changed("SystemTemperature");
Changed("UserTemperature");
}
}
}
Yes, sure. Just be careful to check for NULL before applying any method (such as trim()).
There are two schools: one says its ok to check param in setter(school style) and second one says beans should not contain any logic and just data(enterprise style).
I believe more in the second one. How often do you look at implementation of your beans? should getUser throw any exception or just return null?
When you put logic in your setter and getters you make it harder to understand whats going on since many people will never look at its implementation. If you disagree I urge you to look at every setter and getter implementation before you use it just to check if its not just a bean.
At first glance it seems like it violates the principle of least astonishment. If I'm a user of your class, I'd expect a setter to do exactly what I tell it to. I'd throw an exception in the setter to force users to trim the input.
The other (better?) alternative is to change the name of the method to trimAndSetString. That way, it's not surprising behavior to trim the input.
Correct me if I'm wrong, but it looks logical to me that the setter should hold this kind of logic.
If the setter is just assigning some value to an internal var without checking it, then why not expose the var itself?
This is exactly why you use setters rather than exposing the objects fields to the whole wide world.
Consider a class that holds an integer angle that's expected to be between 0 and 359 inclusive.
If you expose the field, calling functions can set it to whatever they want and this would break the contract specified by your API. It's also likely to break your functionality somewhere down the track because your code is written to assume a certain range for that variable.
With a setter, there's a number of things you can do. One is to raise an exception to indicate an invalid value was passed but that would be incorrect in my view (for this case). It's likely to be more useful if you modify the input value to something between 0 and 359 such as with:
actualVal = passedValue % 360;
As long as this is specified in your interface (API), it's perfectly valid. In fact, even if you don't specify it, you're still free to do whatever you want since the caller has violated the contract (by passing a value outside of range). I tend to follow the rule of "sanitize your input as soon as possible".
In your specific case, as long as you specify that the string is stored in trimmed format, there's no reason for callers to complain (you've already stated that such a string is invalid). It's better in terms of code size (not speed) to do it in the setter rather than at every piece of code that calls the setter. It also guarantees that the string is stored as you expect it to be - there's no guarantee a caller won't accidentally (or purposefully) store a non-trimmed string.
Yes. It is a feature of object oriented design is that the caller can treat your class as a black box. What you do inside is your own business, as long as the behavior of the interface is documented and logical.
While different people have different philosophies, I would suggest that property setters are only appropriate in cases where they will set an aspect of the object's state to match the indicated value and perhaps possibly notify anyone that cares about the change, but will not otherwise affect the object's state (it is entirely proper for a property setter to change the value of a read-only property if that property is defined in terms of the state associated with the property setter; for example, a control's read-only Right property may be defined in terms of its Bounds). Property setters should throw an exception if they cannot perform the indicated operation.
If one wishes allow a client to modify an object's state in some fashion not meeting the above description, one should use a method rather than a property. If one calls Foo.SetAngle(500) it would be reasonably expected that the method will use the indicated parameter in setting the angle, but the Angle property might not return the angle in the same form as it was set (e.g. it might return 140). On the other hand, if Angle is a read-write property, one would expect that writing a value of 500 would either be forbidden or else would cause the value to read back 500. If one wanted to have the object store an angle in the range 0 to 359, the object could also have a read-only property called BaseAngle which will always return an angle in that form.