Related
Fairly early on in my app, when I was a lot less experienced than I am now, I wanted to spice up some transitions between view controllers with my own custom animations. Having no idea where to start, I looked around SO for a pattern like MVC that could be accessed from nearly any controller at any time, and as it turns out, a singleton was the way to go.
What I didn't realize is that there seems to be a strong and well-defended hatred of the singleton pattern, and I myself am starting to see why, but that is beside the point.
So, a while later, I decided to move my very same implementation into a category on UINavigationController (after all, it handles transitions!), kept the original classes around for comparison, and am wondering which method would work best. Having thoroughly tested both implementations, I can say without a doubt that they are equal in every way, including speed, accuracy, smoothness, frame-rate, memory usage, etc. so which one is 'better' in the sense of overall maintainability?
EDIT: after reading the well-written arguments you all have made, I have decided to use a singleton. #JustinXXVII has made the most convincing argument (IMHO), although I consider every answer here equally worthy of merit. Thank you all for your opinions, I have upvoted all answers in the question.
I believe the best option is use the category.
Because if you are already using UINavigationController, do not make sense create a new class that will only manage the transition, like you told: (after all, it handles transitions!)
This will be a better option to maintain your code, and you will be sure that the thing do what they expect to do, and if you already have an instance that do the transitions, why create another?
The design patterns, like singleton, factory, and others, need to be used with responsibility. In your case, I do not see why use a singleton, you use it only to no instantiate new objects, you do not really need to have only one instance of it, but you do it because you want only one.
I'll make the case for a singleton object. Singletons are used all over UIKit and iOS. One thing you can't do with categories is add instance variables. There are two things about this:
MVC workflows don't tolerate objects with intimate knowledge of other objects
Sometimes you just need a place to reference an object that doesn't really belong anywhere else
These things go against each other, but the added ability to be able to keep an instance variable that doesn't really have an "owner" is why I favor the singleton.
I usually have one singleton class in all of my XCode projects, which is used to store "global" objects and do mundane things that I don't want to burden my AppDelegate with.
An example would be serializing/archiving objects and unarchiving/restoring. I have to use the same method throughout several classes, I don't want to extend UIViewController with some serializing method to write and read arbitrary files. Maybe it's just my personal preference.
I also might need a quick way to lookup information in NSUserDefaults but not want to always be writing [[NSUserDefaults standardUserDefaults]stringForKey:#"blah"], so I will just declare a method in my singleton that takes a string argument.
Until now i've not really thought too much about using a category for these things. One thing is sure though, I'd rather not be instantiating a new object a hundred times to do the same task when I can have just one living object that sticks around and will take care of stuff for me. (Without burdening the AppDelegate)
I think that the real question is in "design" (as you said, both codes work fine), and by writing down your problem in simple sentences, you will find your answer :
singleton's purpose is to have only one instance of a class running in your app. So you can share things between objects. (one available to many objects)
category purpose is to extend the methods available to a class. (available to one class of objects only ! ok...objects from subclasses too)
what you really want is to make a new transition available to UINavigationController class. UINavigationController, which has already some method available to change view (present modal views, addsubviews, etc.) is built to manage views with transitions (you said it yourself, it handles transitions), all you want to do is adding another way of handling transitions for your navigation controllers thus you would preferably use a category.
My opinion is that what you want to achieve is covered by the category and by doing this you ensure that the only objects which are accessing this method are entitled to use it. With the singleton pattern, any object of any class could call your singleton and its methods (and... it could work nobody knowing how for an OS version n but your app could be broken in n+1 version).
In this implementation, for which there is no need to use a Singleton, there may be no difference at all. That doesn't mean that there isn't one.
A plastic bucket holds as much water as a metal bucket does, and it does it just as well. In that aspect there seems to be no difference between the two. However, if you try to transport something extremely hot, the plastic bucket might not do the job so well..
What I'm trying to say is, they both serve their purposes but in your case there seemed to be no difference because the task was too generic. You wanted a method that was available from multiple classes, and both solutions can do that.
In your case, however, it might be a whole of a lot simpler to use a Category. The implementation is easier and you (possibly) need less code.
But if you were to create a data manager that holds an array of objects that you ONLY want available at one place, a Category will not be up to the task. That's a typical Singleton task.
Singeltons are single-instance objects (and if made static, available from nearly everywhere). Categories are extensions to your existing classes and limited to the class it extends.
To answer your question; choose a Category.
*A subclass might also work, but has its own pros and cons
Why don't you simply create a base UIViewController subclass and extend all of your view controllers from this object? A category doesn't make sense for this purpose.
Singletons, as the name suggests, has to be used when there is a need to be exactly one object in your application. The pattern for the accessor method ensures only this requirement being a class method:
+ (MyClass*) sharedInstance
{
static MyClass *instance = nil;
if (instance == nil) instance = [[MyClass alloc] init];
return instance;
}
If implemented well, the class also ensures that its constructor is private thus nobody else can instantiate the class but the accessor method: this ensures that at any time at most one instance of the class exists. The best example of such class is UIApplication since at any time there might be only one object of this class.
The point here is that this is the only requirement towards singleton. The role of the accessor method is to ensure that there is only one instance, and not that it would provide access to that instance from everywhere. It is only a side effect of the pattern that, the accessor method being static, everybody can access this single object without having a reference (pointer) to it a priori. Unfortunately this fact is widely abused by Objective C programmers and this leads to messed up design and the hatred towards singleton pattern you mentioned. But all in all it is not the fault the singleton patter but the misuse of their accessor method.
Now turning back to your question: if you don't need static / global variables in your custom transition code (I guess you don't) then the answer is definitely go for categories. In C++ you would subclass from some parent BaseTransition class and implement your actual drawing methods. Objective C has categories (that in my opinion is another way that easily messes up the design, but they are much more convenient) where you can add custom functionality even accessing the variables of your host class. Use them whenever you can redeem singletons with them and don't use singletons when the main requirement towards your class is not that it would be only one instance of it.
I wanted to ask you all for you opinions on code smells in Objective C, specifically Cocoa Touch. I'm working on a fairly complex game, and about to start the Great December Refactoring.
A good number of my classes, the models in particular, are full of methods that deal with internal business logic; I'll be hiding these in a private category, in my war against massive header files. Those private categories contain a large number of declarations, and this makes me feel uneasy... almost like Objective-C's out to make me feel guilty about all of these methods.
The more I refactor (a good thing!), the more I have to maintain all this duplication (not so good). It just feels wrong.
In a language like Ruby, the community puts a LOT of emphasis on very short, clear, beautiful methods. My question is, for Objective C (Cocoa Touch specifically), how long are your methods, how big are your controllers, and how many methods per class do you all find becomes typical in your projects? Are there any particularly nice, beautiful examples of Classes made up of short methods in Objective C, or is that simply not an important part of the language's culture?
DISCLOSURE: I'm currently reading "The Little Schemer", which should explain my sadness, re: Objective C.
Beauty is subjective. For me, an Objective-C class is beautiful if it is readable (I know what it is supposed to do) and maintainable (I can see what parts are responsible for doing what). I also don't like to be thrown out of reading code by an unfamiliar idiom. Sort of like when you are reading a book and you read something that takes you out of the immersion and reminds you that you are reading.
You'll probably get lots of different, mutually exclusive advice, but here are my thoughts.
Nothing wrong with private methods being in a private category. That's what it is there for. If you don't like the declarations clogging up the file either use code folding in the IDE, or have your extensions as a category in a different file.
Group related methods together and mark them with #pragma mark statements
Whatever code layout you use, consistency is important. Take a few minutes and write your own guidelines (here are mine) so if you forget what you are supposed to be doing you have a reference.
The controller doesn't have to be the delegate and datasource you can always have other classes for these.
Use descriptive names for methods and properties. Yes, you may document them, but you can't see documentation when Xcode applies code completion, where well named methods and properties pay off. Also, code comments get stale if they aren't updated while the code itself changes.
Don't try and write clever code. You might think that it's better to chain a sequence of method calls on one line, but the compiler is better at optimising than you might think. It's okay to use temporary variables to hold values (mostly these are just pointers anyway, so relatively small) if it improves readability. Write code for humans to read.
DRY applies to Objective-C as much as other languages. Don't be worried about refactoring code into more methods. There is nothing wrong with having lots of methods as long as they are useful.
The very first thing I do even before implementing class or method is to ask: "How would I want to use this from the outside?"
I never ever, never begin by writing the internals of my classes and methods first. By starting of with an elegant public API the internals tend to become elegant for free, and if they don't then the ugliness is at least contained to a single method or class, and not allowed to pollute the rest of the code with it's smell.
There are many design patterns out there, two decades of coding have taught me that the only pattern that stand the test of time is: KISS. Keep It Simple Stupid.
Some general rules of thumb, for any language or environment:
Follow your gut feeling over any advice you have read or heard!
Bail out early!
If needed, verify inputs early and bail out fast! Less cleanup to do.
Never add something to your code that you do not use.
An option for "reverse" might feel like something nice to have down the road.
In that case add it down the road! Do not waste time adding complexity you do not need.
Method names should describe what is done, never how it is done.
Methods should be allowed to change their implementation without changing their name as long as the result is the same.
If you can not understand what a method does from it's name then change the name!
If the how part is complex enough, then use comments to describe your implementation.
Do not fear the singletons!
If your app only have one data model, then it is a singleton!
Passing around a single variable all over the place is just pretending it is something else but a singleton and adding complexity as bonus.
Plan for failures from the start.
Always use for doFoo:error instead of doFoo: from the start.
Create nice NSError instances with end user readable localized descriptions from the start.
It is a major pain to retrofit error handling/messages to a large existing app.
And there will always be errors if you have users and IO involved!
Cocoa/Objective-C is Object* Oriented, not **Class Oriented as most of the popular kids out there that claim to be OOP.
Do not introduce a dumb value class with only properties, a class without methods performing actual work could just as well be a struct.
Let your objects be intelligent! Why add a whole new FooParser class if a fooFromString: method on Foo is all you need?
In Cocoa what you can do is always more important than what you are.
Do not introduce a protocol if a target/action can do.
Do not verify that instances conforms to protocols, is a kind of class, that is up to the compiler.
My 2 cents:
Properties are usually better than old-style getter+setter. Even if you use #dynamic properties - declare them with #property, this is way more informative and shorter.
I personally don't simulate "private" methods for classes. Yes, I can write a category somewhere in the .m(m) file, but since Obj-C has no pure way to declare a private method - why should I invent one? Anyway, even if you really need something like that - declare a separate "MyClassPrivate.h" with a category and include it in the .m(m) files to avoid duplicating the declarations.
Binding. Binding for most Controller <-> UI relations, use transformers, formatters, just don't write methods to read/write controls values manually. It makes code look like something from MFC era.
C++, a lot of code look much better and shorter when written in C++. Since compiler understands C++ classes it's a good point for refactoring, especially when working will a low-level code.
I usually split big controllers. Something more than 500 lines of code is a good candidate for refactoring for me. For instance, I have a document window controller, since some version of the app it extends with image importing/exporting options. Controller grows up to 1.000 lines where 1/2 is the "image stuff". That's a "trigger" for me to make an ImageStuffController, instantiate it in the NIB and put all image-relative code in there.
All above make it easier for me to maintain my code. For a huge projects, where splitting the controllers and classes to keep 'em small results big number of files, I usually try to extract some code into a framework. For example, if a big part of the app is communicating with external web-services, there is usually a straight way to extract a MyWebServices.framework from the main app.
I'm trying to create a subclass of NSCoder, but I really don't know where to start. Apple's documentation lists which methods are required, but not much else. Maybe my Google-fu is weak, but I can't find any examples of an implementation of, e.g. encodeValueOfObjCType:at:, anywhere. (Though I assume it involves a lot of cases.)
Anyone know of a sample subclass of NSCoder I can look at, or have an idea of what a case or two of encodeValueOfObjCType:at: and decodeValueOfObjCType:at: should look like?
I just open-sourced a NSCoder subclass here
It basically is a replica of the deprecated NSArchiver.
Should get anyone who stumble into this question started.
I've also been wanting to (ab)use NSCoder to generate simpler XML than what NSKeyedArchiver produces and have implemented some classes for it. The classes are called RWPlainXMLTreeEncoder and RWPlainXMLTreeDecoder, and I've written some test code for them too.
RWPlainXMLTreeEncoder assumes that the object graph you're encoding is a tree (in case the same object is encoded twice, the decoded tree will contain two different copies instead of one shared copy; if you try to encode a cyclic graph it raises an exception). Per encoded object it generates an XML element that looks roughly like the one for this example, an encoding of an array containing the string "A string":
<ROOT type="#NSArray"><NS.object.0 type="#NSString"><NS.bytes>4120737472696E67</NS.bytes></NS.object.0></ROOT>
I wanted to further improve the above by using a different method instead of the object's own encodeWithCoder: for objects such as arrays and strings, so that the above would become:
<ROOT type="array"><item.0 type="string">A string</item.0></array></ROOT>
I'm however not sure if I will continue working on this. My overall goal was to have a fairly generic, simple way of saving an object tree to a file that leverages of the encodeWithCoder: methods I've already written, while producing a file that is not as Cocoa-dependent as when using NSKeyedArchiver. This would allow others to write applications that open those files on other platforms.
But I've now come to understand there have been similar efforts which may already be more advanced anyway, and furthermore, with XML being a document markup language it may not be the best target format and some non-markup language might be better suited.
Nevertheless, if you want to continue with this or have some other reason to look at a fairly simple NSCoder subclass, feel free to use my code. You could also take a look at MAKeyedArchiver. Oh, and my code is covered by a BSD-style license (at least the version that is in SVN revision 424 is, I might change this for future versions). Improvements and feedback are welcomed.
Is there any way to discover at runtime which subclasses exist of a given class?
Edit: From the answers so far I think I need to clarify a bit more what I am trying to do. I am aware that this is not a common practice in Cocoa, and that it may come with some caveats.
I am writing a parser using the dynamic creation pattern. (See the book Cocoa Design Patterns by Buck and Yacktman, chapter 5.) Basically, the parser instance processes a stack, and instantiates objects that know how to perform certain calculations.
If I can get all the subclasses of the MYCommand class, I can, for example, provide the user with a list of available commands. Also, in the example from chapter 5, the parser has an substitution dictionary so operators like +, -, * and / can be used. (They are mapped to MYAddCommand, etc.) To me it seemed this information belonged in the MyCommand subclass, not the parser instance as it kinda defeats the idea of dynamic creation.
Not directly, no. You can however get a list of all classes registered with the runtime as well as query those classes for their direct superclass. Keep in mind that this doesn't allow you to find all ancestors for the class up the inheritance tree, just the immediate superclass.
You can use objc_getClassList() to get the list of Class objects registered with the runtime. Then you can loop over that array and call [NSObject superclass] on those Class objects to get their superclass' Class object. If for some reason your classes do not use NSObject as their root class, you can use class_getSuperclass() instead.
I should mention as well that you might be thinking about your application's design incorrectly if you feel it is necessary to do this kind of discovery. Most likely there is another, more conventional way to do what you are trying to accomplish that doesn't involve introspecting on the Objective-C runtime.
Rather than try to automatically register all the subclasses of MYCommand, why not split the problem in two?
First, provide API for registering a class, something like +[MYCommand registerClass:].
Then, create code in MYCommand that means any subclasses will automatically register themselves. Something like:
#implementation MYCommand
+ (void)load
{
[MYCommand registerClass:self];
}
#end
Marc and bbum hit it on the money. This is usually not a good idea.
However, we have code on our CocoaHeads wiki that does this: http://cocoaheads.byu.edu/wiki/getting-all-subclasses
Another approach was just published by Matt Gallagher on his blog.
There's code in my runtime browser project here that includes a -subclassNamesForClass: method. See the RuntimeReporter.[hm] files.
Hi I'm writing this question because I'm a newbie in ObjC and a lot of doubts came to my mind when trying to make my fist training app. The thing is that I have a strong background in C, I've been programming in Java for the last year and I've done some collage stuff with Smalltalk (I mencione this because those are my programming references and those are the languages I'm comparing ObjC with).
The first problem I've encountered is that I don't know where to draw a line between ObjC and C, for example when dealing with math operations, Should I use math.h or there is a more "object-way" like you can do in Smalltalk (aNumber raisedTo: 3) ? How does a person with no background at all in C learns ObjC?.
Another thing that I couldn't find was a collection's protocol (I've looked over the Foundation Framework documentation given by Apple). Because I want to implement an expresion tree class and I wanna know if there are methods that all collections should implement (like in Smalltalk or Java) or I gotta check by hand every collection and see if there is a cool method that my new collection should have.
I don't know if I'm being too stupid or I'm searching for features that the language/framework doesn't have. I want to program in ObjC with the ObjC style not thinking in C, Java or Smalltalk.
Sorry if the question was too long.
Absolutely use <math.h>. You don't way to pay message sending overhead for functions that run in 30 cycles. Even function call overhead seems pretty steep at that point.
More generally, use as much or as little of C-style as you want to. I've seen Objective-C that was nothing but a couple C modules glued together with objective C messages, and I've seen Objective-C that essentially zero lines of code without the square brackets. I've seen beautiful, effective code written both ways. Good code is good code, however you write it.
In general, you'll use C features for numerical calculations. You'll generally use objects for most other things. The reason for this is that objects are way heavier than a simple scalar — there's just no benefit to it. Why would you ever write [[NSNumber numberWithInteger:1] numberByAddingNumber:[NSNumber numberWithInteger:2]] when you can just write 1+2? It's not only painful to read, it's far slower and it doesn't gain you anything.
On the other hand, Cocoa has rich object libraries for strings, arrays, networking and many other areas, and using those is a big win.
Knowing what's there — and thus what the easiest way to do something is — is just a matter of learning. If you think something should be there and you can't find it, you can ask either here or on Apple's Cocoa-Dev mailing list.
As for a collection protocol — there really isn't one. The closest thing to it is the NSFastEnumeration protocol, which defines precisely one method: countByEnumeratingWithState:objects:count:. This lets you use the for (id someObject in someCollection) syntax to enumerate the objects in a collection. Otherwise, all the collections define their own independent interfaces.
The first problem I've encountered is that I don't know where to draw a line between ObjC and C.
My rule is to use C wherever it makes sense to you. Objective-C has the benefit of letting you choose when to be procedural and when to be object-oriented. Go with what fits best with the code you're writing.
Another thing that I couldn't find was a collection's protocol [...] I want to implement an expresion tree class and I wanna know if there are methods that all collections should implement (like in Java) or I gotta check by hand every collection and see if there is a method that my collection should have.
Unlike Java, Objective-C does not have a master protocol for collections like the java.util.Collection interface. Also, there aren't a proliferation of specific container implementations as in Java. However, that gives you the freedom to implement a collection in a way that makes sense for your code.
For building a tree-like structure, you might take a look at NSTreeNode to see if it might be useful to leverage. (It may be more than you're need or want, but might be worth a shot.)
As far as rolling your own collection, I've learned a lot while creating CHDataStructures.framework, and you're welcome to use whatever you like from that code, or just look at my attempts at creating Cocoa-like structures, designed to complement the Foundation collections and operate similarly. Good luck!
Try to use each language for what it's good at. IMHO, this would include Obj-C objects but C-like code implementing methods. So use math.h and concise C code to implement logic, but don't be shy about using Obj-C classes to organize your larger blocks of functionality into something that makes sense.
Also, try to interact with the frameworks using their style so you're not running upstream.
As has been mentioned, there’s no real protocol for abstract collection classes (aside from the NSFastEnumeration protocol which provides the for(id item in collection) syntax when implemented), but there are conventions to follow.
Apple’s Introduction to Coding Guidelines for Cocoa covers some of this, and there is in fact a section on naming collection methods which covers the general cases (though note that generic container classes such as NSArray use the term “Object” as opposed to “Element” listed in the examples there – i.e. addObject:, removeObject:, and so on).
Following the patterns listed here (among others) is actually crucial when you want your classes to be KVC-compliant, which allows other users to observe changes in your object’s properties.