Sample (preferably simple) subclass of NSCoder? - objective-c

I'm trying to create a subclass of NSCoder, but I really don't know where to start. Apple's documentation lists which methods are required, but not much else. Maybe my Google-fu is weak, but I can't find any examples of an implementation of, e.g. encodeValueOfObjCType:at:, anywhere. (Though I assume it involves a lot of cases.)
Anyone know of a sample subclass of NSCoder I can look at, or have an idea of what a case or two of encodeValueOfObjCType:at: and decodeValueOfObjCType:at: should look like?

I just open-sourced a NSCoder subclass here
It basically is a replica of the deprecated NSArchiver.
Should get anyone who stumble into this question started.

I've also been wanting to (ab)use NSCoder to generate simpler XML than what NSKeyedArchiver produces and have implemented some classes for it. The classes are called RWPlainXMLTreeEncoder and RWPlainXMLTreeDecoder, and I've written some test code for them too.
RWPlainXMLTreeEncoder assumes that the object graph you're encoding is a tree (in case the same object is encoded twice, the decoded tree will contain two different copies instead of one shared copy; if you try to encode a cyclic graph it raises an exception). Per encoded object it generates an XML element that looks roughly like the one for this example, an encoding of an array containing the string "A string":
<ROOT type="#NSArray"><NS.object.0 type="#NSString"><NS.bytes>4120737472696E67</NS.bytes></NS.object.0></ROOT>
I wanted to further improve the above by using a different method instead of the object's own encodeWithCoder: for objects such as arrays and strings, so that the above would become:
<ROOT type="array"><item.0 type="string">A string</item.0></array></ROOT>
I'm however not sure if I will continue working on this. My overall goal was to have a fairly generic, simple way of saving an object tree to a file that leverages of the encodeWithCoder: methods I've already written, while producing a file that is not as Cocoa-dependent as when using NSKeyedArchiver. This would allow others to write applications that open those files on other platforms.
But I've now come to understand there have been similar efforts which may already be more advanced anyway, and furthermore, with XML being a document markup language it may not be the best target format and some non-markup language might be better suited.
Nevertheless, if you want to continue with this or have some other reason to look at a fairly simple NSCoder subclass, feel free to use my code. You could also take a look at MAKeyedArchiver. Oh, and my code is covered by a BSD-style license (at least the version that is in SVN revision 424 is, I might change this for future versions). Improvements and feedback are welcomed.

Related

What's the point of creating classes at runtime in Objective-C?

I've recently reread the interesting tutorial from Mike Ash about How to create classes at Objective-C Runtime
I has been a long time I am wondering where to apply this powerful feature of the language. I always see an overkill solution to most of the ideas that come to my mind, and I eventually proceed with NSDictionary. What are your cases of use of creating classes at runtime? The only one I see is an Obj-C interpreter... More ideas?
There's some possible options I see, when someone need to create class in runtime
To hide information about it (It won't help in most cases, but... you can)
To perform multiple-inheritance (If you really need it :)
Using your own language(i.e. some XML-like), that can be interpreted by your program, writted in Obj-C (Something like NSProxy, but even better.)
Creating some Dynamic-Class that can change it's behavior in runtime
In general.. There is some possible usages of this. But in real world, in default service applications there's no need to do this, actually:)
It could be used for example along Core Data or any API related to a database to create new classes of objects unknown at compilation time. However, I doubt this is used often, it's mostly the mechanism the system uses itself when it runs a program...
KVO, in the Cocoa frameworks, is implemented by dynamically creating "notifying" versions of your classes. See http://www.mikeash.com/pyblog/friday-qa-2009-01-23.html

Data provider calling a delegate: specifics or generic?

I have a XML parser which will parse 17 different XML documents (I'm simplifying this).
When the parser has finished its job, it calls the object that did the request.
First way
A single method that looks like
- (void)didReceiveObject:(NSObject *)object ofType:(MyObjectType)type
with MyObjectType being an enum.
In this method, I check the type and redirect the object to the corresponding method.
Second way
There is a callback method for each of the 17 types of object I can receive.
- (void)didReceiveFoo:(MYFoo *)foo
- (void)didReceiveBar:(MYBar *)bar
... and so on
Which way of using delegates will be better?
We had a discussion about this with a colleague and couldn't find one way more appealing than another. It seems like it's just deciding what method to call from the parser or within the delegate....
Even when thinking about adding future methods/delegates callbacks, we don't see any real problem.
Is one of these ways better than the other? Is there another way?
Why not go with
- (void)didReceiveObject:(NSObject *)object
and then inspect the class type?
This seems cleaner and more extensible to me, because it means you can parse other objects in the future without adding more callbacks.
(I know this is the same as option one, but I wanted to point out that your second argument was unnecessary.)
First method:
Pros:
More flexible to future changes.
Cons:
May result in a large switch statement or messy if ... else if ... else statement.
Probably results in a series of explicit methods anyway.
Requires type cast.
Second method:
Pros:
No type casting.
If methods are optional, delegate is only bothered with the objects it's interested in.
Cons:
If methods are not optional and the interface is expanded later, all delegates will have warnings until the new methods are implemented.
If methods are not optional, this can be a lot of methods to implement for every delegate.
Generally when building delegate interfaces I lean towards generics for future extensibility. Changing an API, especially with open source code, can be very difficult. Also, I don't quite understand why you have one XML parser doing so much. You may want to consider a different design. 17 different XML documents seems like a lot. That aside, I'll propose a third method.
Third method:
Create a dictionary that maps strings to blocks. The blocks would probably be of type void(^BlockName)(id obj). Your parser would define a series of strings that will be the keys for your various blocks. For example,
NSString * const kFooKey = #"FooKey";
NSString * const kBarKey = #"BarKey";
// And so on...
Whoever creates the XML parser would register a block for each key they are interested in. They only need to register for the keys they are interested in and it's completely flexible to future change. Since you are registering for explicit keys/objects, you can assert the passed in type without a type cast (essentially Design By Contract). This might be over kill for what you want, but I've found similar designs very beneficial in my code. It combines the pros of both of your solutions. It's main downfall is if you want to use an SDK that doesn't have blocks. However, blocks are becoming a de facto standard with Objective-C.
On top of this you may want to define a protocol that encompasses the common functionality of your 17 objects, if you haven't done so already. This would change your block type to void(^BlockName)(id<YourProtocol> obj).
Here's the decision.
We will implement both and see which way is the more used.
The first way is the easiest and fastest so we will keep it for internal needs.
But we may be shipping this code as a static library so we want to give the minimal amount of information. So we will also stick with the with the second way.
As there should be a big chunk of code for each callback, the generic way will certainly be the big switch statement rbrown pointed.
Thank you for your help.

Making Objective-C Classes look Beautiful

I wanted to ask you all for you opinions on code smells in Objective C, specifically Cocoa Touch. I'm working on a fairly complex game, and about to start the Great December Refactoring.
A good number of my classes, the models in particular, are full of methods that deal with internal business logic; I'll be hiding these in a private category, in my war against massive header files. Those private categories contain a large number of declarations, and this makes me feel uneasy... almost like Objective-C's out to make me feel guilty about all of these methods.
The more I refactor (a good thing!), the more I have to maintain all this duplication (not so good). It just feels wrong.
In a language like Ruby, the community puts a LOT of emphasis on very short, clear, beautiful methods. My question is, for Objective C (Cocoa Touch specifically), how long are your methods, how big are your controllers, and how many methods per class do you all find becomes typical in your projects? Are there any particularly nice, beautiful examples of Classes made up of short methods in Objective C, or is that simply not an important part of the language's culture?
DISCLOSURE: I'm currently reading "The Little Schemer", which should explain my sadness, re: Objective C.
Beauty is subjective. For me, an Objective-C class is beautiful if it is readable (I know what it is supposed to do) and maintainable (I can see what parts are responsible for doing what). I also don't like to be thrown out of reading code by an unfamiliar idiom. Sort of like when you are reading a book and you read something that takes you out of the immersion and reminds you that you are reading.
You'll probably get lots of different, mutually exclusive advice, but here are my thoughts.
Nothing wrong with private methods being in a private category. That's what it is there for. If you don't like the declarations clogging up the file either use code folding in the IDE, or have your extensions as a category in a different file.
Group related methods together and mark them with #pragma mark statements
Whatever code layout you use, consistency is important. Take a few minutes and write your own guidelines (here are mine) so if you forget what you are supposed to be doing you have a reference.
The controller doesn't have to be the delegate and datasource you can always have other classes for these.
Use descriptive names for methods and properties. Yes, you may document them, but you can't see documentation when Xcode applies code completion, where well named methods and properties pay off. Also, code comments get stale if they aren't updated while the code itself changes.
Don't try and write clever code. You might think that it's better to chain a sequence of method calls on one line, but the compiler is better at optimising than you might think. It's okay to use temporary variables to hold values (mostly these are just pointers anyway, so relatively small) if it improves readability. Write code for humans to read.
DRY applies to Objective-C as much as other languages. Don't be worried about refactoring code into more methods. There is nothing wrong with having lots of methods as long as they are useful.
The very first thing I do even before implementing class or method is to ask: "How would I want to use this from the outside?"
I never ever, never begin by writing the internals of my classes and methods first. By starting of with an elegant public API the internals tend to become elegant for free, and if they don't then the ugliness is at least contained to a single method or class, and not allowed to pollute the rest of the code with it's smell.
There are many design patterns out there, two decades of coding have taught me that the only pattern that stand the test of time is: KISS. Keep It Simple Stupid.
Some general rules of thumb, for any language or environment:
Follow your gut feeling over any advice you have read or heard!
Bail out early!
If needed, verify inputs early and bail out fast! Less cleanup to do.
Never add something to your code that you do not use.
An option for "reverse" might feel like something nice to have down the road.
In that case add it down the road! Do not waste time adding complexity you do not need.
Method names should describe what is done, never how it is done.
Methods should be allowed to change their implementation without changing their name as long as the result is the same.
If you can not understand what a method does from it's name then change the name!
If the how part is complex enough, then use comments to describe your implementation.
Do not fear the singletons!
If your app only have one data model, then it is a singleton!
Passing around a single variable all over the place is just pretending it is something else but a singleton and adding complexity as bonus.
Plan for failures from the start.
Always use for doFoo:error instead of doFoo: from the start.
Create nice NSError instances with end user readable localized descriptions from the start.
It is a major pain to retrofit error handling/messages to a large existing app.
And there will always be errors if you have users and IO involved!
Cocoa/Objective-C is Object* Oriented, not **Class Oriented as most of the popular kids out there that claim to be OOP.
Do not introduce a dumb value class with only properties, a class without methods performing actual work could just as well be a struct.
Let your objects be intelligent! Why add a whole new FooParser class if a fooFromString: method on Foo is all you need?
In Cocoa what you can do is always more important than what you are.
Do not introduce a protocol if a target/action can do.
Do not verify that instances conforms to protocols, is a kind of class, that is up to the compiler.
My 2 cents:
Properties are usually better than old-style getter+setter. Even if you use #dynamic properties - declare them with #property, this is way more informative and shorter.
I personally don't simulate "private" methods for classes. Yes, I can write a category somewhere in the .m(m) file, but since Obj-C has no pure way to declare a private method - why should I invent one? Anyway, even if you really need something like that - declare a separate "MyClassPrivate.h" with a category and include it in the .m(m) files to avoid duplicating the declarations.
Binding. Binding for most Controller <-> UI relations, use transformers, formatters, just don't write methods to read/write controls values manually. It makes code look like something from MFC era.
C++, a lot of code look much better and shorter when written in C++. Since compiler understands C++ classes it's a good point for refactoring, especially when working will a low-level code.
I usually split big controllers. Something more than 500 lines of code is a good candidate for refactoring for me. For instance, I have a document window controller, since some version of the app it extends with image importing/exporting options. Controller grows up to 1.000 lines where 1/2 is the "image stuff". That's a "trigger" for me to make an ImageStuffController, instantiate it in the NIB and put all image-relative code in there.
All above make it easier for me to maintain my code. For a huge projects, where splitting the controllers and classes to keep 'em small results big number of files, I usually try to extract some code into a framework. For example, if a big part of the app is communicating with external web-services, there is usually a straight way to extract a MyWebServices.framework from the main app.

NSCoding and ostream

Is there a better way to serialize an ObjC object than using /NSKeyedArchive?
I need to distribute the object through a C++ std:ostream-like object to put on another computer.
The object has over 122 members of various types... for which wants me to
[coder encodeObject: (id) forKey: #"blah"];
for all of them...
Does anyone have a nice Perl Script that will at least write it out? I don't even know if the objects it contains implement which means this could turn into a huge ugly mess since I can't change the source of the object - I'll have to inherit & add the #interface to it...
Or am I being dumb? Apple's guide doesn't help me since archiving to XML won't pass nicely though the ostream.
Is there a better way to do this?
-S!
[Edit 1]
So I've looked at NSCoding, and my classes contain generic NSManagedObjects... which don't conform to <NSCoding>. I've tried using the Aspect Oriented Programing found [here][2] - but this leads to an infinite recursion at runtime. (at least that's what I assume a call stack of 104795 calls to [id encodeWithCoder:] are.
Plus, I can't just add <NSCoding> to the class as I'm loading as its members are objects of an imported framework. I can't just add the protocol to it, which is why I thought the Aspect-Oriented stuff would work.
The last (and terrible) Idea that I have is to subclass every class I need, and implement the protocols there. A huge roadblock I can forsee is if the classes include NSArrays of Classes not exposed in the framework. Then I'm sunk.
Is there a better way to do this? I feel like is a design-time decision, and it's too late now to be adding this capability.
help...
PS
this whole anti-spam thing with limiting links suck. How am I supposed to ask intelligent questions!?
[2]:
http:/ /davedelong.com/blog/2009/04/13/aspect-oriented-programming-objective-c#comment-803
Using NSCoding is definitely the right way to go. If you don't want to type all the NSCoding-related boilerplate (and I agree, it's a pain), take a look at Accessorizer which can write it for you.

Too much C-Style in Objective-C programs?

Hi I'm writing this question because I'm a newbie in ObjC and a lot of doubts came to my mind when trying to make my fist training app. The thing is that I have a strong background in C, I've been programming in Java for the last year and I've done some collage stuff with Smalltalk (I mencione this because those are my programming references and those are the languages I'm comparing ObjC with).
The first problem I've encountered is that I don't know where to draw a line between ObjC and C, for example when dealing with math operations, Should I use math.h or there is a more "object-way" like you can do in Smalltalk (aNumber raisedTo: 3) ? How does a person with no background at all in C learns ObjC?.
Another thing that I couldn't find was a collection's protocol (I've looked over the Foundation Framework documentation given by Apple). Because I want to implement an expresion tree class and I wanna know if there are methods that all collections should implement (like in Smalltalk or Java) or I gotta check by hand every collection and see if there is a cool method that my new collection should have.
I don't know if I'm being too stupid or I'm searching for features that the language/framework doesn't have. I want to program in ObjC with the ObjC style not thinking in C, Java or Smalltalk.
Sorry if the question was too long.
Absolutely use <math.h>. You don't way to pay message sending overhead for functions that run in 30 cycles. Even function call overhead seems pretty steep at that point.
More generally, use as much or as little of C-style as you want to. I've seen Objective-C that was nothing but a couple C modules glued together with objective C messages, and I've seen Objective-C that essentially zero lines of code without the square brackets. I've seen beautiful, effective code written both ways. Good code is good code, however you write it.
In general, you'll use C features for numerical calculations. You'll generally use objects for most other things. The reason for this is that objects are way heavier than a simple scalar — there's just no benefit to it. Why would you ever write [[NSNumber numberWithInteger:1] numberByAddingNumber:[NSNumber numberWithInteger:2]] when you can just write 1+2? It's not only painful to read, it's far slower and it doesn't gain you anything.
On the other hand, Cocoa has rich object libraries for strings, arrays, networking and many other areas, and using those is a big win.
Knowing what's there — and thus what the easiest way to do something is — is just a matter of learning. If you think something should be there and you can't find it, you can ask either here or on Apple's Cocoa-Dev mailing list.
As for a collection protocol — there really isn't one. The closest thing to it is the NSFastEnumeration protocol, which defines precisely one method: countByEnumeratingWithState:objects:count:. This lets you use the for (id someObject in someCollection) syntax to enumerate the objects in a collection. Otherwise, all the collections define their own independent interfaces.
The first problem I've encountered is that I don't know where to draw a line between ObjC and C.
My rule is to use C wherever it makes sense to you. Objective-C has the benefit of letting you choose when to be procedural and when to be object-oriented. Go with what fits best with the code you're writing.
Another thing that I couldn't find was a collection's protocol [...] I want to implement an expresion tree class and I wanna know if there are methods that all collections should implement (like in Java) or I gotta check by hand every collection and see if there is a method that my collection should have.
Unlike Java, Objective-C does not have a master protocol for collections like the java.util.Collection interface. Also, there aren't a proliferation of specific container implementations as in Java. However, that gives you the freedom to implement a collection in a way that makes sense for your code.
For building a tree-like structure, you might take a look at NSTreeNode to see if it might be useful to leverage. (It may be more than you're need or want, but might be worth a shot.)
As far as rolling your own collection, I've learned a lot while creating CHDataStructures.framework, and you're welcome to use whatever you like from that code, or just look at my attempts at creating Cocoa-like structures, designed to complement the Foundation collections and operate similarly. Good luck!
Try to use each language for what it's good at. IMHO, this would include Obj-C objects but C-like code implementing methods. So use math.h and concise C code to implement logic, but don't be shy about using Obj-C classes to organize your larger blocks of functionality into something that makes sense.
Also, try to interact with the frameworks using their style so you're not running upstream.
As has been mentioned, there’s no real protocol for abstract collection classes (aside from the NSFastEnumeration protocol which provides the for(id item in collection) syntax when implemented), but there are conventions to follow.
Apple’s Introduction to Coding Guidelines for Cocoa covers some of this, and there is in fact a section on naming collection methods which covers the general cases (though note that generic container classes such as NSArray use the term “Object” as opposed to “Element” listed in the examples there – i.e. addObject:, removeObject:, and so on).
Following the patterns listed here (among others) is actually crucial when you want your classes to be KVC-compliant, which allows other users to observe changes in your object’s properties.