I've been looking at MongoDB. Feels good.
I added some indexes to a collection, uploaded a bunch of data, then removed all the data, and I noticed the indexes did not change size, similar to the behavior reported here.
If I call
db.repairDatabase()
the indexes are then squashed to near-zero. Similarly if I don't remove all the data, but call repairDatabase(), the indexes are squashed somewhat (perhaps because unused extends are truncated?). I am getting index size from "totalIndexSize" of db.collection.stats().
However, that takes a long time (I've read it could be hours on a large database). It's unclear to me how available the database is for reads or writes while it is running. I am guessing not so available.
Since I want to run as few instances of mongod as possible, I want to understand more about how indexes are managed after deletes. Can anyone point me to anything or give any advice?
To summarize David's linked question:
No way except db.repairDatabase().
If you need to minimize downtime, set up a master/slave configuration, and "repairDatabase" the slave, then switch slave and master.
I think Reducing MongoDB database file size answers your question.
Related
The task is to filter and analyze a huge amount of logfiles (around 8TB) from a finished research project. The idea is to fill a database with the data to be able to run different analysis tasks later.
The values are stored comma separated. In principle the values are tuples of up to 5 values:
id, timestamp, type, v1, v2, v3, v4, v5
In a first try using MySQL I used one table with one log entry per row. So there is no direct relation between the log values. The downside here is slow querying of subsets.
Because there is no relation I looked into alternatives like NoSQL databases, and column based tables like hbase or cassandra seemed to be a perfect fit for this kind of data. But these systems are made for huge distributed systems, which we not have. In our case the analysis will run on a single machine or perhaps some VMs.
Which kind of database would fit this task? Is it worth to setup a single machine instance with hadoop+hbase... or is this all a bit over-sized?
What database would you choose to do high-performance logfile analysis?
EDIT: Maybe out of my question it is not clear that we cannot spend money for cloud services or new hardware. The Question is if there are benefits in using noSQL approaches instead of mySQL (especially for this data). If there are none, or if they are so small that the effort of setting up a noSQL system is not worth the benefit we can use our ESXi infrastructure and MySQL.
EDIT2: I'm still having the Problem here. I did further experiments with MySQL and just inserted a quarter of all available data. The insert is now running for over 2 days and is not yet finished. Currently there are 2,147,483,647 rows in my single table db. With indeces this takes 211,2 GiB of disk space. And this is just a quarter of all logging data...
A query of the form
SELECT * FROM `table` WHERE `timestamp`>=1342105200000 AND `timestamp`<=1342126800000 AND `logid`=123456 AND `unit`="UNIT40";
takes 761 seconds to complete, in this case returning one row.
There is a combined index on timestamp, logid, unit.
So I think this is not the way to go, because later in analysis I will have to get all entries in a time range and compare the datapoints.
I read bout MongoDB and Redis, but the problem with them is, that they are in Memory databases.
In the later analyzing process there will a very small amount of concurrent database access. In fact the analyzing will be run from one single machine.
I do not need redundancy. I would be able to regenerate the database in case of a failure.
When the database is once completely written, there would also be no need to update or add further row.
What do you think about alternatives like Redis, MongoDB and so on. When I get this right, i would need RAM in the dimension of my data...
Is this task even somehow possible with a single node system or with maybe two nodes?
well i personally would prefer the faster solution, as you said you need a high-perfomance analysis. the problem is, if you have to setup a whole new system to do so and the performance-improvement would be minor in relation to the additional effort you'd need, then stay with SQL.
in our company, we have a quite small Database containing not even half a GB of Data on the VM. the problem now is, as soon as you use a VM, you will have major performance issues, when opening the Database on VM you can go for a coffee in the meantime ;)
But if the time until the Database is loaded to cache is not so important it doesn't matter. It all depends on how much faster you think the new System will be, and how much effort you will have to put in it, but as i said i'd prefer the faster solution if you have to go for "high-performance analysis"
I inhereted a high volume OLTP DB which I have free reign to improve as much as I find reasonably possible. The improvements already were very helpful but I want to take it to the next level. The data access patterns I found made it a good candidate IMO to cache the data on other servers and I would love to hear anyone's experience or recommendations with this type of setup.
We have a DB that gets about 3GB of data added to a table every day and reporting on it used to be very slow. The data does not change once it's put in, and no data gets inserted that is over a week old. Rows inputted within the last 3 days tend to see thousands of inserts between tens of millions of rows.
I was thinking of having data over 2 weeks old get pushed out to MongoDB. I could then have the 2 week sliding window data that is not pushed out to Mongo be, be cached by some kind of caching software so those get queried and displayed instead of the data being read out of the DB the whole time. I figure this way we still get full A.C.I.D compliance by having the DB engine validate all the data, have high read performance as it is not hitting the DB, then Mongo can take it when it is no longer a 'transaction'.
Anyone have any recommended solutions? I was looking at MemCached, but not quite sure if that's a good or even plausible solution. Thanks!
Another thing you could consider is using the new In-Memory OLTP feature in SQL Server 2014. That feature improves efficiency and scaling for OLTP workloads. You will potentially be able to get a lot more out of your existing server, without the need to consider specific caching mechanisms.
I don't have specific experience with SQL Server, but what you are describing does seem like a valid use case for MongoDB.
Note that while MongoDB can't directly handle transactions, it is capable of handling certain operations in an atomic fashion (see findAndModify, for instance). Additionally, with journaling enabled, you shouldn't have any reason to worry about durability. MongoDB is a reliable data store and will not lose or corrupt your data.
MongoDB itself can also act as a performant cache if you run a second deployment with journaling disabled. In this instance, writes will take place in memory and only be persisted to the disk every 60 seconds (unless otherwise configured). This will provide comparable performance to memcache which is solely in-memory while allowing you to keep your stack a bit simpler.
Hope this helps!
I know there have been some semi-similar questions, but in this case, I am building an index which is offline, until build is complete. I am building from scratch two cores, one has about 300k records with alot of citation information and large blocks of full text (this is the document index) and another core which has about 6.6 Million records, with full text (this is the page index).
Given this index is being built offline, the only real performance issue is speed of building. Noone should be querying this data.
The auto-commit would apparently fire if I stop adding items for 50 seconds? Which I don't do. I am adding ten at a time and they are added every couple seconds.
So, should I commit more often? I feel like the longer this runs the slower it gets, at least in my test case of 6k documents to index.
With noone searching this index, how often would anyone suggest I commit?
Should say I am using Solr 3.1 and SolrNet.
Although it's commits that are taking time for you, you might want to consider looking into other tweaking than commit frequency.
Is it the indexing core that also does searching, or is it replicated somewhere else after indexing concludes? If the latter is the case, then turning off caches might have a very noticeable impact on performance (solr rebuilds caches every time you commit).
You could also look into using the autoCommit or commitWith features of Solr.
commitWithin is done as part of the document add command. I believe that this is supported with SolrNet - please see Using the commiWithin attribute thread for more details.
autoCommit is a Solr configuration value added to the update handler section.
Im new to database design and need some guidance.
A lot of new data is inserted to my database throughout the day. (100k rows per day)
The data is never modified or deleted once it has been inserted.
How can I optimize this database for retrieval speed?
My ideas
Create two databases (and possible on different hard drives) and merge the two at night when traffic is low
Create some special indexes...
Your recommendation is highly appreciated.
UPDATE:
My database only has a single table.
100k/day is actually fairly low. 3M/month, 40M/year. You can store 10 years archive and not reach 1B rows.
The most important thing to choose in your design will be the clustered key(s). You need to make sure that they are narrow and can serve all the queries your application will normally use. Any query that will end up in table scan will completely trash your memory by fetching in the entire table. So, no surprises there, your driving factor in your design is the actual load you'll have: exactly what queries will you be running.
A common problem (more often neglected than not) with any high insert rate is that eventually every row inserted will have to be deleted. Not acknowledging this is a pipe dream. The proper strategy depends on many factors, but probably the best bet is on a sliding window partitioning scheme. See How to Implement an Automatic Sliding Window in a Partitioned Table. This cannot be some afterthought, the choice for how to remove data will permeate every aspect of your design and you better start making a strategy now.
The best tip I can give which all big sites use to speed up there website is:
CACHE CACHE CACHE
use redis/memcached to cache your data! Because memory is (blazingly)fast and disc I/O is expensive.
Queue writes
Also for extra performance you could queue up the writes in memory for a little while before flushing them to disc -> writting them to SQL database. Off course then you have the risk off losing data if you keep it in memory and your computer crashes or has power failure or something
Context missing
Also I don't think you gave us much context!
What I think is missing is:
architecture.
What kind of server are you having VPS/shared hosting.
What kind of Operating system does it have linux/windows/macosx
computer specifics like how much memory available, cpu etc.
a find your definition of data a bit vague. Could you not attach a diagram or something which explains your domain a little bit. For example something like
this using http://yuml.me/
Your requirements are way to general. For MS SQL server 100k (more or less "normal") records per days should not be a problem, if you have decent hardware. Obviously you want to write fast to the database, but you ask for optimization for retrieval performance. That does not match very well! ;-) Tuning a database is a special skill on its own. So you will never get the general answer you would like to have.
Keep in mind that I am a rookie in the world of sql/databases.
I am inserting/updating thousands of objects every second. Those objects are actively being queried for at multiple second intervals.
What are some basic things I should do to performance tune my (postgres) database?
It's a broad topic, so here's lots of stuff for you to read up on.
EXPLAIN and EXPLAIN ANALYZE is extremely useful for understanding what's going on in your db-engine
Make sure relevant columns are indexed
Make sure irrelevant columns are not indexed (insert/update-performance can go down the drain if too many indexes must be updated)
Make sure your postgres.conf is tuned properly
Know what work_mem is, and how it affects your queries (mostly useful for larger queries)
Make sure your database is properly normalized
VACUUM for clearing out old data
ANALYZE for updating statistics (statistics target for amount of statistics)
Persistent connections (you could use a connection manager like pgpool or pgbouncer)
Understand how queries are constructed (joins, sub-selects, cursors)
Caching of data (i.e. memcached) is an option
And when you've exhausted those options: add more memory, faster disk-subsystem etc. Hardware matters, especially on larger datasets.
And of course, read all the other threads on postgres/databases. :)
First and foremost, read the official manual's Performance Tips.
Running EXPLAIN on all your queries and understanding its output will let you know if your queries are as fast as they could be, and if you should be adding indexes.
Once you've done that, I'd suggest reading over the Server Configuration part of the manual. There are many options which can be fine-tuned to further enhance performance. Make sure to understand the options you're setting though, since they could just as easily hinder performance if they're set incorrectly.
Remember that every time you change a query or an option, test and benchmark so that you know the effects of each change.
Actually there are some simple rules which will get you in most cases enough performance:
Indices are the first part. Primary keys are automatically indexed. I recommend to put indices on all foreign keys. Further put indices on all columns which are frequently queried, if there are heavily used queries on a table where more than one column is queried, put an index on those columns together.
Memory settings in your postgresql installation. Set following parameters higher:
.
shared_buffers, work_mem, maintenance_work_mem, temp_buffers
If it is a dedicated database machine you can easily set the first 3 of these to half the ram (just be carefull under linux with shared buffers, maybe you have to adjust the shmmax parameter), in any other cases it depends on how much ram you would like to give to postgresql.
http://www.postgresql.org/docs/8.3/interactive/runtime-config-resource.html
http://wiki.postgresql.org/wiki/Performance_Optimization
The absolute minimum I'll recommend is the EXPLAIN ANALYZE command. It will show a breakdown of subqueries, joins, et al., all the time showing the actual amount of time consumed in the operation. It will also alert you to sequential scans and other nasty trouble.
It is the best way to start.
Put fsync = off in your posgresql.conf, if you trust your filesystem, otherwise each postgresql operation will be imediately written to the disk (with fsync system call).
We have this option turned off on many production servers since quite 10 years, and we never had data corruptions.