Some solid OOP criticism? [closed] - oop

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 4 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I want to ask you to provide me with some articles (maybe books), which you possibly have found very convincing criticising the OOP methodology.
I have read some in the WWW on this topic and I didn't really find a 'definitive demotivator'.
It's not much about my personal attitude to the OOP, but I really would like to have something constructive, rigorous foundation for any kind of discussion and just abstract thinking.
You can post some original research too, but please be very constructive (as my personal request).

Which version of OOP? Alan Kay's original vision? The bastardized modern form of it that misses the point entirely and thus encumbers us with bizarre access control, member variables, etc? Inheritance-centric? Prototype-based? Compositional OOP?
Each form of OOP has its strengths and its weaknesses; its advocates and its detractors; its domains of utility and its domains of uselessness. There's nothing magical about OOP that makes it the Killer Paradigm and there's nothing infernal about it that makes it the Killer (of Programmers) Paradigm.
I can't really point you to any books or articles that killed my interest in OOP as a Silver Bullet (as opposed to one of many techniques I can use to keep my projects survivable). I can point to the funniest critique of a specific brand of OOP, however: Steve Yegge's classic "Execution in the Kingdom of Nouns".

Rick Hickey's Are We There Yet ? - A Deconstruction of Object Oriented Time was an eye opener for me. It's the most logical OO criticism I have come across.

If you want a criticism of OO programming, here's what I'd recommend:
Learn Smalltalk
Learn Erlang
Learn Scheme
Once you've done that, you will have plenty of criticism of the common interpretation of OO programming.
(Hint: OO was in many ways intended to more closely resemble the Actor model of computation, but the common interpretation of it is effectively a modification of the procedural/structured model)

Problem is - most people don't really know Object-Oriented Programming, so many designs SUCK.
Read the works of Scott Ambler, including his (now pretty old) Building Object Applications That Work. This has been eye-opening for quite a lot of people.

Maybe not quite what you were looking for but have a look at the Jan/Feb issue of IEEE Software magazine: Object-Oriented Analysis: Is It Just Theory?. The basic conclusion is that OOA does not provide a good cost/benefit ratio so is poorly utilized.
Given that OOA is not effectively utililzed or supported in the "real world", I suspect that for larger development projects the overall system architecture, deployed object model and class hiearchy end up being sub-optimal and poorly understood (implemented) by various parts of the development team. A second article in the same journal: Four Trends Leading to Java Runtime Bloat point to some common OOP issues that detract from deploying high-volume Java (OOP) systems. The observations made in this article probably apply to most highly architected OOP applications.
Do not take this as OO bashing, it just reflects that as software practictioners we have quite a bit of work to do toward developing better person-to-person communication mechanisms to convey highly complex and abstracted process models.

When you define a process in natural language. You use sentences where you define the subject who will do an action on one or more objects.
The only fix point is the action, the predicate of the sentence.
I don't think assigning actions to objects is a good idea.
There is only one verb, but can be multiple nouns.
In OOP you can write a file in at least 3 ways:
file.write(data);
or
data.writeToFile(file);
or
OperatingSystem.write(file, data);
Which object should implement the method? You need to think about this too.
While in the procedural way, you probably write
write(file, data);
And the only thing you need to think is the order of the operands which is usally does not matter.
(Well file and data may not be the best example but you probably see the point)

You should really see Mr. B. Jacobs's:
OOP Myths Debunked
(also known as OOP Oversold.)

http://cat-v.org has a great page on Object Oriented Programming.
Most of the page consists of humorous but not terribly informative quotes. However, at the bottom of the page are a number of links to articles challenging OOP. They are:
Bad Engineering Properties of Object-Oriented Languages by Luca Cardelli.
Why OO Sucks by Joe Armstrong
Pitfalls of Object Oriented Programming – By Tony Albrecht of Sony Computer Entertainment Europe, Research & Development Division.
Object-Oriented Considered Harmful by Frans Faase.
Object Oriented Programming Oversold!
I Hate Patterns – By Parand Tony Darugar.
Why arc Isn’t Particularly Object-Oriented – By Paul Graham.
The questions about inheritance in the Java IAQ.
Stop Writing Classes – Great talk about how classes are often used and abused. By Jack Diederich.
If you are interested in alternatives to Object-Oriented Programming:
cat-v.org. From their 'about' page: Cat-v.org hosts a series of sites dedicated to diverse subjects that share an idiosyncratic intellectual perspective, questioning orthodoxy and fomenting elitism and high standards in topics from software design to politics, passing by art and journalism and anything else interesting.
Structure and Interpretation of Computer Programs. Specifically teaches functional programming. Available free online here, for sale here. I cannot recommend this highly enough. It is absolutely revolutionary. It will change the way you think.
Any and all writings/videos/lectures by Rob Pike and Steve Yegge. Of particular interest is Yegge's Whirlwind Languages Tour.

I'd recommend learning a different programming paradigm or reading pro arguments for specific paradigms (http://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf). Besides OOP, I think the most widely used is the functional paradigm (search f.e. "Why functional programming matters"), but also have a look at the other ones. When you start looking at programming from a different perspective, the flaws of OOP start to appear automatically.
Simple exercise: define the objects IPerson, CMale and CFemale and implement the methods "sex" and "reproduce".

hows about steve yegge's execution in the kingdom of the noun
for java style OO

The Gideon Bible of object-oriented design patterns, aptly named Design Patterns. One of the best software design books I've ever read.

Related

scheme for object-oriented programmers

I'm thoroughly intrigued by Scheme, and have started with some toy programming examples, and am reading through Paul Graham's On Lisp.
One thing I haven't been able to find is a book or website intended to teach Scheme to "OO people", i.e. people like myself who've done 99 % of their coding in c++/Java/Python.
I see that closures are sort of object-y, in the sense that they have local state, and offer one or more functions that have access to that state. But I don't want to learn Scheme only to port my existing habits on to it. This is why I'm learning Scheme rather than Common Lisp at the moment; I fear that CLOS might just serve as a crutch to my existing OO habits.
What would be ideal is a book or website that offers case studies of problems solved in both an OO language, and also in Scheme in a Schemey way. I suppose I would most appreciate scientific computing and/or computer graphics problems, but anything would do.
Any pedagogical leads would be much appreciated.
I doubt CLOS would serve as a crutch for old habits, I found it to be pretty different from the OO style in C++/Java/Python, and very interesting. I don't understand all the details, but I would recommend Peter Seibel's Practical Common Lisp. If you are reading On Lisp without much trouble, you should be able to dive into the chapters introducing CLOS in PCL. Also, I'd recommend his Google Tech Talk comparing Java and Common Lisp.
Here's a few more recommendations to make this a more full-fledged answer:
The classic text Structure and Interpretation of Computer Programs covers quite a few examples in chapter 3 of building modular systems using closures (and addresses issues with introducing state and mutability). Chapter 2 includes some generic and data/type-directed programming which could be helpful for motivating study of CLOS. This book really needs no introduction though, it's a towering work, and I've only been reading it slowly since the spring. Highly recommended if you are interested in Scheme.
While SICP is a great book, it's not without its flaws: A really interesting look at these is the essay "The Structure and Interpretation of the Computer Science Curriculum" which elaborates on a few criticism of SICP, and is written by the authors of How to Design Programs (I haven't read HTDP but I hear it's very good). While this essay won't teach you specifically what you are looking for - comparing functional and OO programming - it is really interesting anyway. Their freshman undergraduate course starts with a first semester introduction to functional programming using Scheme (I think, PLT/Racket) and is followed by a semester of OO programming with C++ or Java... at least that's the course they describe in the essay.
These slides from Peter Norvig address some of the design patterns common in OO programming and show why they are missing or unnecessary in dynamic, functional languages like Scheme and Lisp: http://norvig.com/design-patterns/
I cautiously recommend the book by the same authors as the Little Schemer books: A Little Java, A Few Patterns. I can't say for sure if this is a really a good book or not, it was incredibly strange and there are some really bad typesetting decisions (italic, serif, variable-width, superscript doesn't belong in a text on programming), but it might be interesting to take a look at. You can probably find it cheap, anyway. Don't take this recommendation that seriously. I think it would be better to stick to the Scheme texts.
p.s. I have to disagree with one comment stating that functional programming is not as complicated at OO programming, I think that's grossly misstating it. Functional programming in all its breadth is truly mind-boggling. When you go beyond map/filter/reduce and first-class functions, and take a look at other things in the functional realm like lazy evaluation, avoiding side effects and mutation, and the strong, static-typed languages, it gets pretty interesting, and is certainly just as complicated as traditional OO programming. I've only just scratched the surface myself but have discovered a great deal of new ideas. Programming is complicated business, whether OO or functional.
Congrat you, my friend ! Love cs, love functional programming.
If you are python developer it takes 3-4 days to think in scheme
Here is the best simple tutorial I have ever met http://www.shido.info/lisp/idx_scm_e.html
I found this course http://cs.gettysburg.edu/~tneller/cs341/scheme-intro/index.html and it may be useful for you
One beginner's resource that is very helpful and geared very much toward the casual reader is "The Adventures of a Pythonista in Schemeland". It's written (obviously) from the point of view of a Python programmer taking first steps with Scheme. One especially nice thing about it is that it includes an overview of the current implementations and compatibility issues between each scheme implementation, which, unfortunately, can cause some headaches when you're just starting out.
With regards to object systems, these two documents (linked from here) give nice examples of very simple toy implementations using closures that I found helpful in understanding their use in capturing state.
If you are starting off with Scheme, have a look at How to Design Programs. This book presents the "Schemey" approach to problem solving. I don't think there is a book that compares OO and functional solutions to the same programming problems. But there is a nice presentation that shows how dynamic languages like Scheme could provide simple solutions to problems that demand complex design patterns in statically typed OOP languages.

How to build Object Oriented Skills? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
Being a core developer for couple of years, coding applications seeing the class diagrams, sequence diagrams, I decided to improve my self, taking the next step of designing.
As I'm an OO developer, I'm interested in improving my design skills.
For Example, I had a hard time designing a currency converter.
My questions to the SO:
Is it by experience the design skills
can be acquired?
Will learning books/blog/material
over internet etc help?
Is it that one needs the domain
knowledge of the application being
developed?
Knowing Design patterns, principles?
Studying 'Code Complete' book ?
Need to have Problem-solving skills?
In short, given a problem, I just want to solve it in Object-oriented way??
You have to do bad OO design before you can do good OO design.
A fantastic project would be take your currency converter and slowly move the code to use OO concepts. OO is a creative process: there are no wrong answers, but worse and better do exist. Basically, when your code retains functionality and gets shorter/easier-to-read, it's better. When it gains flexibility without adding more code, that's better too. But it's a creative process. Use a version control system like GIT to be able to "undo" easily, try stuff out, and MAKE MISTAKES. OO design is a process.
Is it by experience the design skills
can be acquired?
Yes.
Will learning
books/blog/material over internet etc
help?
Yes.
Is it that one needs the domain
knowledge of the application being
developed?
Yes, but I think that knowing the domain too well can screw up good design. When working with Airline programmers, I noticed that the known, unquestioned abstractions ("ticket," "reservation") inhibited good OO design. Your OO model is not the real world model. It's a model for your program.
Knowing Design patterns,
principles?
Yes, more is better, always.
Studying 'Code Complete'
book ?
Lots of people say it's a great book. But, have you read Italo Calvino? Or Jorge Luis Borges? All kinds of books may help.
Need to have Problem-solving
skills?
No. You get problem-solving skills by applying OO (or any other paradigm).
It is pretty obvious that if you want to learn something, you have to practice. If you want to learn how to be a better programmer, practice programming will help. And if you want to learn how to be a better OO programmer, practicing OOP will obviously help you most. Problem solving skills and knowledge of the domain are things every good programmer needs to have, not only for OOP. And there are a lot of good books out there, they will help you probably, if you are not the "to-less-focused-to-get-something-out-of-a-book" type of person.
Here is a list of programming books. From this list, "Design Patterns" and "Refactoring" seem to be very focused on OOP (I did not read "Head first design patterns", perhaps it is, too). And the book I learned most from (OOP, functional and other concepts), I think, is "Structure and interpretation of computer programs".
I think you're going about this somewhat wrong, because some problems simply have no need of an object-orientated solution. The solution should match the problem, not the other way around.
However, there's no silver bullet to being a better object-orientated designer. The best way, in my opinion, would be to write a complex program, then maintain it solidly for a few years.
The biggest challenge in object-oriented design is not learning the implementation techniques, which come naturally with time and experience. The biggest challenge is understanding the problem domain sufficiently well that you can clearly abstract it with an object model. This is one of the points you hit upon in your question and I think it's certainly one of the most critical. If the problem is not well understood, then you run the risk of implementing a solution for the wrong problem. Further, it's easy to get caught up in the beauty of abstraction and architecture for its own sake, losing sight of the original task.
Is it by experience the design skills can be acquired?
Experience and innate ability - some people just cannot do it.
Will learning books/blog/material over internet etc help?
Of course. But they won't turn you into an OO god.
Is it that one needs the domain knowledge of the application being developed?
Either you need to have it, or you need access to someone who does.
Knowing Design patterns, principles?
Knowing what design patterns are would be a good start - they are just common ways of doing things - nothing magic.
Studying 'Code Complete' book ?
I flicked through it in bookshop once.
Need to have Problem-solving skills?
Obviously yes, I would have thought.
I suggest you to learn Smalltalk. YES..I know it's a bit outdated but I think this is the only environment to experiment, appreciate and 'have fun' with Object Orientation.
In Smalltalk everything from the IDE is an object. You can think about objects without wasting time with details such as header/source files, compilation and so on.
Download a copy of Squeak Smalltalk (http://www.squeak.org/) and start practicing
Try to learn and truly grasp the meaning of "abstraction". I mean abstraction as a general concept, at least as it applies to computer science and software engineering.
From abstraction follows object-orientation. Since, abstraction is about separating the concepts in a system from the implementation, for instance any logical representation of a system or application is an abstraction. Any modeling of an application/system is an abstraction. So, among many ways of modeling an application/system/problem, one is called the object-oriented way. So, abstraction first. Once you get the point of abstraction, then you will see that among many ways of modeling things, object-oriented modeling is superior, in most cases. That is how you get the point of OO.
Then, from abstraction follows fundamental principles of object-orientation: abstract data types, information hiding etc, and mechanisms of achieving them like encapsulation, inheritance etc.
To number your points - I think 2 - 6 are great and I think anyone writing code should read code complete, even if its not OO. But unfortunately it seems that point 1 is the most important!!!
I think that's a problem in our profession. We learn on the job as opposed to studying great code. So essentially everybody is re-inventing the wheel in terms of learning.
Additionally you can use the unit testing, as tool to improve the class design.

The limit of OOP Paradigm in really complex system? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I asked a question previously about Dataset vs Business Objects
.NET Dataset vs Business Object : Why the debate? Why not combine the two?
and I want to generalize the question here: where is the proof that OOP is really suitable for very complex problems ? Let's take a MMO Game Engine for example. I'm not specialist at all but as I read this article, it clearly stands that OOP is far from being enough:
http://t-machine.org/index.php/2007/11/11/entity-systems-are-the-future-of-mmog-development-part-2/
It concludes:
Programming well with Entity Systems is very close to programming with a Relational Database. It would not be unreasonable to call ES’s a form of “Relation Oriented Programming”.
So isn't OOP trying to get rid off something that is here to stay ?
OOP is non-linear, Relational is linear, both are necessary depending on the part of a system so why try to eliminate Relational just because it isn't "pure" Object. Is OOP an end by itself ?
My question is not is OOP usefull. OOP is usefull, my question is rather why the purists want to do "pure" OOP ?
As the author of the linked post, I thought I'd throw in a couple of thoughts.
FYI: I started seriously (i.e. for commercial work) using OOP / ORM / UML in 1997, and it took me about 5 years of day to day usage to get really good at it IMHO. I'd been programming in ASM and non-OOP languages for about 5 years by that point.
The question may be imperfectly phrased, but I think it's a good question to be asking yourself and investigating - once you understand how to phrase it better, you'll have learnt a lot useful about how this all hangs together.
"So isn't OOP trying to get rid off something that is here to stay ?"
First, read Bjarne's paper here: http://www.stroustrup.com/oopsla.pdf
IMHO, no-one should be taught any OOP without reading that paper (and re-reading after they've "learnt" OOP). So many many people misunderstand what they're dealing with.
IME, many university courses don't teach OOP well; they teach people how to write methods, and classes, and how to use objects. They teach poorly why you would do these things, where the ideas come from, etc. I think much of the mis-usage comes from that: almost a case of the blind leading the blind (they aren't blind in "how" to use OOP, they're just blind in "why" to use OOP).
To quote from the final paragraphs of the paper:
"how you support good programming techniques and good design techniques matters more than labels and buzz words. The fundamental idea is simply to improve design and programming through abstraction. You want to hide details, you want to exploit any commonality in a system, and you want to make this affordable.
I would like to encourage you not to make object-oriented a meaningless term. The notion of ‘‘object-oriented’’ is too frequently debased:
– by equating it with good,
– by equating it with a single language, or
– by accepting everything as object-oriented.
I have argued that there are–and must be–useful techniques beyond object-oriented programming and design. However, to avoid being totally misunderstood, I would like to emphasize that I wouldn’t attempt a serious project using a programming lan-
guage that didn’t at least support the classical notion of object-oriented programming. In addition to facilities that support object-oriented programming, I want –and C++ provides features that go beyond those in their support for direct expression of concepts and relationships."
Now ... I'd ask you ... of all the OOP programmers and OOP projects you've seen, how many of them can honestly claim to have adhered to what Bjarne requests there?
IME, less than the majority.
Bjarne states that:
"The fundamental idea is simply to improve design and programming through abstraction"
...and yet many people invent for themselves a different meaning, something like:
"The fundamental idea is that OOP is good, and everything-not-OOP is inferior"
Programmers who have programmed sequentially with ASM, then later ASM's, then pascal, then C, then C++, and have been exposed to the chaos that was programming pre-encapsulation etc tend to have better understanding of this stuff. They know why OOP came about, what it was trying to solve.
Funnily enough, OOP was not trying to solve every programming problem. Who'd have htought it, to say how it's talked about today?
It was aimed at a small number of problems that were hugely dangerous the bigger your project got, and which it turned out to be somewhere between "good" and "very good" at solving.
But even some of them it isn't any better than merely "good" at solving; there are other paradigms that are better...
All IMHO, of course ;)
Systems of any notable complexity are not linear. Even if you worked really hard to make a system one linear process, you're still relying on things like disks, memory and network connections that can be flaky, so you'll need to work around that.
I don't know that anyone thinks OOP is the final answer. It's just a way of dealing with complexity by trying to keep various problems confined to the smallest possible sphere so the damage they do when they blow up is minimized. My problem with your question is that it assumes perfection is possible. If it were, I could agree OOP isn't necessary. It is for me until someone comes up with a better way for me to minimize the number of mistakes I make.
Just read yr article about Entity Systems, which compares ES to OOP, and it is flagrantly wrong about several aspects of OOP. for e.g., When there are 100 instances of a class, OOP does not mandate that there be 100 copies of the classes methods loaded in memory, only one is necessary. Everything that ES purports to be able to do "better" than OOP because it has "Components", and "Systems", OOP supports as well using interfaces and static classes, (and/or Singletons).
And OOP more naturally fits with the real-world, as any real or imagined Problem Domain, consisting of multiple physical and/or non-physical items and abstractions, and the relationships between them, can be modeled with an appropriately designed hiearchical OOP class structure.
What we try to do is put an OO style on top of a relational system. In C# land this gets us a strongly typed system so that everything from end to end can be compiled and tested. The database has a hard time being tested, refactored, etc. OOP allows us to organize our application into layers and hiearchies which relational doesn't allow.
Well you've got a theoretical question.
Firstly let me agree with you that OOP is not a solve-all solution. It's good for somethings, it's not good for others. But that doesn't mean it doesn't scale up. Some horribly complex and huge systems have been designed using OOP.
I think OOP is so popular because it deserves to be. It solves some problems rather wonderfully, it is easy to think in terms of Objects because we can do that without re-programming ourselves.
So until we can all come up with a better alternatives that actually works in practical life, I think OOP is a pretty good idea and so are relational databases.
There is really no limit to what OOP can deal with - just as there is no real limit to what C can deal with, or assembler for that matter. All are Turing-complete, which is all you really need.
OOP simply gives you a higher-level way of breaking down the program, just as C is a higher-level than assembler.
The article about entity systems does not say that OO cannot do this - in fact, it sounds like they are using OOP to implement their Entities, Components, etc. In any complex domain there will be different ways of breaking it down, and using OOP you can break it down to the object/class level at some point. This does not preclude having higher-level conceptual frameworks which are used to design the OOP system.
The problem isn't the object oriented approach in most situations, the problem is performance and actual development of the underlying hardware.
The OO paradigm approach software development by providing us with a metaphor of the real world, were we have concepts which defines the common accepted and expected properties and behaivour of real objects in the world. Is the way that humans model things and we're able to solve most of the problems with it.
In theory you can define every aspect of a game, system or whatever using OO. In practice if you do, your program will simply behave too slow so the paradigm is messed up by optimizations which trade the simplicity of the model from performance.
In that way, relational databases are not object oriented so we build an object oriented layer between our code and the database... by doing so you lost some of the performance of the database and some of its expressiveness because, from the point of view of OO paradigm a relational database is a full class, is an very complex object that provides information.
From my point of view OO is an almost perfect approach in the theoretical sense of the word, as it maps closely to the way we, humans, think, but it doesn't fit well with the limited resources of the computational development... so we take shortcuts. At the and, performance is far more important than theoretical organization or clearness so this shortcuts become standards or usual practices.
That is, we are adapting the theoretical model to our current limitations. In the times of cobol in the late 70's object oriented was simply impossible... it would imply to many aspects and too little performance so we used a simplified approach, so simplified you didn't have objects or class, you had variables ... but the concept was, in that time, the same. Groups of variables described related concepts, properties that today will feet into an object. Control sequences based on a variable value where used to replace class hierarchies and so on.
I think we've been using OOP for a long time and that we'll continue using it for a long time. As hardware capabilities improve we'll be able to unsimplify the model so that it becomes more adaptable. If I describe perfectly (almost) the concept of a cat (which involves a lot of describing for a lot of concepts involved) that concept will be able to be reused everywhere... the problem here is not, as I've said, with the paradigm itself but with our limitations to implement it.
EDIT: To answer the question about why use pure OO. Every "science" wants to have a complete model to represent things. We have two physic models to describe nature, one at the microscopic level and one for the macroscopic one, and we want to have just one because it simplifies things it provides us with a better way to prove, test and develop things. With OO the same process applies. You can't analytically test and prove a system if the system doesn't follow a precise set of rules. If you are changing between paradigms in a program then your program cannot be properly analized, it has to be disected in each one, analized and then analized again to see that the interactions are correct. It makes a lot more difficult to understand a system because in fact you have two or three system that interact in different ways.
Guys, isn't the question more about ORM than OOP? OOP is a style of programming - the thing that actually gets compared is a Relational Database mapped onto objects.
OOP is actually more than just the ORM! It's also not just the inheritance and polymorphism! It's an extremly wide range of design patterns and above all it's the way we think about programming itself.
Jorge: it's ok that you've pointed out the opitimization part - what you didn't add is that this step should be done last and in 99% cases the slow part is not the OOP.
Now plain and simple: the OOP style with all the principals added to it (clean code, use of design patterns, not to deep inheritance structures and let's not forget unit testing!) it a way to make more people understand what you wrote. That in turn is needed for companies to keep their bussiness secure. That's also a recepie for small teams to have better understanding with the community. It's like a common meta language on top of the programming language itself.
It's always easier to talk about concepts from a purists point of view. Once you're faced with a real life problem things get trickier and the world is no longer just black and white. Just like the author of the article is very thorough in pointing out that they're not doing OOP the "OOP purist" tells you that OOP is the only way to go. The truth is somewhere in between.
There is no single answer, as long as you understand the different ways (OOP, entity systems, functional programming and many more) of doing things and can give good reason for why you're choosing one over the other in any given situation you're more likely to succeed.
About Entity Systems. It's an interesting conception but it brings nothing really new. For example it states:
OOP style would be for each Component to have zero or more methods, that some external thing has to invoke at some point. ES style is for each Component to have no methods but instead for the continuously running system to run it’s own internal methods against different Components one at a time.
But isn't it same as Martin Fowler's anti-pattern called "Anemic Domain Model" (which is extensively used nowadays, in fact) link ?
So basically ES is an "idea on the paper". For people to accept it, it MUST be proven with working code examples. There is not a single word in the article on how to implement this idea on practice. Nothing said about scalability concerns. Nothing said about fault tolerance...
As for your actual question I don't see how Entity Systems described in article can be similar to relational databases. Relational databases have no such thing as "aspects" that are described in the article. In fact, relational - based on tables data structure - is very limited when it comes to working with hierarchical data, for example. More limited than for example object databases...
Could you clarify what exactly you are trying to compare and prove here? OOP is a programming paradigm, one of the many. It's not perfect. It's not a silver bullet.
What does "Relation Oriented Programming" mean? Data-centric? Well, Microsoft was moving towards more data-centric style of programming until they given up on Linq2Sql and fully focused on their O/RM EntityFramework.
Also relational databases isn't everything. There is many different kinds of database architectures: hierarchical databases, network databases, object databases ect. And those can be even more efficient than relational. Relational are so popular for nearly the same reasons why OOP is so popular: it's simple, very easy to understand and most often efficient enough.
Ironically when oo programming arrived made it much easier to build larger systems, this was reflected in the ramp up in software to market.
Regarding scale and complexity, with good design you can build pretty complex systems.
see ddd Eric Evans for some principle patterns on handling complexity in oo.
However not all problem domains are best suited to all languages, if you have the freedom to choose a language choose one that suits your problem domain. or build a dsl if that's more appropriate.
We are software engineers after all, unless there is someone telling you how to do your job, just use the best tools for the job, or write them :)

Recommendations for how to do OOP design [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 4 years ago.
Improve this question
I find that whenever I begin writing an app in Java/C#, things start off good, but over time, as the app becomes more complex, it just gets more and more complicated. I've become aware of the fact that I'm not very good at design and high level architecture. All my classes become fairly strongly coupled and the design isn't "elegant" at all. I'm fairly competent at "low level" programming. That is, I can get just about anything done within a function or a class, but my high level design is weak and I'd really like to improve it. Does anyone have pointers to techniques, books, etc. that would be helpful in making me a better software engineer?
I disagree about starting with a book on design patterns or refactoring.
In my opinion, for a solid OO design, you should first be familiar with the main OO design principles, then understand how your problem can be represented in those basic principles. Then you can start discovering opportunities for applying design patterns and refactoring techniques in order to achieve those fundamental principles.
I would start with this book:
Agile Software Development, Principles, Patterns, and Practices by Robert C. Martin
In this book, Robert Martin describes the fundamental principles that make a good OO design, all of them related to encapsulation, coupling and modularity:
The Open/Closed Principle
Liskov Substitution
Dependency Inversion
Granularity
Common Closure
Reuse
No Cyclic Dependency
Stability Of Dependency
Abstraction And Stability
After all, almost every Design Pattern and Refactoring technique I have seen documented in GoF and Fowler is aimed at achieving one of several of these basic principles, depending on their relative priority for a given scenario.
Books:
Code Complete, by Steve McConnel
Design Patterns, by Gamma, et. al.
I would start by sketching my design. That sketch could be a box and arrow diagram to show relationships between classes or it could be a variation on UML (or perhaps even standard UML). But I find that sketches help me see that a design is good/bad and maybe even how to fix it.
I would also look at a book on design patterns.
Write a large project and let it spread as big as you can. Then study what you can do to improve your code.
Perhaps single large routines can be clean and understandable too, if they are well-structured.
There's no single good answer on good design. It's actually one of those valuable things a programmer can learn.
You can refactor mercilessly to improve the design of existing code.
The main idea is, at some point the code did make sense, when new features are bring into the code then probably some features or responsibilities must be moved around to another classes, that's fine. Then you stop developing new features and start refacoring your code.
I would recommend you to read:
Refactoring by Martin Fowler
use Object Oriented Design Principles (http://www.surfscranton.com/Architecture/ObjectOrientedDesignPrinciples.htm). also consider some oo design heursitics (http://www.cs.colorado.edu/~kena/classes/6448/s02/lectures/lecture27.pdf)
Try making program outlines and diagrams before you start, and have someone else review and critique it. Then as the program grows, continually update the outlines and diagrams to include the new functionality. Get it reviewed and critiqued by someone else. Eventually, assuming you are learning from the critiques, you will become better at designing programs.
Books and tutorials can only get you so far. While you do need to learn the tools and methods available, knowledge on its own won't help you here. Practice is what will make you better at design, along with having a mentor coach you from time to time to show you how you can better apply some of the knowledge you've gained from the books.
Read the books by all means, but don't feel bad if you write code that ends up having stupidities in it. Everybody does. The question is, can you refactor what you have to fix it? To be able to do that effectively and often, you need to use TDD and write lots of unit tests.
I would highly recommend you try Test Driven Development (TDD). You will find that to make your code testable, and not need to constantly perform rework of your tests, you will need to have a solid design. What you will find is that when you add \ change \ remove functionality, your better designs will require a very small set of changes to a specific set of tests. A poor design will wipe out a huge set of tests - because you have tight coupling, objects responsible for multiple concerns, etc, etc, etc ...
I have found that the better I get at TDD, the better my architecture is, and the better the end result is.
Be advised, TDD takes real mental discipline. You should not expect that you use it for 1-2 days and see immediate results. You will need to really want to do it, and really make the effort - otherwise you won't benefit and likely just end up hating it.
HTH ...
There are a couple of things that you can do
Use tools for high-level and
low level design before you
actually start programming. E.g.
Creating Class UML Diagrams will
help your mind visualize the
solution in a Diagramtic form rather
than Code form.
Familiarize yourself with Java
Design Patterns. E.g. Using
Inheritance Polymorphically to begin
with will warm you up to start using
the standard Java and J2EE design
patterns.
There are a tonne of books and websites pertaining to both the subjects I just pointed out here.
Browse through good API code. For instance Spring framework code.
Read some good books such as Design Patterns (like everyone else mentioned here) and some other books on good practices. For example in Java, Head First Design, Effective Java series, etc.
C++ - Effective C++ series
I would start with : Head first object-oriented analysis and design. and once you mastered it : Head first design patterns.
Obviously, reading some of the recommmended books will help. I think Head First Design Patterns is definitely less abstract than GoF book.
The primary question I ask is "Is this code doing something very specific that could be re-used anywhwere else?" If so, put in in a class in an assembly that allows for re-use.
If you truly are just starting then one thing I used to do was to consider each database table an 'object'. So each database table represents a class. The purists will tell you this is a disaster, but I found it a good way to get myself started thinking in object terms.
Read Head First Design Patterns.

Good challenges/tasks/exercises for learning or improving object oriented programming (OOP) skills [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
Questions asking us to recommend or find a tool, library or favorite off-site resource are off-topic for Stack Overflow as they tend to attract opinionated answers and spam. Instead, describe the problem and what has been done so far to solve it.
Closed 9 years ago.
Improve this question
What is a good challenge to improve your skills in object oriented programming?
The idea behind this poll is to provide an idea of which exercises are useful for learning OOP.
The challenge should be as language agnostic as possible, requiring either little or no use of specific libraries, or only the most common of libraries. Try to include only one challenge per answer, so that a vote will correspond to the merits of that challenge alone. Would also be nice if a level of skill required was indicated, and also the rationale behind why it is a useful exercise.
Solutions to the challenges could then be posted as answers to a "How to..." question and linked to from here.
For example:
Challenge - implement a last-in-first-out stack
Skill level - beginner
Rationale - gives experience of how to reference objects
Building Skills in Object-Oriented Design is a free book that might be of use.
The description is as follows:
"The intent of this book is to help the beginning designer by giving them a sequence of interesting and moderately complex exercises in OO design. This book can also help managers develop a level of comfort with the process of OO software development. The applications we will build are a step above trivial, and will require some careful thought and design. Further, because the applications are largely recreational in nature, they are interesting and engaging. This book allows the reader to explore the processes and artifacts of OO design before project deadlines make good design seem impossible."
Write a challenging program from scratch. Try to get some people (around five, that should be doable) to use it. Respond to their change requests.
Adapt your program's design. Start small, then watch it grow. Manage this growth. This is hard. You will also have to fix bugs and maintain the thing over time, which for me was a very valuable lesson.
Challenge: Write a wrapper for your web site/service API of choice in your language of choice, that doesn't already exist (ex. a ZenDesk API wrapper written in C#). Release the wrapper as open source for others to use.
Skill Level: Beginner to Intermediate
Rationale: To learn how to extrapolate a 3rd party web service API into a meaningful set of objects/classes, making the reuse of that API easier in your chosen language.
After you have learned the basics, study the "Gang of four" design patterns book.
http://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional/dp/0201633612/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1221488916&sr=8-1
This is a classic, and a must read for any coder who wants to understand how to use OO to design elegant solutions to common coding problems.
Take a procedural-style written piece of code and try to transform it into OOP based solution. During the process, consult a book on refactoring and design patterns. A friend of mine was able to make a huge step forward in understanding object oriented concepts exactly this way. As with anything, this might not work for everyone.
I have found CRC cards to be quite effective in learning, teaching and building good OO design.
Certainly a good challenge, although less accessible than a "start from scratch" assignment, is to refactor some existing code that either doesn't use inheritance or doesn't use very much of it to make greater use of inheritance. The process of refactoring will expose a lot of the benefits and gotchas of oop, as it certainly has for me on my most recent project. It also pushed me to understand the concepts better than past projects have where I've created my own object oriented designs.
A given task has very little to do with being "OOP", it's more in how you grade it.
I would look at the Refactoring book, chapter 3, and make sure none of the bad code smells exist in the solution. Or, more importantly, go over ones that do apply.
Most importantly, watch for the existence of setters and getters (indicating that you are operating on values from a class and not asking the class to operate on it's own values)--or using "extends" without applying the Liskov Substitution Principle, stuff like that.